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PREFACE

1 Introduction.

This thesis has been prepared at the Institute of Mathematical
Statistics and Operations Research (IMSOR), at the Technical
University of Demnmark (DTH) as partial fulfillment of the
requirements for the degree Lic. Tech. (the Danish Ph.D. degree

in engineering).

The thesis discusses transformations (feature generation) and
classifications of remotely sensed data with both theory and
geological cases. It is by no means an exhaustive description,
but on the other hand it describes some of the tools that have
been used with (more or less) success during the course of this
project and a number of other tools with an interesting

potential.
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RESUME

Nerverende afhandling omhandler transformationer, og klassifi-
kationer af billed—data optaget v.hj.a. iszr satellit—sensorer.
Der anvendes dog ogsi data, som ikke normalt opfattes som
billeddata, fx. indholdet af diverse elementer i prgver af
beksedimenter. Det er muligt at bringe data af denne type pa
billedform, hvorefter de naturligvis kan indgd i analyser som

ethvert andet billede.

Der behandles bade teori og geologiske eksempler. Beskrivelsen
foregiver p4 ingen made at vzre udtgmmende, men forsgger at give
et indblik i statistiske metoder og teorier, som har vist sig

nyttige i forbindelse med netop geologisk "remote sensing".

Afhandlingens forskellige kapitler falder i nogle f& kategorier,

og beskrives kort nedenfor.

Transformationer af data si "features'" eller attributter
fremhzves. Her skal transformationer forstas i bred forstand,
saledes behandles savel kontekstuelle som non-kontekstuelle
metoder. I kapitel 2 behandles nogle traditionelle teknikker, der
har naet en vis accept, bl.a kvotientdannelse og skift af farve
 koordinatsystem. I kapitel 3 behandles forskellige former for
egenverdi—analyse af det'multidimensionelle data. Kapitel 4

beskriver nogle forskellige tekstur—estimatorer. Kapitel 5 er



knyttet til teksturanalysen i kapitel 4, og beskriver en
automatiseret procedure til at estimere lineament intensiteter i

geologien.

Udvalgelse af "optimale" subszt af features behandles i kapitel
7. Dette gzlder bade en velkendt linear teknik, der baserer sig
pad F—tests, og en nyudviklet ikke—line®r metode, der baserer sig

pa Jeffreys—Matusita's afstandsmal.

Kapitel 6 og 8 omhandler klassifikation. Traditionelle
(non—kontekstuelle) metoder diskuteres i kapitel 6, hvorimod
kapitel 8 tager sig af de kontekstuelle. Der demonstreres et

antal forskellige teknikker i begge.

Kapitlerne 9 og 10 omhandler teknikker, som ikke er blevet
undersggt szrligt grundigt i denne forbindelse, men som menes at

have et interessandt fremtidigt potentiale.

Konklusionen af arbejdet er, at der er blevet prasenteret et
antal forskellige teknikker, som bér hpgre med til de redskaber,
der tages i anvendelse, nar en ny '"remote sensing" opgave skal
lgses. Det er med tiden pa ingen made blevet lettere at arbejde
indenfor billedbehandling, men sjovere og mere interessandt. Blot
fordi der kommer nye teknikker, uddateres de gamle pa ingen méde.
Gamle og nye teknikker supplerer hinanden, og antallet af
redskaber stiger. En fglge—konklusion er, at der altid vil vazre
behov for omhyggelig analyse af billed—data, og dermed behov for
billed—analytikkere.
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CHAPTER 1
INTRODUCTION AND BACKGROUND

The Image Processing Group at IMSOR
Outline and Reading Guide
Facilities and Data

A Word on Photo Quality
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1.1 The Image Processing Group at IMSOR.

In 1984 the author joined the IMSOR Image Processing Group which
at that time was concerned solely with the processing of remotely
sensed images and geological data. A year later the first
non—geological project started and from that time on the Image
Processing Group has expanded in virtually all dimensions
including manpower, fields of interest and computer—power. As
this is being written the Image Processing Group has a scientific
staff of 9, and works with geological, medical, and industrial
applications. It owns or has access to a wide range of computer
hardware ranging from IBM-PC's over a SUN workstation and a
microVAX II to the Teragon/Context GOP-302 on one side to large
HP workstations and minimainframes and the Amdahl VP 1100

vectorprocessor on the other.

1.2 OQutline and Reading Guide.

In this thesis the emphasis is concentrated on a subset of the
total number of tools used by the group, namely the subset
concerned with "Transformations and Classifications of Remotely
Sensed Data, Theory and Geological Cases." The reader is expected
to have a fundamental knowledge of statistical and image
processing terminologies e.g. "pixel" "scatterogram" "false color
composite" etc. A good introduction is "An Introduction to
Digital Image Processing" [Niblack 85]. A more geologically
oriented reference would be "Remote Sensing in Geology" [Siegal

and Gillespie 80].
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The problem often encountered when trying to utilize remotely
sensed data is that one does not really want the data in the
first place, but rather a thematic map over the area of interest
containing only information about e.g. roads, urban areas,
corn—fields etc., dr put in geological terms maps of fault zones,
areas with granites, basalts etc. Obviously one has to do some
processing of the acquired data, a process which in many

instances may be summarized as follows:
Raw image data
Transfo;mations
Featurevselection
Classif;cation

Postprocessing

"Map" of area.

The aim of the following chapters is to describe and demonstrate
some of the techniques that have been found useful for especially

geological purposes.

Generally the chapters fall into a few groups summarized in the

following.

Chapters 2,3,4 and 5 all describe different ways of transforming

the data both contextually and non-contextually to enhance
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certain features of interest. The "term" features may be very

broadly defined and covers both spectral and textural features.

Chapters 6 and 8 describe classification, the difference between
the two chapters being that chapter 6 concentrates on classical
(non—contextual) classification and chapter 8 on contextual

classification.

Chapter 7 describes two different feature selection methods, one
to be found in many commercially available computer packages and

another new proposed method.

Chapters 9 and 10 are concerned with other methods of image
manipulation which have not been investigated very thoroughly in

this thesis but neverthelessvcould be found useful.

The single chapters are described in more detail in the

following.

Chapter 2 describes some often used and often cited (nonlinear)
techniques for use with remotely sensed data. These are
vegetation indexes and an alternative to the ordinary RGB-color
coordinates called IHS or Munsell coordinates. This chapter also
briefly introduces the concept of a pixel, the Landsat satellite,

a false color composite and a scatterogram.

In chapter 3 we make a unified approach to different types of
transformations by eigenanalysis of the (multi channel) data.
These ways of analysis are all linear. Some depend on spatial

context (e.g. Minimum/Maximum Autocorrelation Factors) but the
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majority do not (e.g. Principal Components).

Chapter 4 describes several different textural feature
estimators. Since there is no precise definition of what texture
is the methods of estimating texture are vefy different In this
chapter we will consider implementations of local Fourier based
filters and some statistically based filters. Other examples such
as co—occurance matrices and binary Markov models are also

mentioned.

Chapter 5 is related to the Fourier based texture filters
introduced in chapter 4 and describes an automated procedure for
estimating lineament intensities (linear features in geology).
The automated procedure is compared to a standard visual (manual)

lineament analysis.

