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1 Introduction

We assume a statistical model of the form���������
	 ���������	������
(1)

where
�

is the observable variable (target),
�

is the function output (
�����������

) and the noise is
an additive uncorrelated Gaussian white noise with variance

� �
.

Talk here about having uncertainty in the test inputs, make reference to approximate approach
(agathenips02).

2 Gaussian Processes

2.1 The Gaussian Process prior

The Gaussian Process (GP) modeling framework consists in placing a Gaussian prior over the
function space:

����� �!�#"%$&��'(��� ��	*),+�-����.	/�102�/�
. That is, for each 3 , we assume

�54�	76
676
	��98:�;�<��	>=?�
, where

=A@�BC�D)E+�-����F@G	/��B*�
gives the covariance between any pair of points.

Here, we assume that the process is stationary, i.e. it has a constant mean (we choose
'(��� �H��

) and the covariance function depends only on the distance between the points. We define it in
section 2.2.

2.2 Gaussian Kernel

A common choice of kernel or covariance function is the Gaussian one:)E+�-����F@G	/��B*�H�JI�K�LNMPORQS �T�F@UOV�WB*�YX[Z]\ 4 ���^@UO_�WB��P`a	
(2)
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where
�

is a bdc Q vector.
In the GP case, we consider

Z � e e eFf
, where

f
is the b cgb identity matrix and

e e eh�i e � 4 	
67676
	*e �jlk X , allowing for a different distance measure in different input directions.

2.3 Prediction at m�n
Given a set of training data o � i �WpP	/�Pp k 8p2q[4 , the predictive distribution of

�^r
at a new input

��r
is

obtained by conditioning on the training data to obtain s ��� r9t � r 	 o � .
In the Gaussian Process modeling framework, the joint probability distribution of

�ur
and the

training data v is Gaussian with zero-mean and covariance matrix
)A+�-

which we can write)E+�-w�xM y z ���Wr*�z �T��r�� X { `
(3)

where | is the }dc~} ‘data covariance matrix’, such that y @�BC��=A@�B��(� �*� @�B
,
{ �D)E+�-W�T� r 	/� r �

and z is the vector of covariances between the new and the training inputs, z �T� r �H� i )E+�-���� r 	/��4��16
676�)E+�-���� r 	��
.

By conditioning on the observed cases, we have� ��� r �.� z ��� r � X y \ 4 v (4)�1�9��� r �H� { O z ��� r � X y \ 4 z �T� r � (5)

where � �T� r � and
� � ��� r �

are the mean and the variance of the Gaussian predictive distributions ����r t ��r7	 o � .
3 The Relevance Vector Machine

The Relevance Vector Machine (RVM) is a probabilistic sparse kernel model, identical in func-
tional form to the Support Vector Machine (SVM) model, which is���T� �H� �� � q[4u� ���5� ��� ��� ��� � � � � X � � � �����W� �l� (6)

where � � �7� are the model weights and

��� ��6��
is an arbitrary basis function. We also write in vector

form the weights vector � � � � i � 4*	767676>	 � � k X and the responses of all basis functions

� � � �������i � 4>�T� ��	76
676
	 � � ����� k X to the input
�

. In the RVM case, a prior is put over the weights, governed by
a set of hyperparameters, one associated with each weight. For the specific choice of a factorized
distribution with variance � \ 4� :s � � � t � � �C��� � �S9� I�K5L:�WO QS � � � ���� (7)

the prior over functions s ��� t � � � � is
;�<��	P� � ��� \ 4 � � � X �

, i.e. a Gaussian process with covariance func-
tion given by )��>�F ¡�T�F@G	/�WB��.� �� � q[4 Q� � �¢� �T�£@9� �¢� �T��B�� (8)

2



where � � � �;� � � 	767676>	 �l¤ � X and
�¥��¦�§©¨�ª�� � � 	
67676
	 �l¤ � , and matrix « is such that « @�B�� � B
���^@9�

.
Sparseness in terms of the basis vectors may arise if for some ¬&� \ 4� ��

. Then the ¬ th basis
function will not contribute to the model. Associating a basis function with each input point may
thus lead to a model with a sparse representation in the inputs, i.e. the solution is only spanned
by a subset of all input points. This is exactly the idea behind the relevance vector machine.

