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Multivariate Alteration Detection (MAD)
and MAF Postprocessing in Multispectral,
Bitemporal Image Data: New Approaches
to Change Detection Studies

Allan A. Nielsen,*

Thi.s' article introduces the multivariate alteration de-
tection (MAD) transformation which is based on the es-
tablished canonical correlations analysis. Tt also proposes
using postprocessing of the change detected by the MAD
variates using maximum autocorrelation factor (MAF)
analysis. The MAD and the combined MAF/MAD trans-
formations are invariant to linear scaling. Therefore, they
are insensitive, for example, to differences in gain settings
in a measuring device, or to linear radiometric and atmo-
spheric correction schemes. Other multivariate change
detection schemes described are principal component
type analyses of simple difference images. Case studies
with AHVRR and Landsat MSS data using simple linear
stretching and masking of the change images show the
usefulness of the new MAD and MAF/IMAD change de-
tection schemes. Ground truth observations confurm the
detected changes. A simple simulation of a no-change sit-
uation shows the accuracy of the MAD and MAF/MAD
transformations compared to principal components based
methods.  ©EFElsevier Science Inc., 1998

INTRODUCTION

The biosphere—atmosphere-hydrosphere form a com-
plex, highly interactive system in which change [e.g., ur-
banization (Graetz et al., 1992) and ENSO-related (El
Nifio—Southern Oscillation) change (Quiroz, 1983)] can
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occur over a broad spectrum of space and time scales.
On the regional and global scale, multivariate satellite
data provide the only practical way to monitor such
changes. Often such large-scale environmental changes
have signiﬁcamt social and economic impact. For exam-
ple, there was a 40% reduction in fish catch within FAO
Fishing Region 77 (5°S to 40°N; 80°W to 175°W) during
the 1982-1983 ENSO and contemporaneous midlatitude
oceanic coastal warming event (e.g., FAO, 1987 Simp-
son, 1992a), and Sill]!_llti{]lt—'()llS]}-‘ the Australian continent
experienced severe drought. Thus, the scientific and so-
L'i()t‘(‘()llc)ll‘lic Ilt“('(ls }.Ur accurate Cllil]lg(' (1(’t['('ti()n ill se-
quences of satellite data are apparent.

When analyzing changes in panchromatic images
taken at different points in time, it is customary to ana-
lyze the difference between two images, pnwhl\ after
some normalization; areas with little or no change have
zero or low absolute values, and areas with large changes
have large absolute values in the difference image. Given
two multivariate images with variables at a given location
written as vectors (without loss of gvnvm]it}' we assume
that E{X]=E{¥}=0)

=[x =G0 and

where k is the number of spectral bands, then a simple
change detection transformation is

X—Y:lxl_}‘l i XA*Y&JT» (2)

Y=[Y; - YiJ%, (1)

Il our image data have more than three channels, it is
difficult to visualize changes in all channels simultane-
ously. To overcome this problem and to concentrate in-
formation on change, linear transformations of the image
data that optimize some design criterion can be consid-
ered. A linear transformation that will maximize a mea-
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sure of change in the simple multispectral difference im-
age is one that maximizes deviations from no change
(e.g.. the variance)

Var{v,(X,—Y )+ -+ (X, =Y | =Var[p"(X=Y)}. (3)

Areas in the image data with high absolute values of
p'(X—Y) are maximum change areas. A multiplication of

vector v with a constant ¢ will multiply the variance with
¢ Therefore, we must make a choice concerning v. A
natural choice is unit normalization, »’'v=1. This amounts
to finding principal components (Hotelling, 1933) of the
simple difference images.

A more parameter rich measure of change that
allows different coefficients for X and ¥ and different
numbers of spectral bands in the two sets p and q. re-
spectively (p=q), are linear combinations

a'X=aX,+ b'Y=bY,+--+b,Y

q=q

+a,X, and (4)

and the difference between them a’X—b"Y. The mea-
sure of change we propose is: maximize Var{a’X—b"Y}
with the chosen constraints Var{a™X|=Var{b"Y}=1. This
formulation can be implemented using standard canoni-

al correlations analysis (Hotelling, 1936). A treatment is
given in most textbooks on multivariate statistics [good
references are Cooley and Lohnes (1971) and Anderson
(1984)]. This measure also accounts for situations where
the spectral bands are not the same but cover different
spectral regions; for instance, one set of data comes from
Landsat Multi-Spectral Scanner (MSS) and the other set
comes from Landsat Thematic Mapper (TM) or from
SPOT High Resolution Visible (HRV) imager. This latter
capability may be valuable in historical change detection
studies using time series elements from different instru-
ments. In this case one must be more cautious when in-
terpreting the multivariate difference as multivariate
change.

This article uses a new method of change detection
(next section) based on canonical correlations analysis
and the maximum autocorrelation factor (MAF) analysis
(next section) developed by Switzer and Green (1984).
Unlike traditional methods of change detection, it rank-
orders the component differences in the multivariate
data and simultaneously preserves the natural spatial
structure of the data. Examples using AVHRR and Land-
sat MSS data show the usefulness of the new method,
which is confirmed by ground truth data. Comparisons
with traditional methods of change detection show the
robustness of the new method. In fact, in one example
standard methods fail.

STATISTICAL PROCEDURES

This section discusses: 1) the multivariate alteration de-
tection (MAD) transformation; 2) the maximum autocor-
relation factors (MAF) transformation; and 3) the physi-
cal motivation for the MAF/MAD analysis.

The Multivariate Alteration Detection

(MAD) Transformation

Canonical correlations analysis investigates the relation-
ship between two groups of variables. It finds two sets
of linear combinations of the original variables, one for
each group. The first two linear combinations are the
ones with the largest correlation. This correlation is
called the first canonical correlation, and the two linear
combinations are called the first canonical variates. The
second two linear combinations are the ones with the
largest correlation subject to the condition that they are
orthogonal to the first canonical variates. This correlation
is called the second canonical correlation, and the two
linear combinations are called the second canonical vari-
ates, Higher-order canonical correlations and canonical
variates are defined similarly. Because corresponding
pairs of canonical variates are linear combinations of the
original variables ordered by correlation or similarity be-
tween pairs [Eq. (4)], it seems natural to base a change
detection scheme on differences between these pairs of
variates.