Chapter 6 describes ordinary (Bayesian) discrimination with

either equal or unequal covariance matrices. Other topics that
are discussed are postprocessing techniques, reject class and
hierarchical population structures. These may be considered as

simple improvements of the standard Bayesian discrimination.

Chapter 7 gives an idea of how to select an "optimal" subset of
features from a given set. The problem is often that if one has
many features some of them are bound to be strongly correlated
i.e. describe the same phenomena. A linear and a nonlinear

stepwise technique are described.

Chapter 8 describes contextual classification. A classification

may be called contextual if either the features are computed in a
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contextual fashion or the algorithm may be contextual by using
neighbourhood information in the classification of the individual
pixel. Many of the contextual features computed in previous
chapters are used to serve as examples of the first type. An
algorithm devised by Owen, Hjort and Mohn gives an example of the

second type.

A thesis as the one present would not be complete without
mentioning clustering and segmentation. In chapter 9 these two
techniques which have not been used very extensively in this
project but nevertheless are used fairly often in the analysis of

remotely sensed data are described.

Chapter 10 is concerned with related topics which may become
useful in the future and certainly deserve to be investigated in
detail. Among some of the more promising are "Classification And

Regression Trees" and "Iterated Conditional Modes".

Chapter 11 — the conclusion — summarizes the thesis concluding

that the techniques covered are a comprehensive toolbox.

Appendix A contains a very thorough derivation of the fact that
the so—called Jeffreys—Matusita distance in the multivariate
normal case is a monotonically increasing function of the
dimension of the featurespace. The nonlinear stepwise feature
selection algorithm described in chapter 7 depends upon this

fact.

Appendix B gives a short description of some of the more

important programs which were developed during the course of this



thesis.

1.3 Facilities and Data.

As mentioned in the start of this chapter, the image data has

been processed on a large variety of equipment and software.

17

These are summarized in table 1.1, 1.2 and 1.3.

Name Operating  Type Status
System

IBM 3033 MVS  general obsolete
IBM 4341 VM  general obsolete
IBM 3033 VM  general obsolete
IBM 3081 MVS  general obsolete
IBM 3081 VM  general active
Amdahl VP1100 MVS general active
IDIMS (HP 3000) MPE/3000 imaging obsolete
Microvax II VMS  gemneral active
SUN 3/50 UNIX general active
HP 318M UNIX general active
HP 835E UNIX general active
GOP 302 UNIX imaging active

Table 1.1 Computers used in this thesis.
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Name Type Status
Hertz raster obsolete
Applicon raster obsolete
Tektronix 4662 vector active
Calcomp vector obsolete
Tektronix 4691 raster active
Versatec raster/vector obsolete
Polaroid Freeze- Frame Photographic active

Table 1.2 Hardcopy devices used in this thesis.

Name (Main) Type Status
UNIRAS plot active
VICAR imaging obsolete
- SAS statistical active
BMDP statistical active
SPIDER imaging active
PPS at IMSOR imaging active
IMSL general active
LINPACK/EISPACK matrix manipulation active
MATLAB matrix manipulation active
FORTRAN general active
PASCAL general active
GOP_operations imaging active

Table 1.3 Software packages and programming languages used in

this thesis.
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Table 1.4 contains a summary of the raw image data which has been
used extensively throughout this book. The data used to
demonstrate the different techniques consists of 5 scenes of

which 1 and 2 are excessively used.

Table 1.5 summarizes the data which has been used in one of the

examples of chapter 7 concerning analysis of a joint database.

# Area Satellite Scanner Pixel size

1 Igaliko Landsat 2 MSS 50x50 m (org. 60x80 m)
2 Ymer 0 Landsat 5 TM 25x25 m (org. 35x35 m)
3 Almaden, winter Landsat 4 TM 25%x25 m (org. 35x35 m)
4 Almaden, summer Landsat 5 TM 25x25 m (org. 35x35 m)
5 Traill 0 Landsat 2 MSS 50x50 m (org. 60x80 m)

Table 1.4 Satellite imagery used in this thesis.

Landsat data, 8 tapes covering 4 scenes

Photographic prints for structural analyses

Geochemical samples from more than 2000 sample sites
stream sediments: K, Rb, Sr, U, Nb, Y, Ga, Fe
stream water: U

Radiometric data (gammaspectrometric)

U, Th, K and Total count

Areomagnetic data

Table 1.5 Data used specifically for one of the examples in
chapter 7.
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1.4 A Word on Photo Quality.

The illustrations in this thesis consist mainly of color
photographs which have been specially prepared and developed by

the Kodak photo lab so as to ensure comparability among pictures.

Unfortunately the construction of the hardcopy—device used (a
Polaroid Freeze—Frame) is such that bright colors with a sharp
border between them (e.g. red and green) may be accompanied by an
| annoying mix—color (e.g. yellow) in the border line. Examples of
this phenomenon will be seen in most of the classified or

segmented images in chapters 6 and 8.

On many of the photos a small coordinate system will appear in
the menu area on the right hand side. This shows a graph of the
function which maps from the pixel values to the brightness of
the pixel on the screen of the GOP-302. When an RGB image is
being shown the different channels have mapping functions in the
respective colors. The drawing in figure 1.1 shows the principle

idea.
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CHAPTER 2
CLASSIC TRANSFORMATIONS

2.1 Introduction
2.2 Ratio and Vegetation Index

2.3 Intensity Hue Saturation Transformation
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2.1 Introduction.

In the following we shall introduce two "classic" nonlinear
transformations or a multichannel image, ratios and the IHNS
transform. The nonlinearity is introduced by nonlinear
transformations in the radiometric dimension thus being
non—contextual in nature. Image transforms of this kind are more
or less in standard use in the preliminary phases of any remote

sensing application.

We will however first give some basic definitions on digital
images. When the imaging device is a multispectral scanner, the

resulting image will be a collection of p—dimensional vectors

Xy (31,3)
X(i,j) = | : i=Q, «+++ , n—=1 ; j=0, <--- , m—1

defined on a rectangular lattice giving the pixels. The values

Xk(i,j) represent the intensity for "color" mo. k in pixel (i,j).

In Figure 2.1 is shown a one channel image with 64 grey levels.
It consists of 512x512 pixels, and it is sampled by the earth
observation satellite Landsat 2. The pixel values correspond to
the levels of the electromagnetic reflection of the sunlight in
the near infrared range (~ Band 7 in the satellite scanner). The
actual size of each pixel is 50x50 m? and the scene thus covers
appr. 25x25 km?. The area is located in Southern Greenland. The
dark parts correspond to the sea, and the remaining areas are
rocks of different types, some covered‘with Snow or vegetation,

others are barren. In for instance mineral exploration, it is of
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great interest to map the different geological units as defined
on figure 2.3 based on data like the present, possibly combined
with similar images showing the reflectance in other spectral

bands.