3.1 Gaussian basis functions

One way of associating a basis function with each training input point is to choose (non-normalized)
Gaussian basis functions of the form:�5� ��� �H�aI�K5L � ORQS ���RON� � � X Z \ 4 �T��ON� � � �

(9)

where
� �

are the training inputs, and the functions are isotropic with
Z®�¯eF°

.
The resulting covariance function is obtained by inserting expression (9) into equation (8),

and is given by:)��>�F ±���F@G	��WB*�.� �� � q[4 Q� � I�K�L M O QS³² ���^@UO_� � � X Z \ 4 ���^@UO_� � �W�����WBHON� � � X Z \ 4 ���WB.O_� � ��´
(̀10)

One clear advantage of Gaussian basis functions is that they allow the exact analytical com-
putation of the mean and variance of the predictive distribution for the case where the input is
uncertain. These derivations are made in section 4.

Furthermore, it can be shown that for an infinite number of equally spaced Gaussian basis
functions, equation (10) converges to the Gaussian covariance function of a GP, given by equation
(2) [MacKay, 1997].

3.2 RVMs viewed as GPs

RVMs are Gaussian processes where the covariance between the training targets, based on equa-
tion (8), is given by the ‘data covariance matrix’ (see section 2.3) of the RVM:

y �J� � � @�B � « �R\ 4 « X µ�¶ y @�BC�J� � � @�B � �� � q[4 Q� � �5� ���^@9� �5� �T�WB*� (11)

The vector of covariances between the new prediction and the training targets is given by

z ��� r �.� « � \ 4 � � � r µ·¶ i z ��� r � k @±� �� � q[4 Q� � �5� ���F@¸� �5� ��� r � (12)

where we set

� � � r � � � � �T��r��
. Finally, the covariance of the new prediction is given by

{ �)��>�^ ���� r 	/� r �H� � � � r X � \ 4 � � � r
.
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Prediction of
��r

at a new input
��r

can be computed using the same approach as for GPs
(section 2.3), by computing the joint distribution of

�Fr
and the data first, and conditionning then

on the data to obtain the predictive distribution s ��� r t � r 	 o � .
Plugging the expressions of y , z �T�lr*� and

{
for the RVM into equations (4) and (5) we obtain:� ��� r �H� � � � r X � � � �±¹ (13)� � ��� r �H� � � � r X =w\ 4 � � � r

(14)

where � � � �±¹ and
=

are the mean and the variance of the posterior distribution over the weights.
They are given by: � � � �±¹ ��� \ �>= « X v (15)=®�;���l\ � « X « ���³�*\ 4

(16)

Equations (13)and (14) correspond to the classical expression of the mean and variance of the
predictive distribution for the RVM [Tipping, 2001].

4 Prediction at º:»½¼ ¾ ¿�À � nuÁWÂ � n£Ã
The predictive distribution of the function value, s �<�����lr*�/� at the random variable

� r
, with

� r,�;� �1Ä¸Å 	>= ÄÆÅ � , is obtained by integrating over the input distribution (omitting the conditioning on
the training data) s ��� r t �1Ä¸Å 	>= ÄÆÅ �H�DÇ s ��� r t � r � s ��� r ��È·� r 	 (17)

where s ��� rÉt � r �H� 4Ê¸Ë Ä¸Å�ÌÎÍ �YÏ I�K5LÑÐÒO 4� Ë�Ó Å \£Ô Ë Ä Å ÌÎÌÖÕÊ Õ Ë ÄÆÅ×Ì Ø with mean and variance depending on the model.