To find @ and b [Eq. (4)], Fung and LeDrew (1987)
use principal components (PC) analysis on X and ¥ con-
catenated to one vector variable. They define @ and b
simultaneously, but their method does not have a clear
design cnten(_m [e.g., an equation analogous to Eqs. (1)-
(3) or (5)]. Also, bands are treated similarly whether or
not they come from different points in time. Gong
(1993) dpp]lt‘\ PC analysis to simple difference images as
described above [Eq. (3)]. This approach depends on the
scale at which the individual variables are measured (for
instance, it depends on gain settings of a measuring de-
vice). Also, it forces the two sets of variables to have the
same coefficients (with opposite sign), and it does not
allow for the case where the two sets of images have dif-
ferent numbers of channels.

A potentially better approach is to define a set of a
and b simultaneously in the fashion described below.
Again, let us maximize the variance, this time Var{a™X—
b'Y}. We also must make choices concerning a and b,
and natural choices in this case are requesting unit vari-
ance of a@’X and b'Y. The criterion then is: maximize
Var{a’X—b'Y) subject to the constraints Var{a'X}=Var
[b"Y]=1. Then we have

Varla’X—b"Y}=Var{a'X|+Var(b'Y}|—2Cov|a"’X.b"Y|
=2(1—Corr{a"X.b"Y}). (5)

We shall request that @’X and b"Y are positively corre-
lated. Therefore, determining the difference between
linear combinations with maximum variance corresponds
to determining linear combinations with minimum (non-
negative) correlation; this complies with canonical corre-
lations analysis.

In accordance with the above, we define the multi-
variate alteration detection (MAD) transformation as



a,.X =blY

mH b 6)
alX—b1Y

where a;, and b, are the defining coefficients from a stan-
dard canonical correlations analysis (see the Appendix). X
and Y are vectors with expectation values E{X]=E[Y}=0.
We see that the MAD transform consists of the variates
we get when we subtract corresponding canonical vari-
ates in reverse order. The dispersion matrix of the MAD
variates is

D{a’X-b"Y|=2(I-R), (7)

where I is the pXp unit matrix and R is the pXp matrix
containing the sorted canonical correlations on the diago-
nal and zeros off the diagonal.

The MAD transformation has the very important
property that if we consider linear combinations of two
sets of p respectively ¢ (p=<q) variables that are positively
correlated then the pth difference shows maximum vari-
ance among such variables. The (p—j)th difference shows
maximum variance subject to the constraint that this dif-
ference is uncorrelated with the previous j ones. In this
way we may sequentially extract uncorrelated difference
images where each new image shows maximum differ-
ence (change) under the constraint of being uncorrelated
with the previous ones. If p<<g, then the projection of ¥
on the eigenvectors corresponding to the eigenvalues 0
will be independent of X. That part may of course be
considered the extreme case of multivariate change de-
tection. As opposed to the principal components, the
MAD variates are invariant to linear and affine scaling
(see Nielsen and Conradsen, 1997). This means that they
are not sensitive, for example, to the offsets or gain set-
tings of a measuring device, or to radiometric and atmo-
spheric correction schemes that show a linear relation-
ship with brightness counts. This type of multivariate
change detection technique was first sketched in Conrad-
sen and Nielsen (1991a.b). Multivariate change detection
techniques are also described in Hanaizumi and Fuji-
mura (1992), and in Hanaizumi et al. (1994) who work
with multiple regression and canonical correlations meth-
ods applied to specific change detection. Mathematical
details of the MAD transformation are given by Nielsen
and Conradsen (1997).

The Maximum Autocorrelation Factor

(MAF) Transformation

To find maximum change areas with high spatial autocor-
relation a MAF postprocessing of the MAD variates is
carried out. The MAF transformation can be considered
as a spatial extension of principal components (PC) anal-
ysis in which the new variates maximize autocorrelation
between neighboring pixels rather than variance (as with
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PCs). MAFI is the linear combination of the original
variables that maximizes autocorrelation, MAF2 is the
linear combination of the original variables that maxi-
mizes autocorrelation subject to the condition that it is
orthogonal to MAF1. Higher order MAFs are defined
similarly. Expressed mathematically, the MAFs are con-
structed by finding new variables defined by a vector of
coefficients ¢, where Corr(c’Z(x), *Z(I+A)} is max-
imized, thereby preserving information contained in the
spatial structure of the data itself. Z(x) is the variable in
question (here a’X—b"Y) at location x and A=[A, A)
is a spatial shift. Like the MAD transformation, the MAF
transformation is invariant to linear scaling. For more de-
tailed mathematical descriptions of the MAF and related
transformations, see Switzer and Green (1984), Conrad-
sen et al. (1983), Green et al. (1988), Ershell (1989),
Conradsen and Ersbell (1991), and Nielsen (1994).

Physical Motivation for a MAF/MAD Analysis
Studies of change detection using satellite data are con-
cerned with accurately estimating rates of change of a
given quantity of interest. Simple differencing of two
coregistered satellite scenes separated in time provides a
point by point estimate of the desired rate. A PC trans-
formation of the simple difference image is an improve-
ment over simple differencing because it produces con-
centrated change information in uncorrelated variables
which contain decreasing amounts of variance (and thus
change) with decreasing eigenvalues.

Physical and biological phenomena observed in satel-
lite images (e.g., lakes, agricultural fields), however, gen-
erallv occupy many pixelq in a scene. Hence, it is very
desirable to analyze rates of change within the qpatml
context of the image data itself (i.e., there is information
in the spatial structure of data that is not obtained simply
by analyzing the data with pixel-based operations). The
combination of MAD and MAF analyses used in this ar-
ticle provides a statistically rigorous way to retain the
spatial context of the data in the dmﬂy/ed results.