When classifying images either visually or by computer one is
interested in (a small number of) features that will make it easy
to discriminate between different regions of interest. In a Land-
sat MSS image a commonly used technique is to map 3 of the four
possible wavelengths as intensities in the red — green — blue
color guns of a CRT. This produces an image like the one in fi-
gure 2.4. Conventionally one displays MSS bands 7, 5 and 4 as red
green and blue respectively. This has historical reasons because
the images then can be compared with traditional color infrared
images. The technique illustrated in figure 2.4 is called a false
color composite, vegetation is reddish because of the strong
reflectance of chlorophyl in the vegetation, most other areas

e.g. rocks, water, ice, snow have a "true" appearance.

By plotting the values of e.g. MSS band 5 against MSS band 4 for
each pixel one gets a plot—type which is commonly called a scat-
terogram. On figure 2.5 all possible scatterograms for the Iga-
liko scene are shown. The high correlation between the different
MSS bands is clearly demonstrated. The different colors on the
scatterogram are produced by letting pixel values from e.g. areas
known to be water be blue, dolerite be red and so on. The
correspondence to the image is defined on a so—called training
image like the one shown in figure 2.2. In this way oneAcan
visually determine which features stand a chance in

discriminating between the different areas of interest. It is for
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instance easy to see that water is easy to discriminate from the
rest, whereas the different rock types (all other colors than
blue) are difficult to discriminate from one another because of
overlap. Furthermore we see that the band combination MSS4, MSS7
seems to be better at discriminating between water and rock than

MSS5, MSS6 etc.

2.2 Ratio and Vegetation Index.

By looking at the annotation for the different classes represen-
ted in the scatterogram combination MSS5 vs. MSS7 one easily re-
cognises that the different classes fall into different groups.
The red and green (vegetation covered) classes have a
characteristic high response in MSS7 and low in MSS5 while the
yellow and violet (non vegetated) classes are characterized by a
low response in MSS7 and high response in MSS5. Water (blue) has
virtually no response in MSS7 and a relatively high response in
MSS5. A way of combining these observations in one new feature is
by taking the ratio between the pixel values of MSS7 and MSS5 or
by computing a more complicated expression as
(MSS7-MSS5) / (MSST+MSS5) .

Similar expressions exist for TM and for SPOT data. Both are well
known standard techniques for enhancing vegetation covered areas
and numerous results from using these "vegetation indexes'" can be
found in the literature. See e.g. [Hall-Kényves 88] for a broad

list of references.

The simple ratio MSS7/MSS5 has been applied in the Igaliko case

and the result can be seen in figure 2.6. Vegetated areas appear
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very bright, non-vegetated areas in dark grey and water in black.

In figure 2.7 the image has been thresholded around the modes in
the histogram of the area and different colors applied to each
range. By comparing the result with figures 2.6 and 2.4 it is
seen that the ratio technique can fairly easily produce a high

quality segmentation of the area.

The ratios and vegetation indexes were computed using the "image

calculator" on the GOP-302.

When taking ratios one problem is that the noise inherent in the
image is enhanced too. A simple way of illustrating this is by

assuming the responses as

MSS7
MSS5

P + €5 5 En € N(O,o%)
Ps + €5 5 €5 € N(O,og), €y Eg independent

so the ratio is:

ratio = %gg%

and we are interested in the mean value E(ratio) and the variance

V(ratio).

Approximately we have by Taylors formula

7
E(ratio) = ﬁz
5
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12
V(ratio) ~ [‘—122-] ag + L—J—;} 0’3 .
5 5

Assuming Py and Ky are of the same magnitude and ag and a% are of
the same magnitude gives

E(ratio) ~ 1
. o2
V(ratio) ~ 2—.
1
This gives us a coefficient of variation on the ratio of

CV(ratio) = [V(ratio) | V2

g
ratio y7;
which is 42 times the coefficient of variation compared to each

of the bands.

Because of the noise figure 2.7 has been smoothed a little with a
gaussian shaped 3x3 filter before the histogram was computed and

the thresholds applied for this presentation.

2.3 Intensity Hue Saturation Transformation.

By looking at figure 2.1 the perceptive difference is more or
less only due to the hue of the color and less to the intensity
(value, brightness) and saturation (chroma, color purity) of the

~image.



29

This perceptive color system using intensity hue and saturation
as dimensions of color is called the Munsell color system [Cooper
41]. A close approximation to the Munsell coordinate system‘can

be obtained by performing the following transformation

(1] 1 1 A7 (g ]
{3 {3 i3
_ 1 1 2

wl=|-= -= = G
{6 {6 {6

| L A2 {2 L

The hue and saturation are then computed from v, and v, using the

following relations

S cos H = \2 S sin H = Vo
S=vVvi, Vs

In this context blue has hue H = O and the hue increases towards
green. The I, Vis Vo coordinates approximates the Taylor
coordinates [Taylor 74]. See figure 2.8 for a graphical

description of the relationship between the different coordinate

systems.
It can be noted that

I=J3 E—i—%—i—g = proportional to the mean of R, G and B

and
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2 2 2
- % ,[[ R — R+G+B ] N [ G — R+G+B ] N [ p — R+G+B ] ]

so S is {2 times the empirical standard deviation of R, G and B.

If image data is stretched to give a high contrast it may often
be assumed that the R, G and B components follow a three

dimensional gaussian distribution

R 7 100
G € N no|, 02 010
B n 001

In this case we have a very neat property of the transformation
between RGB and IHS. The intensity will follow a gaussian

distribution

I e N{3-p, o)

the hue will follow a uniform distribution over the interval
[0,27[ and the saturation will be Rayleigh distributed with scale

parameter o, i.e.

H e U0, 27)
SeR(o) (= ox(2)

Furthermore the components will be independent.
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On figure 2.9 is shown the result of computing the hue from the
same bands as shown on the false color composite (bands 7, 5 and
4). The same averaging and thresholding technique as in the ratio
example is used here and the result is more or less comparable to
figure 2.7 except maybe that it is easier to determine the
thresholds.

This technique has been used successfully in classifying rust
zones on Central East Greenland by Conradsen and Nilsson

[Conradsen and Nilsson 83].

The RGB to IHS transformation used to produce figure 2.4 was

programmed on the GOP-302.
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CHAPTER 3
ORTHOGONAL TRANSFORMATIONS
oF
MULTISPECTRAL DATA
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Introduction

Eigenproblems

Principal Components (PC)

Factor Models (FM)

Minimum/Maximum Autocorrelation Factors (MAF)
Canonical Variates

Canonical Discriminant Functions (CDF)
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3.1 TIntroduction

In the analysis of multichannel images linear and nonlinear
transformations of the values of the different channels for each
pixel have been used with much success. Ratios have been used for
enhancement of different parts in the images (see e.g. [Rowan et
al. 74]), principal components have been used for information

extraction (cf. e.g. [Landgrebe 78]) etc.

In the following is presented a class of closely related linear
transformations based on eigenanalyses of empirical measures of
variation. These transformations have been very useful in general
research and should be applicable in most fields where multichan-

nel images are used.

3.2 Eigenproblems

Initially we state some useful results on eigenvalues and

—vectors for symmetric, positive (semi)definite matrices.

Definition 3.1 Let A and B be real, m x m symmetric matrices,

and let B be of full rank. A number A satisfying
det(A — AB) = 0

is called an eigenvalue of A with respect to B. For such a

A there exists x # 0 with

Ax = ABx .
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Such a vector is called an eigenvector of A with respect to B.