4.1 Numerical approximation

Given that the integral (17) is analytically intractable (s ����r t ��r*� is a complicated function of
� r

),
one possibility is to perform a numerical approximation of the integral by a simple Monte-Carlo
approach: s ��� r t �1Ä¸Å 	>= ÄÆÅ �H� Ç s ��� r t � r � s �T� r ��È·� rCÙ QÚ X� Û q[4 s ��� r t � r

Û �C	
(18)

where
��r Û

are (independent) samples from s ��� r*� .
4.2 Gaussian approximation

The analytical Gaussian approximation consists in only computing the mean and variance of� rÉt �1Ä¸Å 	>= ÄÆÅ . They are obtained using respectively the law of iterated expectations and law of
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conditional variances:'(� �1Ü>Å 	>= Ü>Å �Ý� Þ ÄÆÅ i Þ Ó Å i � r t � r kÎk ��Þ ÄÆÅ i � ��� r � k (19)ß � �1ÄÆÅ 	>= Ü>Å �Ý� Þ ÄÆÅ i à ¨�¶ Ó Å ��� r t � r � k � à ¨�¶ Ä¸Å �<Þ Ó Å i � r t � r k �� Þ ÄÆÅ i ���9�T� r � k � à ¨�¶ Ä¸Å � � �T� r �/� (20)

where
Þ ÄÆÅ indicates the expectation under

�lr
.

4.2.1 Approximate solution

The approximate solution consists in approximating the mean and the variance of the predictive
distribution by their Taylor expansion, of order 1 and 2 respectively. The details can be found in
[Girard et al., 2003] and more extended in [Girard et al., 2002].

4.2.2 Exact solution

For deriving the following results, we use the fact that the mean and the variance of the predictive
distribution for a deterministic input is given by very similar expressions both for GPs and RVMs.
For the GP case we have:� ��� r �C� � pJá pT)E+�-���� r 	/�1p�� (21)� � ��� r �.�D)E+�-W�T� r 	/� r ��O � p �£� y p � \ 4 )E+�-��T� r 	/�1p���)E+�-���� r 	/� � � (22)

where we define á á á � y \ 4 v , and for the RVM case we have:� �T� r �.� � p á p � p×��� r � (23)���9�T� r �H� � p �G� =%p � \ 4 � pP��� r � �5� ��� r �
(24)

with á á á � � � � �±¹ , as given by (15). It is worth noticing that
)â+�-W�T��r7	/��pT�

and

� pP����r*�
are given by

the same expression:)E+�-���� r 	���p��H� � p×�T� r �.��I�K5Lã��O�QS ����O_� � �YX[Z]\ 4 ����O_� � � �
(25)

Computing the mean (for GPs and RVMs) We have, using equation (21)'(� �1Ü>Å 	>= Ü>Å �.�DÞ ÄÆÅ i � ��� r � k � Ç � �T� r � s ��� r ��ÈG� r � �£� á � Çdä �T� r 	/� � � s ��� r ��È·� r (26)

where
ä ����r7	/� � �H��)E+�-�����r7	�� � �

is as given by (2) for GPs and
ä �T�lr7	�� � �C� �5� ����r��

is as given by
(9) for RVMs.
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Let
f � �æå ä ����r7	/� � � s ���Wr*��È·��r . To easily solve the integral, the ”trick” consists in writingä ����r7	�� � �

as a probability density . . .f � � � S9� � \ jWç � t Z t \ 4 ç �� S9� � \ jWç � t Z t \ 4 ç � Ç ä ��� r 	/� � � s �T� r ��ÈG� r (27)

so that we have
� S9� � \ jWç � t Z t \ 4 ç � ä �T� r 	/� � �

is a normal distribution with mean
� �

and covarianceZ
. Now, using the formula giving the multiplication of two Gaussian distributions1 we havef � �;� S9� � jWç � t Z t 4 ç ��è7é

withè7é �;� S9� � \ jWç � t ) t 4 ç � t Z t \ 4 ç � t = Ä Å t \ 4 ç �uI�K5LVM�O QS ��� � X Z \ 4 � � � � X Ä Å = \ 4Ä Å �1Ä Å O½ê X� ) \ 4 ê � �Y`)ë�;��Z \ 4 �g= \ 4Ä¸Å � \ 4ê � ��)ì�<Z \ 4 � � �g= \ 4Ä¸Å �[ÄÆÅ � (28)