MAD analysis takes the difference between linear
combinations of the original data that have maximal cor-
relation. All such differences are orthogonal. MADs, like
PCs, however, are performed as point operations. Be-
cause the MAFs retain spatial structure in the data
(through maximizing the correlation between the original
and the shifted data), taking the MAFs of the MADs
provides a way to retain the spatial context of the neigh-
borhood pixels in the image in the final change detection
analysis. Regions of little or no change in the composite
image data will have MADs and MAFs of MADs (herein
after referred to as MAF/MADs) with near zero or low
absolute value whereas regions of large change will have
large absolute value.

Often, multitemporal imagery are concatenated and
transformed using the PC transformation to yield a se-
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quence of patterns contained in the original image se-
quence [see Richards (1993) for details]. Empirical or-
thogonal function (EOF) analysis (Preisendorfer, 1988)
extends this concept further by evaluating the time series
of temporal amplitudes associated with the PCs. Such
methods, however, are not ()ptimized for change detec-
tion because: 1) They incorporate no explicit design cri-
terion for detecting (hdn;_{e in the state of a natural sys-
tem [e.g., equations analogous to Eqs. (1)~(3) and (5) are
not included in the formulations]; 2) the sequence of
PCs can be dominated by a single element in the image
sequence which has a disproportionate high variance
compared to other elements in the image sequence [see
detailed example in Gallandet and Simpson (1994)]; and
3) such PC-based approaches are sensitive to errors in
instrument calibration. The MAD and MAF/MAD analy-
ses have explicit design criteria to detect spatially coher-
ent change [Eq. (5) and the previous subsection] and are
not affected by issues 2) and 3) cited above.

SATELLITE DATA AND PREPROCESSING

Data for the terrestrial case study were taken with the
Multispectral Scanner System (MSS) aboard the Landsat
satellites. The MSS is a four-channel instrument with
Channels 14 having bandwidths of 0.5-0.6 um (green),
0.6-0.7 um (red), 0.7-0.8 um (red to near-infrared) and
0.8-1.1 um (near-infrared), respectively. Historically,
channel 1 data have been used to map coastal features
in sediment laden water, channel 2 data have been used
to map roads and urban areas, and data from channels
3 and 4 have been used for vegetation studies and for
mapping land/water boundaries (Matra Marconi Space,
1994). The swath width of the MSS is 185 km and the

pixel resolution is 80 m. A more detailed description of

the MSS sensor is given by Markham (1985) and the ref-
erences contained therein. Data were chosen for their
cloud-free qualities and an interchannel relative calibra-
tion was performed by Australia’s Commonwealth Scien-
tific and Industrial Research Organization (CSIRO).

AVHRR data consist of five channels having band-
widths 0.55-0.68 gm (red), 0.73-1.10 gm (red to near-
infrared), 3.55-3.93 um (mid-infrared), 10.3-11.3 gm
(thermal infrared), and (if present) 11.5-12.5 um (ther-
mal infrared), respectively. These data were downlinked
by the Seripps Satellite Oceanography Center, calibrated
to geophysical units (Lauriston et al., 1979 and updates),
and coregistered to a common geophysical grid (e.g.,
Legeckis and Pritchard, 1976). Clouds were removed
from the data using the procedure of Simpson and Hum-
phrey (1990). A common cloud/land mask for the AVHRR
images was created using the results from the individual
image clond masks, coastline grids, morphological trans-
formations, and polygon fills (Simpson, 1992bh). Water va-
por atmospheric corrections and multichannel sea sur-
face temperatures (MCSST) were calculated using

MCSST=1.(J095T4+@ LOBTs o4, ()
R 12

where R, is computed on a pixel by pixel basis as
Ry, =ATy/AT, and AT, is the temperature difference be-
tween adjacent pixels in Channels 4 and 5, respectively
(Harris and Mason, 1992). This assumes that the atmo-
spheric variation in water vapor changes slowly over the
spatial scales of the local SST gradient which allows an
additional nonlinear atmospheric transmittance correc-
tion to be computed from the local brightness tempera-
ture. The effectiveness of this approach was demon-
strated by Harris and Mason (1992) and independently
confirmed for the California Current using a large num-
ber of images and a neural network classifier (Yhann and
Simpson, 1995).

RESULTS

PC. MAD and MAF/MAD transformations are used to
detect the spatial patterns of change found in a sequence
of Landsat MSS data (terrestrial case) and a sequence of
AVHRR data (oceanic case).

Terrestrial Case: Urbanization of
Queensland, Australia
Graetz et al. (1992) used two Landsat MSS images taken
on 11 November 1972 and 16 November 1988 to exam-
ine urbanization in Queensland, Australia, over the 16-
year period. In 1991 the Brishane Statistical Division
registered a population of 2,978,617 people with an esti-
mated growth rate of about 2% per year. The most strik-
ing man-made feature pointed out by Graetz et al.
(1992) was the establishment and ﬁllmg, of three large
water reservoirs to accommodate the population growth.
The largest of these was developed to the west of the
cities of Brishane and Ipswitch. PC and MAF/MAD
analyses are applied on the relevant subsections of the
two Landsat MSS scenes to detect the pattern of land
cover change produced by the development and filling
of the largest reservoir.