The equation defining the eigenvector may be transformed into

B iAx = Ax

i.e. (A,x) are solutions to an ordinary (non symmetric) eigen-

problem.

Some main results on this generalized eigenvalue problem are gi-

ven in the following three theorems.

Theorem 3.1 If B in definition 3.1 is positive definite there
will be m real eigenvalues of A with respect to B. If A is po-
sitive semidefinite the eigenvalues will be non—-negative and if A

is positive definite the eigenvalues will be positive.

Theorem 3.2 We still assume that B is positive definite and A
positive semidefinite. Then there exists a base for R™ consisting
of eigenvectors u ,---,u, of A with respect to B. These vectors
can be chosen mutually conjugate with respect to as well A as B,

i.e. for i # j

We also say that the vectors u. are B—orthogonal.

Proof. This famous theorem dates back to Weierstrass in 1858. A
proof may be found in Mirsky [Mirsky 55] p. 410. The proof of
Mirsky is presented as a simultaneous reduction of quadratic

forms. If we consider eigenvectors u ,---,u, of A w.r.t. B that
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i — ] — N
are scaled so that uiBui = 1 we have uiAui = Ai. With

we then have

x'Bx = X% oo ook x2
m
i

This shows the equivalence of the two versions. We shall in the
remaining assume that the eigenvalues are ordered so that

Ay 2 eee 2 Ay

Theorem 3.3 Let the situation be as in theorem 3.2. We define

the Rayleigh coefficient as the ratio

HORS 5 -3

and we define Mk as the subspace that is B—orthogonal to

L PR i.e.
M, = {x | x'Buy = --- = x"By_, = 0}

Then we have

sup R(x) = R(uy) = Ay
inf R(x) = R(uy) = A,
sup R(x) = R(uy) = A

xEMk



41

(2)

Figure 3.1 Contour levels of two quadratic forms and their
"common'" conjugate eigenvectors.

where Al > e Am are the eigenvalues of A with respect to B
corresponding to the eigenvectors u y,«--,u,.
" Proof The proof is almost trivial if one takes into account that
the maximization may be performed subject to the constraint

'

x'x = 1 since R(X) is invariant to scaling of the length of

X.

The situation is illustrated in figure 3.1. The eigenvectors of A
w.r.t. B are the radii passing through the points where the el-
lipses have a common tangent. The maximum of Rayleigh's ratio is

obtained along u, and the minimum along u,.

The reason that we are interested in the behaviour of such quad-

ratic forms is that they occur as variances of linear transforma-
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tions of multivariate random variables. If X has the dispersion
(variance—covariance) matrix ¥, then the linear combination

' — e © © 1
a'X = alxl + + ame has the variance

V(a'X) = a'Xa

If we transform X linearly with matrix C we obtain the dispersion

matrix

D(CX) = CXEC'

Many of the investigations in the sequel are based on projections
on eigenvectors. It is of interest to establish circumstances
under which these operations are invariant to such linear

transformations. A result is presented in

Theorem 3.4 Let the situation be as in theorems 3.1 to 3.3. We

consider a full rank transformation

x — GCx=y

and suppose that

A — CAC' = A B — CBC' = B

1 9
Then the projections of a vector on the eigenvectors of A with
respect to B are equal to the projections of the transformed

vector on the eigenvectors of A1 w.r.t B1°
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Proof Straightforward. We have

(A; — AB))v = C(A — AB)C'v

Therefore, if v is an eigenvector of Al w.r.t. B1 then u = C'v is

an eigenvector of A w.r.t. B. It then follows that

y'v=x'C'v = x'u

This concludes the proof.

3.3 Principal Components (PC

The principalacomponents of a multidimensional variable with cor-
related components is a linear transformation of the original va-
riables aiming at de—correlating the coordinates or determining
the intrinsic dimensionality in the data. We shall present the

basic properties of the principal components.

Let X be distributed with mean g and dispersion ¥, and let the

eigenvalues and —vectors of ¥ be Al D e > Am and

Pys 5Py (with pipj = 5ij , the Kronecker delta). Without loss
of generality we assume that g = 0. Then we have that the i'th

principal component Yi is given by the projection on the i'th

eigenvector of ¥ , i.e.
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P
o]

Figure 3.2 A contour ellipsoid for the frequency function of a
normally distributed two—dimensional random variable. The
projections on the eigenvectors (i.e. the main axes) of the
ellipsoid are the principal components.

If we define
Mj_ = {b I b'pl = e b'pi—l = O} 5

we furthermore have

V(b'X) _ b'YE b
V(Y.) = sup = SUp (TR
Y beM, b e M,

i

This follows directly from theorem 3.3. The situation is
illustrated in figure 3.2 for a Gaussian random variable X.

The statistical significance of this result is that the first
principal component is the linear combination of the original va-
riables that accounts for most of the variation in the original

variables, or — to put it in more precise terms — the linear com-
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bination with normed coefficients that has the largest variance.
The i'th principal component is the linear combination (with
normed coefficients) that is uncorrelated with the i-1 first
principal component and that subject to that constraint has the
biggest variance. If we are looking for i variables explaining
most of the variation in the original variables, the i first
principal components will be the solution. A measure of the qua-
lity of the representation is the ratio of explained variation,
i.e.

Al + ee. + Ai

Al + e + Ai + e + A

m

The estimation of principal components is simply done by substi-
tuting the empirical dispersion matrix $ for © in the expressions

defining the components.

A major drawback by using principal components is that they are
not invariant to scale transformations. Therefore, the principal
components are often based on the correlation matrix instead of
the dispersion (variance—covariance) matrix. This is equivalent

to considering variables scaled to have empirical variance 1.

Example In a study on mapping of color anomalous zones in East
Greenland (see [Conradsen and Harpgth 84]) a training set was
chosen around Malmbjerget, a locality where a hydrothermal alte-
ration zone was connected to a Molybdenum deposit. For 344 pixels
from a Landsat 2 scene the following basic statistics were obtai-

ned.
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Means Std.dev. Covariances
B4 44 .9 9.1 83.6
B5 16.6 146.7 146.7 275.0
B6 61.1 16.6 143.8 268.5 272.2
B7 47'9, 13.1 114.2 209 .4 210.2 172.2

Table 3.1 Means, standard deviations and covariances for 344 rock
pixels from Malmbjerget, Central East Greenland.

Ordinary false color plots are not very efficient in enchancing
the alteration zones. Therefore different linear and non—linear
transformations were investigated. The principal components tur-
ned out to be rather successful. The eigenvalues and eigenvectors

of the covariance matrix are presented in table 3.2.

The values have been computed using PROC PRINCOMP from the SAS
package [SAS 85a].

PC1 PC2 PC3 PC4

B4 .32 -.17 —.68 .64

B5 .59 -.59 -.10 -.56

B6 .58 .05 .68 .44

B7 .46 .80 " —.26 -.29
Eigenvalue 785.5 8.1 6.3 3.1

% of total.v.| 97.8% 1.0% 0.8% 0.47

cum. % 97.8% 98.8% 99.67% 100%

Table 3.2 Principal components scores based on 344 rock pixels
from Malmbjerget.