Then,
f �

simplifies into2f � � t Z]\ 4 = Ä¸Å �½f t \ 4 ç � I�K5L � O QS � �1Ä¸Å O_� � �YX��P= ÄÆÅ ��Zí�*\ 4 � �[ÄÆÅ ON� � � �
(29)

where
f

is the bdc:b identity matrix.
We can therefore write the mean as'(� �1Ü>Å 	>= Ü>Å �H� �G� á � f � (30)

Computing the variance for GPs We have ß � �WÄ¸Å 	>= Ü>Å �R�îÞ Ä¸Å i � � �T� r � k � à ¨�¶ Ä¸Å � � �T� r �/�³�Þ ÄÆÅ i � � ��� r � k ��Þ ÄÆÅ i � �T� r � � k OïÞ �Ä¸Å i � �T� r � k , which translates intoß � �[ÄÆÅ 	>= Ü>Å �.� Ç ð )E+�-���� r 	/� r ��O � p �G� )E+�-���� r 	/�1p�� y p � \ 4 )E+�-���� r 	/� � �×ñ s ��� r ��È·� r �� p �G� á p á � Çò)E+�-���� r 	/��pT��)E+�-��T� r 	/� � � s ��� r ��È·� r Oæó �G� á � Çò)E+�-���� r 	�� � � s �T� r ��È·� r�ô � (31)

which simplifies intoß � �1ÄÆÅ 	�= Ü>Å �C��)E+�-W�T� r 	/� r ��O � p �G� � y p � \ 4 O á p á � �×f>p � O i �G� á � f � k � (32)

1 õ:öÎ÷�ø<ù�ú2õ:öüû�ø<ý�ú�þ(õ:öÎÿ*ø��.ú with ����öÎù����	��ý
���×ú���� , ÿ����öÎù�����÷���ý
����û×ú and normalising constant��� �(ö����¢ú ��������� � � ������� ù � ���!����� ý � ���!����"$#&%('*) �� öÎ÷�+�ù ��� ÷,�wû�+¢ý ��� û ) ÿ$+-� ��� ÿ�ú/. .
2We use here the following identities:ö103254��76�ú ��� �80 ���2 4 ) 0 ���2 4 ö/0 ���2 4 �76 ��� ú ��� 0 ���2 4 �96 ��� ) 6 ��� ö10 ���2 4 �76 ��� ú ��� 6 ���ö103254��76�ú ��� �80 ���254 ö/0 ���254 �76 ��� ú ��� 6 ��� �:6 ��� ö10 ���254 �76 ��� ú ��� 0 ���254
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where
f �

is given by (29) and
f
p �

is as follows (making use of the product of three Gaussians)f>p � � t S Z \ 4 = Ä Å ��f t \ 4 ç ��I�K�L � O�QS � X Ä Å = \ 4Ä Å �1Ä Å �I�K5LÑ��ORQS � X� Z \ 4 � � � I�K5L:�WO�QS � X p Z \ 4 �1p � I�K5L:�EQS È X p � b \ 4 ÈGp � �
with b �;� S Z \ 4 �g= \ 4ÄÆÅ � \ 4 (33)È·p � � b �<Z \ 4 ��� � �ï��p��W� = \ 4ÄÆÅ �1Ä Å � (34)

which simplifies into:f>p � � t S Z]\ 4 = ÄÆÅ ��f t \ 4 ç � I�K5LÑ��ORQS<; � �1Ä¸Å O_�1p�O_� � �YX��P= ÄÆÅ � S Z?�*\ 4 � �1Ä¸Å O_��p�O_� � ��O S �1Xp Z]\ 4 � �>= �
(35)