Figure 1 shows the western region of the MSS im-
age (Bands 1-4, panels a-d, respectively) taken on 11
November 1972. Each image is 500X500 pixels. For the
present analysis, the feature of most importance in these
panels is a section of the river clearly visible in all four
bands of the MSS image. Figure 1 (panels e-h) shows
the same area 16 vears later. Figure 1 (panels i-1) shows
the simple difference images, and Figure 1 (panels m—p)
shows the principal components of these differences.
The formation of the reservoir is clearly seen in the sec-
ond, third and fourth columns. Spectral means (Table 1)
and covariance/correlation structure of the original data
(Table 2) are consistent with the changes observed in
Figure 1. Figure 2 (panels a—d, e—h) shows the canonical
variates of the MSS data in the two years. Figure 2 (pan-
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Figure 1. Landsat MSS Bands 1-4, 11 November 1972 (panels a~d), 16 November 1988 (panels e-h), simple differences (pan-
els i-1), and PCs of simple differences (panels m—p).
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Table 1. Means for the Terrestrial Case Study
MSS1 MSS2 MSS3 MSS4
1972 67.38 533.21 99.18 78.65
1958 67.61 57.52 96.45 23.41
Difference 0.23 4.31 —2.70 —55.24

els i-1) shows the corresponding MAD variates. Figure 2
(pane]s m—p) shows the MAF/MADs. PC1 (Figure 1,
panel m) contains maximum variance (see Table 3) and
shows the pattern of reservoir formation as well as a re-
gion of urbanization and hobby farms in the lower part
of the PC1 [see Graetz et al. (1992) for additional sup-
porting information]. PC4 (Figure 1, panel p) contains
minimum variance (Table 3) and primarily shows a noise
pattern in the MSS data. The general patterns found in
the PCs also are found in the MADs (Fig. 2, panels i-l)
except that neither the reservoir and hobby farm forma-
tion nor the MSS noise are confined to a single MAD.

Figure 3 (panels a-c) shows the composite of the
three first PCs, PC1 in red, PC2 in green, and PC3 in
blue. Figure 3 (panels d-f) shows the composite of the
three most spatially coherent MAF/MADs, MAF/MADI1
in red, MAF/MAD2 in green, and MAF/MAD3 in blue.
In panels b and e, no-change regions in the images are
masked to gray. In panels ¢ and f, no-change regions in
the images of the absolute values are masked to black.
Note that the MAF transformation maximizes the auto-
correlation in the data rather than maximizing the vari-
ance. This is clear in Figure 2, panels m—p. Here, reser-
voir formation is shown in MAF/MADI (panel m), while
the MAF/MAD4 (panel p) largely is noise in the com-
posite dataset (i.e.. the least spatially coherent compo-
nent of the composite dataset, Table 3). In order, the
three most spatially coherent patterns of change in Fig-
ure 3 are the reservoir formation (red), urbanization and
hobby farm development (green) in the lower part of the
image, and changes in the river structure (blue). The
RGB composite MAF/MAD visually preserves this rank
order of change.

Simple No-Change Simulation.

As a simple simulation of a situation with no change in
all bands we pad the two 500x500 Landsat MSS scenes
described above into the central part of 550X550 back-
grounds with values 0 in all bands in both years. Change
between the two 550X550 scenes is estimated by means
of: 1) simple differences; 2) principal components of sim-
ple differences (based on the covariance matrix); 3) prin-
cipal components of simple differences (based on the
correlation matrix); 4) varimax rotated factors of simple
differences; 5) MAFs of simple differences; 6) MADs;
and 7) MAF/MADs. Change detected in the region with
no change (the 25 pixels broad edge around the actual
image data) as indicated by standardized values of the
results from the different change detection methods is
given in Table 4. It is obvious that MAD and MAF/MAD
are the only multivariate techniques that perform well in
this situation. All other methods give values much higher
than 0.

Oceanic Case: ENSO-Related Mid-Latitude
Coastal Warming

El Nifio—Southern Oscillation (ENSQO) events are charac-
terized by large-scale changes in the structure and dy-
namics of the tropical atmosphere-ocean system (e.g.,
Bjerknes, 1966; Horel and Wallace, 1981). ENSO events,
however, are not confined to tropical regions; generally
they are accompanied by contemporaneous midlatitude
warming events and changes in polar circulation. The
1982-1983 ENSO event (e.g., Rasmusson and Wallace,
1983) was accompanied by a major expansion and inten-
sification of the Aleutian Low Atmospheric Circulation
(e.g., Simpson, 1983) and by major changes in ocean cir-
culation and property distributions from the equatorial
eastern tropical Pacific to Alaska (e.g., Lynn, 1983; Simp-
son, 1984a.h). In particular, pronounced downwelling oc-
curred along the west coast of North America which con-
tributed to the formation of anomalous warmer surface
and subsurface water in the inshore domain of the Cali-
fornia Current System (CCS). Plankton and nekton dis-
tributions also were modified in response to these changes
in the physical structure and dynamics of the CCS (e.g,
Fiedler, 1984; McGowan, 1985).

Table 2. Covariance/Correlation Matrix for the Terrestrial Case Study

1972 1988

MSS1 MSS2 MSS3 MSS4 MSS1 MSS2 MSS3 MSS4
1972 MSSI 77.30 96.36 76.24 39.39 54.87 92.09 11.11 —4.95
1972 MSS2 0.91 144.60 61.84 12.13 74.92 128.68 18.71 —5.04
1972 MSS3 0.49 0.29 310.95 269.25 44.31 66.40 85.42 16.43
1972 MSS4 0.27 0.06 0.95 260.83 16.52 19.15 §1.36 19.41
1988 MSS1 0.57 0.57 023 0.09 119.87 192.62 198.53 43.96
1988 MSS2 0.58 0.59 0.21 0.07 0.97 328,51 286.42 61.62
1988 MSS3 0.04 0.05 0.16 0.17 0.61 0.53 880.78 235.44
1988  MSS4 —0.07 —0.05 0.12 0.15 0.50 0.42 0.98 65.48
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Figure 2. Canonical variates (CVs) of 1972 MSS data (panels a~d). CVs of 1988 MSS data (panels e-h), MADs (panels i-1),
and MAF/MADs (panels m—p).
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Table 3. Key Parameters for PC, MAD and MAF/MAD Transformations for

the Terrestrial Case Study

PC MAD MAD
Eigen Component Canonical Component MAF/MAD
number Variance Correlation Variance Correlation
1 1320.56 0.03 1.95 0.78
2 205.77 0.18 1.64 0.74
3 76.14 023 1.54 0.46
4 9.10 0.73 0.54 0.22

AVHRR images, representative of conditions in the
CCS near the beginning (29 January 1982) and during the
advanced stages (10 January 1983) of the 1982-1983
warming event were selected for analysis. Each image is
1024512 pixels, centered at 31° 30'N latitude and 119°
30"W longitude and covers part of the southern California
and Baja California sectors of FAO Fishing Region 77.