In figure 3.3 is shown a false color composite based on bands 4,
5 and 7 from Traill @, an area appr. 75 km north east of the

training area. In figure 3.4 is shown a plot based on the first
three principal components, a so—called de—correlation stretch.

It accounts for 99.6% of the total variation. However, the fact
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This technique has been applied very successfully in regional
mapping in Greenland (Central East Greenland: [Conradsen and
Harpsth 84], Southern Greenland: [Conradsen et al. 86a]). As a
conclusion it must be emphasized that terms like "describing x7
of the total variation" not necessarily is synonymous with
describing a certain percentage of the relevant information.
Sometimes the first and not the last components should be
discarded. In many investigations it can be seen that this fact

has often been neglected.

3.4 Factor Models (FM)

The factor model may be considered as a dimension reduction
scheme like principal components, and in many cases principal

components are used in factor estimation. The basic model is that

observation (k—dimensional)
= Transformation of underlying factor structure

(m—dimensional) plus "noise".
Put in mathematical terms this reads
X=AF + G ,

where A is a k x m dimensional matrix of the unknown correlations
aij between observation Xi and factor Fjo The elements of the
A-matrix are the factor loadings, and the components of F are the

factor scores. Normally, it is assumed that the X- and
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F— components have unit variance, and that the coordinates of G

are uncorrelated.

Let the dispersion matrices of X and G be

D(X)
D(6)

] ]
B ™M

where the previous assumptions ensure that ¥ has one's in the
main diagonal and A is a diagonal matrix. Then the fundamental

equation of factor analysis is
T =AA" + A

The A matrix may be estimated as the principal factor solution
A= (V] pyse sV A )

where Al Do Ak are the eigenvalues and Py>°°°,Py are the
corresponding eigenvectors. It is seen that this solution simply
is the principal components scaled with the square roots of the
corresponding eigenvalues. An alternative — and far more compli-
cated — solution is the maximum likelihood estimator, see e.g.
Anderson [Anderson 84]. It should be mentioned that some authors
reserve the term principal factor solution to an alternative

estimation scheme [Harman 84].

Given one solution A a new solution may be obtained by rota—

tion, i.e. postmultiplication by an orthogonal matrix }, i.e. the
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rotated solution is
B=AGg.

Q is often selected according to the VARIMAX criterion, i.e. a
criterion designed in order to obtain a simple structure in the
factor loadings, see e.g. Kaiser [Kaiser 58] . Denoting the

elements of B by bij we determine § by maximizing

m k k
4 1 2,2

2 {XZb:. - ( T b%.)7}

j=1 i=1 *J k t501 13
(or some modifications thereof). This expression is the empirical
variance of the squared loadings, and the maximizing of this will
force many loadings to become small, i.e. close to zero, and many
to become large, i.e. close to one. Such factors will thus have a

simpler structure and be easier to interpret.

Once we have obtained an estimate of A (rotated or not) we may

estimate the factor scores by the expression
A'A_l
F=AY"(X-p ,
where A and ¥ are estimates of A and ¥ respectively.

Example In table 3.3 is shown the correlation matrix based on
160.000 pixels’from a Landsat 5 scene covering Ymer @, Central
East Greenland. In tables 3.4 and 3.5 are shown the loadings for
the unrotated principal factor solution with 3 factors (PF1-PF3)
and the VARIMAX rotated loadings (VF1-VF3). The loadings for the
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correlations between the bands and the factors are also presented
in figure 3.6. It is rather obvious that the rotated factor
solution has a simpler structure than the uncorrelated. From the
loadings it is seen that we may interpret the factors computed by

the score coefficients in table 3.5 as

VF1 : low wavelength factor
VF2 : medium wavelength factor

VF3 : large wavelength factor.

It must be emphasized that the factors are uncorrelated which
would not be the case for the naive averages that one might write
down in order to estimate similar components. Furthermore the
three factors account for as much as the total variation as the

original 3 first principal components.

In figure 3.7 is shown a false color composite (Bands 4, 3, 2 as
R, G, B) of the north western part of Ymer @. In figures 3.8 and
3.9 are shown principal components and VARIMAX rotated principal
factor representations of the same area. Many new features are
enchanced by these operations, and they are very useful in the

geological analysis of the area.

The computations were performed with PROC FACTOR from the SAS
package [SAS 85a].
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B1 B2 B3 B4 B5 B6 B7
B1 1.00
B2 .97 1.00
B3 .96 .99 1.00
B4 .88 .92 .94 1.00
B5 .01 .06 .13 .38 1.00
B6 | —.16 -.13 -.09 .13 .60 1.00
B7 .04 .09 .17 .37 .96 .56 1.00

Table 3.3 The correlation matrix for Landsat 5 TM data
based on 160,000 pixels from Ymer 0.

PC1 PC2 PC3 PF1 PF2 PF3

B1 .47 —=.19 .07 .93 -=.30 .05
B2 .49 —.16 .05 .96 —-.25 .04
B3 .49 -.11 .01 .98 -—.18 .01
B4 .49 .05 .06 .98 .08 .04
B5 .16 .58 —=.33 .31 .91 -=-.23
B6 .02 .51 .85 .05 .80 .60
B7 <17 .57 —=.39 .33 .89 =.27

VP | 56.1% 35.0% 7.1% | 56.1% 35.0% 7.1%

Table 3.4 The three first principal components (PC) and
the corresponding principal factor loadings (PF).

B1 98 -.05 .08 27 -=.09 04
B2 99 o1 -.07 27 -—.06 02
B3 99 08 —=.05 26 -.01 -.01
B4 94 29 .10 24 05 10
B5 08 96 .24 | -.05 56 —.23
B6 -.07 40 .91 06 -.29 1.22
B7 09 97 .20 | —=.05 59 -.31

\'%% 54.6% 30.1% 13.6%

Table 3.5 The VARIMAX rotated factor loadings (VF), and
the factor score coefficients (FS).
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Figure 3.6 The factor loadings, i.e. the correlations between the
different bands and the three VARIMAX rotated factors. The bands
are indicated on a scale giving the logarithm of the wavelength.
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3.5. Minimum/Maximum Autocorrelation Factors (MAT)

A major drawback by using the principal components and the factor
analyses in analyzing image data is that one does not take the
spatial arrangement of the pixels into account. Any permutation
of the pixels in an image will yield the same principal com-
ponents and factors. We shall now consider a way of orthogonali-
zing the components in a multichannel image using the spatial
correlation. The presentation is based on Switzer and Green

[Switzer and Green 84] (see also [Green et al. 88]).

We consider the random variables

Zlgx)
Z(X) = : , x=(i,3) € 1Z 3

7 (%)

and we assume that

]
o

E(Z(x))

]
[\

D(Z(x)) = %,

By A = (A1?A2) we denote a spatial shift. The spatial covariance

function is defined by
Cov(Z(x), Z(x + A)) = I'(A) .