Computing the variance for RVMs We have ß � �WÄÆÅ 	�= Ü>Å �A��Þ Ä¸Å i � � ����r*� k � à ¨�¶ ÄÆÅ � � ����r*���A�Þ ÄÆÅ i � � ����r�� k ��Þ ÄÆÅ i � �T��r*� � k OïÞ �Ä Å i � �T��r*� k , which for RVMs, using (14) translates intoß � �1ÄÆÅ 	>= Ü>Å �H� Ç � p �G� =%p � \ 4 � pP��� r � �5� ��� r � s �T� r ��È·� r �� p �£� � p � � Ç � p×�T� r � �5� ��� r � s ��� r ��È·� r O ó �·� � � Ç �¢� �T� r � s ��� r ��È·� r�ô � (36)

which simplifies intoß � �1ÄÆÅ 	�= Ü>Å �C� �@?>ACB�D ð = \ 4�P� � S � p = \ 4� p f�p ñ � � p �G� �P=%p � \ 4 � � p � � ��f>p � O i �G� � � f � k � (37)

where
�@?>ACB�D

is
�

if there is no bias term, and Q if there is. Again,
f �

and
f>p �

are given respectively
by equations (29) and (35). The quantity � p is the E -th component of the maximum posterior
estimate of the weights, given by (15).

5 Time-Series Forecasting

We wish to apply these results to the multiple-step ahead prediction task of time series. Currently,
this can be achieved by either training the model to learn how to predict

{
steps ahead (direct

method) or by making repetitive one-step ahead predictions (iterative method). We are concerned
with the iterative approach and suggest to propagate the uncertainty as we predict ahead in time.
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5.1 ”Naive” iterative F -step ahead prediction

Consider the time series
� Û G 	767676>	�� Û and the state-space modelH � Û*I � i � Û*I \ 4�	
67676
	/� Û*I \KJ k X� Û*I �D���T� Û*I � ��� Û*I (38)

where the state
�

at time
�×p

is composed of previous outputs, up to a given lag3 L and we have an
additive (white) noise with variance

� �
.

The naive iterative
{
-step ahead prediction method works as follows: it predicts only one

time step ahead, using the estimate of the output of the current prediction, as well as previous
outputs (up to the lag L ), as the input to the prediction of the next time step, until the prediction{

steps ahead is made.
Using the model (38) and assuming the data is known up to, say, time step

�
, the prediction

of
�

at
��� {

is computed via� ÛNM 4C� i � Û 	�� Û \ 4�	
67676
	/� ÛNM 4 \KJ k X O ���T� ÛNM 4��H���� � ��� ÛNM 4���	�� � �T� ÛNM 4/�/�P� ÛNM 4.� � ��� ÛNM 4/�� ÛNM � � i P� ÛNM 4*	�� Û 	
67676
	/� ÛNM � \KJ k X O ���T� ÛNM � �H���� � ��� ÛNM � ��	�� � �T� ÛNM � �/�P� ÛNM � � � ��� ÛNM � �
...� ÛNMRQ � i P� ÛNMRQ \ 4�	 P� ÛNMRQ \ � 	7676
6
	 P� ÛNMRQ \KJ k X O ���T� ÛNMRQ �.��;� � �T� ÛNMRQ ��	/� � ��� ÛNMRQ �/�P� ÛNMRQ � � ��� ÛNMRQ �

where the point estimates � �T� ÛNMRQ \ p�� are computed using equation (4). This setup does not ac-
count for the uncertainty induced by each successive prediction (variance

� � �T� ÛNMRQ \ p����½� �
asso-

ciated to each
P�
, given by (5)).