In this case we used the AVHRR channel 3 and the
MCSST data only. Figures 4a and 4b show the 1982
data. Figures 4c¢ and 4d show the 1983 data. The 1982
image contains relatively little noise in AVHRR channel
3 data (Fig. 4a), but there is considerable noise in the
1983 channel 3 image (Fig. 4c¢). There is little or no
noise in the MCSST images. Mean values and covari-
ance/correlation structure are given in Tables 5 and 6.
The PC analysis of the simple difference data is shown
in Figures 5a and 5b. Parameters for the PC analysis are
given in Table 7. Because of the extremely hl;,h levels
of noise in the 1983 channel 3 data, the PC analysis
failed (i.e., a significant noise fraction of the uncorrected
channel 3 data contaminates each principal component).
PC analysis only produces valid results (computed but
not shown) if the channel 3 data are first Wiener filtered
to remove noise (Simpson and Yhann, 1994). The MAF/
MAD analysis (Figs. 5¢ and 5d) isolated the highly spa-
tially coherent pattern of change in MAF/MADI (Fig. 5¢,
Table 7) and confines the noise to MAF/MAD2 (Fig. 5d).

False color representations of MAF/MADI are shown
in Figure 6. The pattern of positive change (yellow to red
in Fig. 6a) and negative change (blue to magenta in Fig,
6a) is consistent with downwelling near the coast and on-
shore transport of cooler Pacific Subarctic water from
the offshore California Current observed during the
1982-1983 event (e.g.. Lynn, 1983; Simpson, 1984a.b:
McGowan, 1985). In Figure 6b, the no-change regions
are masked to black. Both the MADs alone and the
MAF/MADs (Figs. 5¢ and 5d) were highly effective in
isolating the AVHRR channel 3 noise. A more detailed
treatment of noise isolation in satellite data using the
MAF/MAD transformations is given in the discussion.

In situ observations of near-surface temperature (1-m
depth) were made with a Neil Brown CTD from R/V
David Starr Jordan and R/V Townsend Cromuwell as part
of the 1982 and 1983 California Cooperative Oceanic
Fisheries Investigations (CalCOFT) surveys, respectively.

These data were extrapolated to the surface and interpo-
lated to a 1-km grid to produce in situ maps of sea sur-
face temperature. The dates of the two CalCOFT cruises
are approximately 2 weeks later than the respective 1982
and 1983 satellite images used in this study due to cloud
cover. Each cruise lasted approximately 3 weeks. Figures

7a and Te show satellite derived MCSST distributions for
both years. Figures 7b and 7d show image representa-
tions of the CalCOFT shipboard data interpolated to the
satellite grid. The CalCOFT cruise tracks did not cover
the full area viewed by the satellite. Therefore, to avoid
errors in interpolation associated with regions of no ship
data, such areas were masked from the data. Thus, the
ship data mask (Figs. 7b and 7d) is different from the
satellite data mask (Figs. 7a and Tc). In general, there is
a good large-scale agreement between the shipboard SST
du([ the satellite MCSST for both 1982 and 1983. The
correlations between the satellite and in sifu data (ship-
board observation and nearest satellite pixel) are 0.95
and 0.82 for the 1982 and 1983 data sets, respectively.
The lower correlation for the 1983 data is consistent with
anomalous high near-surface warming rates and near-sur-
face static stability observed in the region for this period
(see Simpson, 1992a, Figs. 6 and 11). These processes
tend to distort the large-scale coherent patterns associ-
ated with long-term mean conditions in the regions
(Lynn and Simpson, 1987).

The MCSST difference (Fig. 8a) and the corre-
sponding in situ data difference (Fig. S8b) show similar
large-scale structures; consistent with the correlations
cited above. The in situ data, however, do not capture
the fine scale structure shown in the satellite data be-
cause of their coarser spatial resolution and subsequent
interpolation. The mean and standard deviations for the
MCSST in situ temperature differences are —0.45°C*
0.4°C for 1982 and —0.34°C£0.41°C for 1983. As ex-
pected. the MCSSTs are colder than the in situ data, and
these differences (both magnitude and sign) are consis-
tent with ocean molecular boundary layer effects at the
air-sea interface (Paulson and Simpson, 1951). Coastal
regions in the difference image contain even larger, posi-
tive temperature differences. The patterns of dmng,e de-
tected by the MAF/MAD analysis (Figs. 5 and 6) are
consistent with those found in the shipboard data.

A vertical section of temperature (Fig. 9) also was
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Figure 3. Landsat MSS color composites of PCs (panels a—¢) and MAF/ (panels d-f).
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Table 4. Change Detected in No-Change Regions for
Landsat MSS Data, Value Should Be 0

Channel/Component 1 2 3 f
1) Simple difference 0 0 0 0
2) PC difference (cov) 077 =172 056  —0.06
3) PC difference (corr) 0.23 1.59 1.13 0.07
4) Factors difference —0.11 1.90 -048 -—005
5) MAF difference 1.94 0.32 0.06  —0.04
6) MAD —0.06 —0.01 0.11 0.07

7) MAF/MAD 0.05 0.06 —0.03 0.12

constructed from these data along a line of CTD stations
marked with white crosses in Figure 4d. These data were
used to compute subsurface thermal anomaly structure
relative to the long-term, large-scale CalCOFI mean
structure determined from 28 years of shipboard obser-
vations [see Simpson (1992a) for details of the computa-
tion]. They confirm that the surface signature viewed by
the satellite was indicative of a deeper ocean process. A
more detailed discussion of near-surface and subsurface
oceanic response in the region to ENSO-related forcing
is given by Simpson (1992a) and the references con-
tained therein.

