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Summary
This study presents a set of extensions to the 
deformable template model: Active Appearan-
ce Model (AAM). All proposed extensions lead 
to a higher segmentation accuracy when as-
sessed on radiographs, MRI and perspective 
images. Further, an initialization method is 
proposed, which rendered the AAM fully auto-
mated. In two of three cases sub pixel accura-
cy was obtained.
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Introduction
The deformable template model Active Appearance Model 
(AAM) by Cootes et al. has proven to be a very fast and 
flexible method to perform segmentation of shape varying 
objects. In this study we propose a set of extensions aim-
ing at automating the usage by an initialization scheme 
and enhance the accuracy of the AAM.

Active Appearance Models
AAMs are elegantly capable of learning both shape and 
texture (appearance) variability from examples simulta-
neously. These examples constitute a training set, which 
can be viewed upon as a set of representative solutions to 
the segmentation problem the model should solve. 
The major steps in the AAM are listed below:

Neighborhood AAMs
Dealing with objects surrounded by a relatively consistent 
neighborhood over the training set, specificity can be 
markedly increased by including this neighboring region. 
This can be accomplished by placing additional landmarks 
outside the original shape. To preserve the eigenvalue 
distribution of the shape PCA these landmarks must be 
linear combinations of the original landmarks. An example 
is given in figure 1.

Figure 1. Left: Metacarpal 2,3,4 annotated using 150 land-
marks. Right: Corresponding shape with neighborhood 
region added using 2x150 = 300 landmarks.

Border AAMs
For largely heterogeneous objects w.r.t. texture it is 
suggested to obtain texture samples only from structured 
regions – i.e. regions with consistent texture over the 
training set. In figure 2 a symmetric neighborhood around 
the object border is modeled to avoid the unstructured 
interior of the pork chops – which would be regarded noise 
by the texture PCA. 

Figure 2. Left: Shape annotated using 83 landmarks. 
Right: Corresponding border representation using 
3x83 = 249 landmarks.

AAM Model Training

I. A set of representative images is chosen and 
annotated by experts. 

II. The resulting shapes are spatially aligned using 
a Procrustes Analysis. 

III. Appearance variation is collected in a consistent manner, 
by establishing a warp function between the prototype 
and each training example. 

IV. In order to derive a specific and compact representation 
of the variation of shape (landmarks) and appearance 
(pixels), a principal component analysis (PCA) is 
performed on the aligned training set.

V. The compact parameterisation is then used to generate 
synthetic images of the object class.

AAM Segmentation

I. The model is automatically placed in an initial 
configuration over the unseen image. 

II. Using a principal component multivariate linear regression 
model, new images are generated to fit the unseen image 
in the best possible way.

Fine-tuning the Model Fit
The AAM Search provides a fast way of optimizing the AAM 
using prior knowledge. However, prior assumptions regar-
ding the appearance of the search space is only true up a 
certain accuracy. We propose to use a general purpose 
random-sampling optimization scheme Simulated Anneal-
ing (SA) to further fine-tune the AAM fit. 

Robust Similarity Measure 
Traditional AAMs uses the L2-norm as similarity measure. 
If the ith image measure is denoted gi, the model para-
meters c, and the L2-norm ñ(ei, ós) = ei

2, the model fitting 
is carried out by a minimization of the summed ñ:

Here ós is a scale parameter that is unused in the L2-norm. 
It is easily seen that outliers (measurements with large 
residuals) will dominate the similarity measure above due 
to the rapid growth of the quadratic function. We propose 
to use the robust Lorentzian error norm, which is less 
sensitive to large residuals:

Here the scale parameter ós determines what should be 
deemed outliers. Refer to figure 3 for an example where a 
robust similarity measure is needed to obtain a correct fit.

Figure 3. Example of AAM search and Simulated Annealing 
fine-tuning, without (left) and with (right) the use of a 
robust Lorentzian norm. The landmark error decreased 
from 7.0 to 2.4 pixels (pt.crv.).

Initialization
As pointed out by Cootes et al. AAMs are highly dependent 
on good initialization. To accommodate this, we propose a 
search-based initialization scheme that exploits an 
inherent property of the AAM search; namely convergence 
within some range from the optimum. Thereby a determi-
nistic search in the hyperspace spanned by model- and 
pose-parameters is narrowed down from dense to sparse.
Inspired by Genetic Algorithms we let the best n guesses 
from the initial search population survive. Upon these a 
further investigation is carried out and the fittest element 
is denoted the initial configuration. 

Experimental Results
In order to asses the initialization scheme and the propo-
sed extensions AAMs have been applied to the three image 
modalities shown in the center column (figure 4). 
In each case a leave-one-out evaluation was performed on 
the training set. Results are enumerated in table 1. 

Conclusion
We have presented a set of extensions which all yield 
higher landmark accuracy when applied to the type of 
situations they address.
The performance has been assessed on three different 
image modalities, reaching a mean landmark accuracy of 
0.82, 1.06 and 0.86 pixels (pt.crv.). All experiments were 
carried out without manual interaction. 
We conclude that the AAM approach with the proposed 
extensions is a fully automated, robust and accurate 
segmentation method that captures domain knowledge 
through observation and applies to very different cases.

Table 1. Leave-one-out test results. Point to 
curve measure has units of pixel distances. Mean 
intensity deviation is measured on 8 bit pixels.
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Figure 4. Collage of cases with overlaid segmen-
tation results. Data for the corresponding AAMs 
are:

A - Radiographs of Metacarpals
Training set: 23 images (240x275 pixels)
Shape model: 150 landmarks
Texture model: ~13.000 pixels
95% variation explained using: 18 parameters

B - Cardiac Magnetic Resonance Images
Training set: 13 images (256x256 pixels)
Shape model: 66 landmarks
Texture model: ~2.200 pixels
95% variation explained using: 11 parameters

C - Perspective images of Pork Chops
Training set: 13 images (256x191 pixels)
Shape model: 83 landmarks
Texture model: ~15.000 pixels
95% variation explained using: 10 parameters
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# Type Point to 
curve 

deviation 

Mean 
intensity 
deviation 

Init 
fail. 

A – Metacarpals 

1 Basic AAM 0.88 4.9 1 

2 1+Neighborhood 0.84 5.2 0 

3 2+SA 0.82 5.0 0 

4 3+Lorentzian 0.83 5.0 0 

B – Cardiac MRIs 

1 Basic AAM 1.18 7.1 0 

2 1+Neighborhood 1.73 7.5 0 

3 1+SA 1.06 5.9 0 

4 3+Lorentzian 1.13 6.0 0 

C – Pork Chops 

1 Basic AAM 1.12 13.2 0 

2 1+Neighborhood 0.91 13.9 0 

3 2+SA 0.89 13.6 0 

4 3+Lorentzian 0.91 13.6 0 

5 Border AAM 0.86 23.5 0 