I' has the following properties
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r©) =3, ,
T(A)' = I'(-A)

In the sequel we shall be interested in the correlations between
projections of the variables and the shifted variables. Therefore

we find

Cov(a'Z(x), a'Z(x + A)) = a'T(A)a
= a'T'(A)'a
= 3 a'(T(A) + I'(A)")a

Introducing

= D(Z(x) — Z(x + A))
23, - T'(A) — T(-4A)

>
|

we have
r(Ad) + T(-A) = 2 20 - EA
and thus,

Cov(a'Z(x), a'Z(x + A)) = a' (% - % Iy a

wherefore
; a'kya
Corre(a'Z(x) , a'Z(x + A)) =1 — 5 gry5—
o

If we want to minimize that correlation we must maximize
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a'EAa
B(a) = 3y a
0

The solution to that problem is given in theorem 3.3, and this

leads to the following

Definition With the notation introduced in the preceeding we let
Al < o0 <L Am be the eigenvalues and L PERRRRY the corresponding
conjugate eigenvectors of EA with respect to 20 . We put

Y (x) = ujZ(x)

This is the i'th Min/Max autocorrelation factor or, shortly, the
i'th MAF.

From theorem 3.3 we easily get’

Theorem 3.5 The MAF—factors satisfy

i) Corre(Y, (x), Yj(x)) =0, i#j
ii) Corre(Y,(x), Y;(x+A)) =1 — 3 A,

iii) Corre(Y,(x), Y;(x+A)) = sup Corre(a'Z(x), a’Z(x+A)).
a

inf Corre(a'Z(x), a'Z(x+A))

a

iv) Corre(Y (x), Y (x+A))

and for v =2,:--,m-1

v)  Corre(Y (x), Y (x+A)) inf Corfe(a'Z(x), a'Z(x+A))

aEMv

where

M, = {a | Corre(a'Z(x), Yj(x)) =0, j=m— v+l,---,m}
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We now consider the problem of transforming the original variab-

les. If we put
Ux) = TZ(x)
we have that

EA — TEAT‘

]
EO R TEOT

Therefore we may immediately use theorem 4 and obtain

Theorem 3.6. The MAF—solution is invariant to linear transforma-

tions.
The theorem can be useful in computations. Let Y42 00t 2y be
the ordinary eigenvalues and Pyscc 5Py the corresponding ortho-

gonal, normed eigenvectors of 20. If we put

[X1E

T' = (p19’°°9pm) diag(Fyl_ 9°°°s7m2) =PT ?

we have

(M1

D(TZ(x)) = I *P'E PI"% = I

With this transformation the problem is reduced to an ordinary
eigenproblem for
TEAT' = D(TZ(x) — TZ(x + A))
= D(U(x) — U(x + A))
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In the sequel we show some comparisons between MAF's and princi-
pal components. We first consider 2 test images. The first
(figure 3.11) is generated by the formula

7(j—1

w(i—-1
T+ 1) (cos v === + 1)

F (i,j) = % (cos v
Here (i,j) is the pixel number and (n,m) are the number of lines

and number of samples. The second test image (figure 3.12) is

generated from the first by the transformation

‘B, ] 15 0 17 0 0 21 0 0 19) [F; ] [N ]
B,, 5 0 17 0 0 21 0 0-19| |F, N,
B, 5 0 17 0 0-21 0 0 19| | F, Ny
B, | _[15 017 o o0-21 0 o0-19| | Fg |, | N | |
B, 15 0-17 0 0 21 0 0 19| | Fg N,
B 15 0-17 0 0 21 0 0-19| | Fg Ng
B., 15 0-17 0 0-21 0 0 19| | E, N
By | |15 0-17 0 o0-21 0 0-19f | Fg | Ng |
Fy

i.e. we have a linear combination of channels 1, 3, 6, 9 and some
added noise. The correlation structure and the PC and MAF
solutions to these two images are presented in tables 3.6 and

3.7.

The computations were done with a macro written in the SAS macro

language [SAS 85b].
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F1 F2 F3 F4 F5 F6 F7 F8 F9
F1i 1.00
F2 -.00 1.00
F3 03 -.00 1.00
F4 -.00 .03 —-.00 1.00
F5 .03 -.00 .03 -.00 1.00
F6 -.00 .03 -.00 .03 -.00 1.00
F7 .03 -.00 .03 -.00 .03 -.00 1.00
F8 -.00 .03 -.00 -.03 -.00 .03 —-.00 1.00
F9 .03 -.00 .03 -.00 .03 .00 .03 -.00 1.00

PC1 PC2 PC3 PC4 PC5 PC6 PCr PC8 PC9

F1 .45 .00 .00 .00 .00 .12 .19 .32 .80
F2 -.00 .50 .16 .29 .80 -.00 -.00 -.00 -.00
F3 .45 .00 .00 .00 .00 .14 .24 .63 -—.57
F4 -.00 .50 .22 .61 -.57 -.00 -.00 -.00 -.00
F5 .45 .00 .00 .00 .00 .19 .52 —-.69 -.13
F6 -.00 .50 .46 -.72 -.15 00 .00 .00 00
F7 .45 .00 -.00 -=.00 -.00 41 -.77 -.17 -.06
F8 -.00 .50 -.84 -.18 -.08 00 .00 00 00
F9 .45 .00 -.00 -.00 -.00 -.87 -.19 -.09 -.04

F1i 99 00 -.11 .00 -.05 00 04 -.00 03
F2 -.00 1.00 00 -—.04 .00 -.03 -.00 03 -.00
F3 o7 -.00 99 .00 -.08 00 05 -.00 04
F4 -.00 01 -.00 1.00 .00 -.06 -.00 04 -.00
F5 0z -.00 05 -.00 1.00 00 08 -.00 05
F6 -.00 00 -.00 02 -.00 1.00 -=.00 07 -.00
F7 01 -.00 02 -.00 .05 -.00 -1.00 -.00 09
F8 -.00 00 -.00 01 -.00 04 00 -1.00 -.00
F9 01 -.00 01 -.00 .02 -.00 -.06 00 -1.00

A 1.000 .995 .990 .981 .970 .957 .942 .924 .904

Table 3.6 Correlations, principal components, and minimum maximum
autocorrelation factors for the first test image.



63

B1 B2 B3 B4 B5 B6 B7 B8
B1 1.00
B2 .46 1.00
B3 .34 -=.21 1.00
B4 -.21 .30 .46 1.00
B5 .57 .03 -.10 -—-.65 1.00
B6 .00 .55  —.67 .13 .44 1.00
B7 -.10 -—.65 .57 .04 .31 —.24 1.00
B8 -.66 —.14 01 .55 —-.24 31 .45 1.00

B1 -.34 39 34 .32 -—.36 .17 41 —.43
B2 -.36 —-.30 41 .35 -.14 .33 —.44 41
B3 35 39 34 .31 35 —.12 30 53
B4 .36 -=.31 40 .35 i6 -.38 -.25 -.51
B5 -.35 34 -.36 .37 59 .06 -.32 -.20
B6 -.36 -.37 -=.30 .39 -.10 -.56 37 20
B7 .36 34 -.36 .36 -.58 -.12 -.37 10
B8 .36 -.37 -=.30 .39 .09 .61 32 -.10

MAF1  MAF2 MAF3 MAF4 MAF5 MAF6  MAF7  MAFS

B1 35 .24 -=.23 .23 2.6 3.1 -0.0 -6.0
B2 31 .23 =.21 -.25 2.6 0.8 =2.7 6.1
B3 33 .23 22 .22 1.1 4.1 5.4 2.6
B4 33 .22 22 -.28 —-6.2 0.0 -2.5 2.7
B5 27 -=.31 -=.21 .23 -6.0 2.3 1.3 2.8
B6 27 -.32 -.20 -.25 0.8 -6.3 1.5 =3.0
B7 27 -=.30 22 .24 2.4 -1.4 -6.5 0.5
B8 28 -=.30 20 -.23 2.8 5.4 3.8 -0.3
A .993 .984 .954 .901 .033 .014 -.005 -.040

Table 3.7 Correlations, principal components and minimum/maximum
autocorrelation factors for the second test image.