The above analysis was repeated using three-channel
AVHRR images (channels 3. 4, and 5) in place of the
two channel images (channel 3 and MCSST) shown in
Figure 4. Again, the MAD and the MAF/MAD transfor-
mation (computed but not shown) proved superior to
PC-based methods for separation of the channel 3 noise
found in the January 1983 data and subsequent detection
of the change in California Current sea surface tempera-
ture observed during the 1982-1983 ENSO midlatitude
coastal warming event.

DISCUSSION

Advantages of the MAF/MAD Transformation

for Change Detection

Simple differencing of two cnregistered satellite scenes
separated in time provides a point-by-point estimate of the
rate of change of the quantity lmder study. Simple differ-
encing has the advantage that it is physlcally intuitive.
Simple differencing, however, also has some inherent dis-
advantages: 1) the simple differences are affected signifi-
cantly by the absolute accuracy and temporal stability of
the calibration of the instrument on the satellite (e.g.,
Frouin and Simpson, 1995); 2) generally, the bands in the
differenced image are themselves correlated because the
original data usually show some degree of correlation [e.g..
data from AVHRR Bands 4 and 5 typically have a correla-
tion of 0.99 at 0 spatial lag (Simpson and Yhann, 1994)];
and 3) time-varying sensor noise may render a given chan-
nel difference difficult to use [e.g., AVHRR channel 3 sen-
sor noise (Simpson and Yhann, 1994)].

The principal component (PC) transformation of the
simple differenced image partially mitigates some of the
problems cited above because the principal components
of a multivariate variable are produced by a linear trans-
formation which produces uncorrelated variables of de-
creasing variance (Hotelling, 1933). The PC analysis,
however, also has some inherent disadvantages: 1) the
PC transformation is not invariant to a linear scaling of
the input data (e.g., Preisendorfer, 1988); 2) the PC
transformation, because it maximizes the variance in the
first few PCs, can be artificially weighted by a single im-
age in the sequence which contains a disproportionate
amount of variance (e.g., Gallaudet and Simpson, 1994);
3) the traditional PC analysis is performed as a set of
pixelwise operations, and thus does not take into account
the inherent spatial structure of the image data (e.g., Ba-
net and Lebart, 1984); and 4) certain forms of noise in
the data (e.g., Fig. 4c) can render PC analysis unfruitful
(e.g., Figs. 5a and 5b).

The multivariate alteration detection (MAD) trans-
formation of multispectral, bitemporal satellite images is
an extension of traditional canonical correlations analysis.
The MAD transformation simply is the difference of the
canonical variates of the two sets of multivariate data in
reverse order. MADs, like PCs, produce uncorrelated
differences (i.e., the MADs are orthogonal). The MAD
transformation has several advantages over the PC trans-
formation: 1) MADs are invariant to a linear scaling of
the input data (Nielsen, 1994); 2) because the MADs are
based on canonical variates, all data are weighted
equall}', and therefore MADs are not sensitive to (lispr()-
portionate amounts of variance being isolated in one or
a few images (as are PCs); 3) the MAD analysis is less
subject to noise contamination than the PC analysis (Fig.
5); and 4) the MADs form a more generalized difference
than does the PC operating on the simple differences of
images. Thus, the MAD transformation provides a way
of combining different types of data (e.g., Landsat T™M
and Landsat MSS) which may be useful in historical
change detection studies (Nielsen, 1994). MADs, how-
ever, like PCs are performed as local point operations.
Thus, MADs, like PCs, fail to retain the spatial context
of the data in the change detection results.

Unlike the pixel-based PC and MAD transforma-
tions, the MAF transformation incorporates the spatial
structure of the data in the image into the analysis by
using the dispersion matrix of the difference between the
data and the spatially shifted data (Switzer and Green,
1984). The MAF transformation differs from the PC
transformation in that the MAF maximizes the autocorre-
lation between neighboring observations whereas the PC
transformation maximizes the variance. MAFs, like MADs,
are invariant to linear scaling of the input data. MAFs also
are uncorrelated, that is, the MAF transformation also is
an orthogonal transformation (Switzer and Green, 1984).
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January 29, 1982 January 1@, 1983

Figure 4. AVHRR channel 3 and
MCSST, 29 January 1982 (panels a
and b), 10 Jannary 1983 (panels c
and d). White X's (panel d) show
station locations of CalCOFT line 90
vertical ]sl'nlih-s.

122 W
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Table 5. Means for the Oceanic Case Study
AVHRR3 MCSST
1982 13.48 13.92
1983 14.47 1551
Dilference 0.99 1.59

Central to most global change studies are data and
analysis needed to 1) accurately determine the effective
magnitude and spatial distribution of the change (e.g.,
deforestation) and 2) determine the rates ol change that
effect such biomes in a given region. A combined MAF/
MAD analysis provides a statistically rigorous way to ac-
curately determine the spatially coherent patterns of ma-
jor change in an image sequence by retaining the spatial
context of the neighborhood pixels in the analysis. Linear
transformation invariance, however, precludes computing
an estimate of the effective magnitude of the change.
Simple band by band differencing of properly calibrated
data provides an estimate of the rate of change, but this
estimate lacks a spatial context. MAF/MAD analysis (to
statistically determine patterns of coherent change in the
data), coupled with the simple differencing of properly
intercalibrated images, is an effective combination to 1)
compute accurate rates of change and 2) place these
rates in a statistically meaningful spatial context. This can
be achieved by assigning significance only to the simple
differenced values in regions where the correlation be-
tween the simple differences and the MAF/MAD:s of the
simple differences is high.

Interpretation of MADs and MAF/MADs

A few simple statistical measures provide valuable infor-
mation for the interpretation of the PCs, MADs, and
MAF/MADs. Assuming a stable, accurate instrument cal-
ibration, the means of the individual spectral channels
provide a gross estimate of the observed spectral change
over the time between images. The diagonal elements of
the covariance matrix of the original composite dataset
provide estimates of the variances in the composite data-
set as a function of wavelength over time. The off-diago-
nal elements provide information on the interband corre-
lation in the composite dataset. Large changes in the
means and the variances over time, especially if these
changes occur in some but not all of the spectral bands,
provide insight into the type of process that may have

produced the observed change. Changes in MSS chan-
nels 3 and 4, for example, are useful indicators of either
vegetation-based or land/water boundary-based change.
The amount of spatial correlation in each MAF/MAD
can provide a basis for separating signal from some types
of noise in the composite dataset. Finally, the correlation
matrices between the original composite dataset and the
MADs and the MAF/MADs provide an indication of the
processes that have contributed to the change detected
by a given component of the MADs and MAF/MADs.