5.2 Propagating the uncertainty

Using the results derived in the previous section, we propose to formally incorporate the uncer-
tainty information about the future regressor. That is, as we predict ahead in time, we now view
the lagged outputs as random variables.

In this framework, if, as before, data are known up to time
�

and we wish to predict
{

steps
ahead, we now haveS at

�W� Q , � ÛNM 4C�� TUWVX � Û67676� ÛNM 4 \KJ
YZ 	�VX � 676
6 �67676 676
6 6
676� 676
6 � YZ\[]

predict
� ÛNM 4.� ���'(��� ÛNM 4/��	 ß ��� ÛNM 4��W�½� � �

, using (30) and (32), with
�[r��J� ÛNM 4

3We are not concerned with the identification of the lag and assume it has a known, fixed value.
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S at
�W� S

, � ÛNM � �  TU VX '(��� ÛNM 4/�67676� ÛNM � \KJ
YZ 	\VX ß �T� ÛNM 4/�W��� � 67676 �6
676 67676 67676� 67676 � YZ []

predict
� ÛNM � � ���'(��� ÛNM � ��	 ß ��� ÛNM � �W�½� � �

...S at
�W� {

,� ÛNMRQ �� TUWVX '(��� ÛNMRQ \ 4/�6
676'(�T� ÛNMRQ \KJ �
YZ 	 VX ß ��� ÛNMRQ \ 4������ � 67676_^
µ à ��� ÛNMRQ \ 4�	�� ÛNMRQ \KJ �67676 67676 67676^>µ à ��� ÛNMRQ \KJ 	�� ÛNMRQ \ 4×�x67676 ß ��� ÛNMRQ \KJ �½� � � YZ�[]

predict
� ÛNMRQ ��;��'(�T� ÛNMRQ ��	 ß �T� ÛNMRQ �W�½� � �

5.2.1 Input distribution

At time
� Q

, we have the random input vector
� ÛN` � i � ÛN` \ 4�	76
676
	�� ÛN` \KJ k X with mean formed of the

predicted means of the lagged outputs
� ÛN` \�a , b � Q 	7676
6
	 L , given by (30).

The L c L input covariance matrix has the different predicted variances on its diagonal:idc Üfe ` k p p1� ß �T� ÛN` \ p�� , for E � Q 67676 L , computed with (32).
The cross-covariance terms are obtained as follows: at time step

� Q
, we predict

� Û `
and then,

for the next time step, we need to compute the covariance between
� ÛN`

and
i � ÛN` \ 4�	767676>	�� ÛN`gM 4 \KJ k .

That is, in general, we want to compute
^
µ à ��� ÛN` 	/� ÛN` �

. That is^>µ à ��� Û ` 	/� Û ` �H�DÞ i � Û ` � Û ` k O½Þ i � Û ` k Þ i � Û ` k
(39)

with
Þ i � Û ` k

given by (30) and
Þ i � Û ` k � �[Ü e ` .

We have
Þ i � ÛN` � ÛN` k � å&å � ÛN` � ÛN` s ��� ÛN` � ÛN` ��ÈG� ÛN` È·� ÛN` � å&å � ÛN` � ÛN` s ��� ÛN` t � ÛN` � s ��� ÛN` ��ÈG� ÛN` È·� ÛN` which

is
å]� ÛN` � ��� ÛN` � s �T� ÛN` ��È·� ÛN` with � ��� ÛN` � as given by (4).

Replacing and solving this integral in a similar way to what we did for the calculation of the
mean, we arrive at Þ i � Û ` � Û ` k � �G� á � f � ê � (40)

So that the cross-covariance terms are given by^>µ à ��� ÛN` 	/� ÛN` �H� �G� á � f � �<ê � O �1Ü e ` � (41)

where
f �

and
ê �

are given by (29) and (28) respectively.
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6 When not all components of º » are stochastic
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