The results are shown in figures 3.11 to 3.12. It is obvious that
the MAF's are superior to the principal components in separating
signal from noise. We see that the slowly varying component,

which is the signal, always is put first in the MAF-analysis and

in the middle in the PC-analysis.
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Figure 3.11 A 9—channel testimage (top), its principal components
lower left), and its minimum/maximum autocorrelation factors
lower right). :
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Figure 3.12 The 8—channel test—image (top), its principal
components (lower left), and its minimum/maximum autocorrelation

factors (lower right).
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B1 B2 B3 B4 B5 B7

B1 1.000
B2 971 1.000
B3 .957 -990 1.000
B4 877 .917 .939 1.000

.010 .062 .133 .376 1.000
B7 .036 .088 170 .369 .964 1.000

PC1 PC2 PC3 PC4 PC5 PC6
B1 474  -.207 .409 .721  -.198 -.075
B2 .488 —-.171 .105 -—.221 .521 - .634
B3 .495 —.116 .119 —.463 135 -—=.704
B4 .494 .058 -.700 -.030 —.491 .145
B5 .151 679 —.262 .369 .525 —.192
B7 .161 .671 .499 -.284 -.393 .199
A 3.936 1.944 .066 .042 .018 .004

MAF1 MAF2 MAF3 MAF4 MAF5 MAF6

B1 0.123 0.25 0.33 1.56 -=-3.59 -1.69
B2 | -0.218 -0.05 1.44 5.04 4.02 7.53
B3 | -0.583 2.35 -3.17 —4.49 1.23 -8.47
B4 0.957 -1.94 2,19 -2.43 -1.79 2.66
BS 0.434 -0.44 0.43 1.93 2.38 —4.24
B7 0.267 0.81 -1.19 -0.65 -=2.08 4.01
A - .921 .867 .793 717 .424 .380

Table 3.8 Correlations, principal components and minimum/maximum
autocorrelation factors based on 400x400 pixels from Ymer 0. The
channels are Landsat 5 channels. (The infrared TM6 is not
included) .

In table 3.8 is shown coefficients for computation af MAF's and

PC's for satellite data from East Greenland.

In figures 3.13 to 3.18 are shown the principal components and in
figures 3.19 to 3.24 the MAF's. Again it is seen that the MAF's

are superior with respect to separating signal from noise.
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PC 1, 2 and 3 are plotted as R, G and B in figure 3.25, PC 2, 1
and 3 as R, G and B in figure 3.26. These two can be compared to

the MAF 1, 2 and 3 as R, G and B combination in figure 3.27.

In figure 3.27 is shown an application of MAF's in the analysis
of satellite images. It is believed that the resulting product
will be extremely useful in lithological classification. The
special band combination has been chosen by senior geologist John
L. Petersen. MAF 3 displays structural information and is plotted
as intensity. PC4 contains lithological information and is
plotted as hue or color. TM6 is a thermal infrared band which has
not been used in the PC or MAF computations. It displays the

temperature of the lithologies and is plotted as saturation.
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Lebart [Lebart 84] and Banet and Lebart [Banet and Lebart 84]
refer to and describe some earlier works on local principal
component analysis that are very similar to the MAF analysis.
They consider a graph with n vertices and vertex set I. At each
vertex a p—dimensional random variable is given thus defining a
n x p data matrix X. M is a symmetric nxn matrix where mg 5 = 1 if
vertices i and j are joined by an edge and = O otherwise. N is a
diagonal matrix with n, = ? mij’ The local covariance matrix is
then def}ned by

X'(N - )X

<
]
Bl

m equals Eni and is twice the number of edges. We consider as an
example a rectangular grid with 6 gridpoints as a graph with the
obvious definitions of nodes and edges. If we let the measure-

ments be one—dimensional and call them

X, X,
X3 X4
X5 Xg

we have

vl -x)% e x - Xg)2 + (X, - X2+ (X3 - X% +
(Xg - X2 + (X, = X)) + (X5 = Xg)?]

From the example follows — and this may of course be proven for a
general rectangular grid — that the local covariance is the "sum

of squares" of differences between north—south and east-west
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neighbours. Lebart then considers the Rayleigh coefficient

x'Vx

x'Sx
where S is the ordinary empirical dispersion matrix for the x's.
He uses the term Geary coefficient, cf. Cliff and Ord [Cliff and
Ord 73] . This analysis is therefore equivalent to the

MAF—-analysis as it is presented here.

3.6 Canonical Variates

Ve now consider the question of relationship between two sets of
variates like for instance data from imagery of the same location
sampled at two different time points or multichannel data where
there are natural groups of channels one would like to correlate
like e.g. channels in the visible versus the infrared area. For-
mally we regard this as a partitioning of a multivariate random

variable

p+q
l1.€.
7 = [X], i = [ﬁ%], % = | %11 F12
Y 291 9o

We will determine the maximum correlation between a linear func-
tion of the X—components and a linear function of the Y—compo-

nents. We put
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and have

a'%y,p

Corre(U, V) = -
va'lija fihgop

Maximizing this expression with respect to a and B is equivalent
to maximizing the numerator subject to the constraint that the

two terms in the denominator equal one, i.e.

Maximize a‘Eizﬂ
subject to a‘Eila =1
ol 222,3 =1

We introduce Lagrange multipliers A and g and get the uncons-

trained problem to maximize
1 1

F(aaﬂaAaﬂ’) = a'212,3 -9 ’\(a'zlia - 1) -9 /L(ﬂ'zzzﬁ - 1)
Differentiation yields

oF _ -

Ja = %108 — AByqa =0

oF _ -

B = To1@ - HEqf =0
and using the constraints we obtain

A= a'zizﬁ = MU

i.e. the Lagrange multipliers are equal to the correlation.
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Furthermore we have that

11 .
B =7 Bog Egqa )

and thus at the optimum

1 a'l

Corre(U,V) = =
1 1
a'Eila Eza’212222212 a

1
12 Zgg Byy @

—1a ,
Cqpl [ @' E12%00%01@ |7
T oou a' Ella

We may explain this expression in a may be slightly more obvious
wvay. If we denote by X the best linear prediction of X based on
Y, we have from standard multivariate regression analysis that
the dispersion matrix of X is

—1

D(X) = By5 255 B9y

and obviously

D(X) = B,

Therefore

Maximizing the Rayleigh coefficient will therefore give a direc-

tion a that maximizes the variance of a linear combination of the
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best predictions of the components of X with respect to the
variance of the same linear combination of the components them-

selves.