Consider, for example, the terrestrial case study. The
means of the composite dataset (Table 1) show very little
change in most of the bands except band 4 where the
mean drops from 78.65 to 23.41. The diagonal elements
of the covariance matrix (Table 2) show that, in general,
the spectral variances are higher in 1988 than in 1972
except for the variance in MSS channel 4 which shows
a fourfold drop in value (from 260.83 in 1972 to 65.48
in 1988). These changes are consistent with two known
facts for the region in the times measured: 1) a major
fraction of the scene changed from natural vegetation
along a riverbank (1972) to a large reservoir (1988). The
reflectance properties of water are more uniform and
lower (e.g., water is a near blackbody with an emissivity
of about 0.98) than those of vegetation; 2) the 1972 data
were taken under very dry, nongreen vegetation condi-
tions whereas the 1988 data were taken under wetter
conditions with much greener vegetation (Graetz et al.,
1992). Table 8 shows that MAF/MADI is positively cor-
related with all bands in the 1972 data and negatively
correlated with all the bands in the 1988 data. These cor-
relations are consistent with conversion of natural vegeta-
tion to reservoir and to greening up of the vegetation in
1988 compared to 1972. MAF/MAD2 shows maximum
positive correlation with 1972 MSS4 data (another indi-
cation of vegetation change) and maximum negative cor-
relation with 1972 MSS2 data. Moreover, MAF/MAD2
has the form of a vegetation index in 1972 and a negative
vegetation index in 1988, a result consistent with the veg-
etation changes reported by Graetz et al. (1992). MAF/
MAD3 shows maximum correlations with MS$S3 data in
both years and MSS4 data in 1988 These correlations
are consistent with MAF/MAD4
shows little correlation with any of the data, consistent
with the residual noise pattern found in MAF/MAD4.
Analogous statistical information for the oceanic case is
given in Tables 5, 6, 7, and 9.

reservoir fbrmuti(m.

Table 6. Covariance/Correlation Matrix for the Oceanic Case Study
1982 1983
AVHRR3 MCSST AVHRR3 MCSST
1982 AVHRR3 2.65 1.49 0.70 0.74
1982 MCSST 0.76 1.46 1.00 1.07
1983 AVHRR3 0.17 0.33 6.32 1.08
1983 MOCSST 0.42 0.82 0.40 A7
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PCT MAF/MAD

Figure 5. PCs of simple AVHRR
differences (panels a and b), MAF/
MADs 'P:III('I\ ¢ and d).
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Table 7. Key Parameters for PC,

MAD, and MAF/MAD Transformations

for the Oceanic Case Studly

rPC MAD
Canonical
Correlation

Component
Variance

Eigen
number

MAD
Component MAF/MAD
Variance Correlation

| 7.67
) 0.40

0.00
(.85

1.99 0.96

0.25 (.68

Noise Isolation Using MAF/MADs

Noise in image data can be either spatially coherent or
incoherent. Because the MAF transformation maximizes
the autocorrelation rather than maximizing the variance
(as does the PC) of the data, one expects that \‘|1:1ii;tn}
incoherent noise would be isolated in
MAFs. The oceanic case .\(IHI'\' shows that both the MAD
(not shown) and MAF/MAD analyses correctly isolated
AVHRR channel 3 noise whereas the PC analysis was

higher-order

distorted by the noise (Figs. 5 and 6). PCI isolated only
part of the channel 3 noise. PC2 shows the actual pattern
of aceanic change, but it is heavily n‘mnpmmiwd |)_\ re-
sidual channel 3 noise not removed |=_\ PC1. The MAF/

MAF/MAD

MAD analysis isolates the signal variance to MAF/MADI
(Fig. 5¢) because the ENSO-induced change in SST was
\lmziliglﬂ_\ more coherent than the noise in the data. Noise
is ('Ul'l'('{'t]_\ isolated in MAF/MAD2 (Fig. 5d).

Because the striping in the Landsat MSS data used
in the terrestrial case is ln'l'irlili(' (i.e., it is a form of spa-
tially coherent noise) and occurs in all the bands of the
composite dataset, none of the transformations will com-
l‘l"‘“‘I.‘ remove it from the data. In cases such as this.
the |1t'|‘imli(‘ noise can be removed {)'\ using finite im-
pulse response filtering techniques, either in the spatial
or the Fourier domain. to minimize the effects of the
stripes prior to change detection analysis. Such proce-

Ficure 6. a) AVHRR false color
plot of MAF/MADI; b) regions
of maximum change (positive=
red: negative=blue/magenta) of

MAF/MADI.

(b)
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Ficure 7. Satellite based MCSST
and interpolated CalCOFT in situ
surface temperature for 1982 (pan-
els a and b). Analogous data for

1983 are shown in ]'litl\l‘i\ c and d.
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MCSST Difference In Situ Data Difference

Ficure 8. a) Satellite MCSST
difference (1983-1982): b} in
situ temperature difference for

the same period.

DEPTH(m)

Figure 9. Vertical  section  of
ocean temperature. Data were
taken along CalCOFI line 90
DISTANCE (km) (see Fig. 4d)
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Table 8. Correlations between Input Data and MADs and MAF/MADS for the Terrestrial Case Study

MAF/ MAF/ MAF/ MAF/

MADI MAD2 MAD3 MAD4 MADI MAD2 MAD3 MAD4

1972 MSS1 —-0.02 0.11 0.26 0.57 0.46 -0.27 0.32 0.12
1972 MSS2 0.02 =25 0.14 0.56 0.37 —-0.47 0.05 —0.03
1972 MSS3 —=0.09 0.41 0.65 0.11 0.59 0.35 0.34 —(.08
1972 MSS4 0.05 0.41 0.67 —-0.02 0.58 0.45 0.21 0.38
1988 MSSI1 —0.41 0.28 —().61 —0.43 —0.78 0.18 0.23 —0.04
1988 MSS2 —-0.25 0.36 —0.43 —0.41 —0.59 0.28 0.21 0.08
1988  MSS3 —0.42 0.13 —0.69 0.01 —().66 —-0.23 0.33 0.04
1988  MSS4 —0.47 0.18 -(0.65 0.07 —0.62 —-0.24 0.41 0.02

dures to remove periodic stripes 1) in hyperspectral air-
borne scanner data (GERIS) are given by Nielsen (1994)
and Nielsen and Larsen (1994); and 2) in GOES data by
Simpson et al. (1995). With minor frequency tuning,
both techniques could be successtully applied to Landsat
MSS data.

Detection of Outliers in the Data
Three factors often can produce erroneous change detec-
tion independent of the method used for the change de-
tection analysis: 1) errors in the coregistration of the two
scenes; 2) inadequate cloud detection; and 3) onboard
satellite amplifier hysteresis at sharp boundaries (e.g..
cloud-land, ocean-land). Errors in coregistration can, for
example, incorrectly align a land pixel in the one image
with an ocean pixel in the other. Accurate cloud detec-
tion is essential because clouds typically are the most
transient features in satellite scenes. Hysteresis, which
causes incorrect sensor integration of counts on the sub-
pixel level, can produce a pixel value near a sharp
boundary whose brightness count is not representative of
either of the classes on the opposite sides of the bound-
ary. This often leads to misclassification and to large ap-
parent changes at the affected pixel locations. All these
effects can produce regions of apparent (but false) large
change. If undetected, these areas of false change have
the potential to hide regions of actual change.

In principle, image masking would minimize these

effects. In practice, however, a few bad pixels simply

may not be detected. Because such pixels almost always
appear as pixels with maximum change (but spatially iso-
lated and few in numbers) in the MAD analysis, the
MAD analysis can be used iteratively to locate and iso-
late them from the data. Thus, MAD analysis provides

Table 9. Correlations between Input Data and MADS and
MAF/MADs for the Oceanic Case Study

MAF/ MAF/

MADI MADZ2  MADI MAD2

1982 AVHRR3 —0.67 =017 —0.20 —0.64
1982 MCSST —0.31 —0.32 —0.33 —0.26
1983 AVHRR3 0.64 0.34 0.37 0.59
1983 MCSST 0.05 0.62 0.62 —0.05

an additional and efficient method for data quality con-
trol in geophysical data.

CONCLUSIONS

Two multivariate statistical transformations, the multivar-
jate alteration detection (MAD) transformation of Niel-
sen and Conradsen (1997) and the maximum autocorre-
lation factor (MAF) transformation of Switzer and Green
(1984) are used to accurately detect coherent patterns of
spatial change in sequences of satellite data. Urbaniza-
tion during 1972-1988 in Queensland, Australia and
ENSO-related midlatitude coastal warming off the west
coast of North America during 1982-1983 were exam-
ined. The methods proved superior to the more tradi-
tional principal component (PC) transformation of simple
differenced data for change detection studies. MAD and
MAF transformations also are effective in removing inco-
herent noise from image data and for detecting outliers
(e.g., coregistration errors). Both MADs and MAFs are
invariant to linear and affine transformations such as: 1)
unit variance normalization of the data; 2) changes in
sensor gain and offset; and 3) radiometric and atmo-
splleric corrections that are linear in the gray level num-
bers (desirable characteristics in a statistical analysis of
geophysical data). Linear transformation invariance, how-
ever, precludes computing an estimate of the effective
magnitude of the change. MAF/MAD analysis (to statisti-
cally determine patterns of coherent change in the data),
coupled with simple differencing of properly intercali-
brated data, is an effective combination to 1) compute
accurate rates of change and 2) place these rates in a
statistically meaningful spatial context. This combination
can be achieved by only assigning significance to the sim-
ple differenced values in regions where the correlation
between the simple differences and the MAF/MAD
components is high.

APPENDIX: CANONICAL CORRELATIONS
ANALYSIS

We consider a (p+q)-dimensional random variable (p<¢q)
ideally following a Gaussian distribution split into two
groups of dimensions p and g, respectively
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(A.1)

X i ./‘1 {En 212j|
e w3 37

and we assume that %, and X (and X) are nonsingular.
Also, without loss of generality, we assume that g, =p:=0.
We are searching for linear combinations of X and Y

U=a'X, Var{U}=a"2,a, (A.2)
vV=b"Y, Var|V]=b"2.b, (A.3)
with maximum correlation
. 1
p=Corr{U,V)= CoviU. V) a™ b (A4)

War|U) Var(V) —va"'El ab™.b

If (ab) is a solution, so is (¢,a, ¢:b) where ¢ is any scalar.
We choose (ab) so that Var{U}=Var{V}=1, introduce
Lagrange multipliers /2 and v/2 and maximize

F=a"Sb—"a"S a1 2bTEb—1).  (A5)

By setting 9F/0b=0 and aF/éa=0, and inserting the re-
sults into Eq. (A4), we get

_,=a72132{._3'221azb]‘ﬁglzﬁ’zub

i e .6
aTEI a bff.;;b (A ))
Elgzg_zlzg]a=ﬂizna~ (A7)

20 20 2ub=p"2ub, (A.8)

that is, we find the desired projections for X by consider-
ing the conjugate eigenvectors @i . .. , @, corresponding
to the eigenvalues pi=---=pj of 325" %y with respect
to Xy, Similarly, we find the desired projections of ¥ by
considering the conjugate eigenvectors b, ....b, of
3,302, with respect to X, corresponding to the same
eigenvalues p?. If p=q, this will be all the eigenvalues
and eigenvectors of 2o X' If g>p. the last eigen-
value will be 0 with multiplicity g—p.
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