Maximizing the square of this expression is according to theorem

3.4 equivalent to solving the generalized eigenproblem

-1
(Big gy Bgy — 7 Zyq)a =0

The largest eigenvalue 7 will be the squared maximal correlation

A%, and the corresponding eigenvector ay gives the coefficients

for computation of U, . The weights for V1 are found by means of

(*).
We have thus obtained

Uy =X, V, =8 Y

1 1

that maximizes the correlation between linear combinations of X

and Y. We now seek a new pair of variables

U, = X , V, = t%X

so that U2 and V2 are uncorrelated with U1 and Vl’ i.e. the

covariances satisfy

Cov(Ui,Uz) =a By &y =0
Cov(Uy,V,) = @b Bp B = O
Cov(Ul,Vz) =a; 55 By =0
Cov(Vl,Vz) = ﬁﬁ 222 ﬁ& =0
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Among linear combinations satisfying these conditions we want to

maximize the correlation between U2 and V2. Firstly we see that

i.e. the second constraint follows from the first. Similarly the
third follows from the fourth. Having this in mind, the expres-
sion for maximizing the correlation subject to the constraints

will be

F=a'S,0 - gA(a'S e~ 1) = 5(8 %0 - 1)

= 7e'Sy 0y = OB Ee0f
and differentiation yields

= BB - ALjja— 7By =0

SE!

i

Lyia = pByof — 63950 = O

S

Multiplication of the first equation with ai yields at the op-

timum

ai212ﬁé - Aaiﬁllaé - 7ai211a1 =9=0

Similarly it follows that 6 = 0. As a result we get the same

equation relating a, and ﬁ& as we had before. Substitution of S
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in the expression for the squared correlation will therefore give
the same expression as before and from theorem 3.4 it follows

2 . . —1 .
that A2 is the second largest eigenvalue of o Yoo Loq with
respect to L, and a, is the corresponding eigenvector. We may

proceed in this manner and finally obtain a set of variables

U, = alX Vv, = BY
s > gy
U, = X v, = B,

where each (U., V) is uncorrelated with the previous U's and V's
and where Ur and Vr are maximally correlated among variables
satisfying such a constraint. The a's are eigenvectors of

212 25% 221 with respect to 211 and the 's may be obtained from

the formula

1 1
B; = X, Too Bo1y

We have that the canonical variables are invariant to linear
transformations. Let for instance

X — CX , Y — DY ,

where C and D are non—-singular matrices. The basic equation will

be
[(CE,,D") (DE,,D" ) (DEy,C') — 7(CE;4C")] = 0

Obviously the D's cancel each other and theorem 3.4 applies.
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Example In figure 3.29 and 3.30 are shown false color composites
of Landsat 4 scenes from summer, respectively winter around
Almaden, Spain. The two scenes have been aligned by a
cross—correlation method, and it is believed that the error is in
the order of magnitude of say at most one to two pixels. The
alignment had to be adjusted manually due to the difference in
sun elevation which causes great differences in the extension of
the shadows thereby "fooling" the automatic cross-correlation
method. Figures 3.31 and 3.32 show the same scenes but a
different band combination (5, 4 and 3 as R} G and B). The
advantage of this band combination over the traditional 4, 3, 2
band combination is that it does not show vegetation in the usual
distracting red color. The new band combination is becoming more
and more widely accepted within the remote sensing society. Table
3.9 shows the coefficients for computing the first three
canonical variates between the two scenes. Figure 3.33 depicts
the coefficients for the first canonical components together with

a reflectance curve typical for a leaf.

WCV1 SCV1 WCV2 SCv2 WCV3 SCV3

B1 .29 56 .06 -.31 -1.22 -1.87

B2 .79 -.16 .27 1.27 -.94 —.66

B3 .31 .53 —-.65 -2.70 1.90 1.95

B4 -.21 —-.20 .94 .74 .66 1.03

B5 .32 .78 .86 2.41 —.66 —-1.47

B7 -.59 —-.59 —.51 -1.27 .60 1.47
Cor 0.546 0.356 0.228

Table 3.9 The coefficients for computing the first three cano-

nical
based
maden.

variates for the winter §WCV) and the summer scene (SCV)
on 160,000 observations from 2 Landsat scenes around Al-
Furthermore is given the canonical correlations.
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The computations were done using PROC CANCORR from the SAS
package [SAS 85a].

In figure 2.34 is shown an intensity — hue plot with TM band 4 as
intensity and the thermal band (TM-band 6) as hue. It is seen
that the thermal information in an excellent way delineates dif-
ferent geological units. E.g. the quartzites are shown as bands

in a deep blue color in the middle of the scene.

In figure 3.35 is shown a similar plot, where the thermal
information has been replaced by the first canonical variate
based on the summer scene and resulting from a comparison between
the summer and the winter scenes. The thermal bands were — of
course — not included in this analysis. The interpretation of the
first canonical variate is that it depicts those features in the
scene that are mostly unaffected by the change in season. In
other words it may somewhat vaguely be denoted as a
transformation that eliminates vegetational changes. The
remarkable thing is the similarity between this figure and the
previous figure with respect to discriminative power when trying
to segment the image. On figures 3.36 and 3.37 are shown the

analogue plots but now for the winter scene.
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for
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Percent
reflectance
of a leaf

Figure 3.33 Weights for computation of canonical variates between
summer (---) and winter (---) scene from Almaden. Shown on a
graph with the reflection curve for a leaf. The wavelengths for
the six TM bands actually used are given at the bottom of the

figure.
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3.7 Canonical Discriminant Functions (CDF

If it is important to enchance features that are characteristic

for some pixel classes one may transform the original variables

into the so called canonical discriminant functions.

Consider k classes (populations) LR and let there be given

My, ee Ny observations from those, i.e.
™ X110 X,
" 2 AR

The group means are

n.
1

¥ X.. i=1,-+-.k
i j=1 1J b b 9 9

P
[
S

and the overall mean is — with N = Eni = total no.

observations —

of

describes the variation between the p—dimensional group means

xl,-»o,xk, and
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k n.
i

V= 2 I (X..-X)X..-X.)'
describes the variation within the groups, i.e. the variation of

the individual observation around its group mean. If we introduce

the total variation as

kM B B
T=% ¥ (X.. - D)(X.. - X)!

we have the fundamental relation
T=A+VW

This says that the total variation may be decomposed into the
variation around the group means plus the variation between the
group means. If we assume that all observations have the same

dispersion matrix

Il
]

D(X; ;)

and that

E(Xij) By

then W is proportional to the ordinary estimator

o _ 1
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We now consider the Rayleigh coefficient
#(d) = §ripg , d'd=1

We see that ¢(d) describes the variation between group means
relative to the variation within groups along the direction d.
Maximizing ¢(d) will thus give the direction with the maximum
spread of the group means relative to the within—group variation.
The situation is illustrated in figure 3.38. The distance between
the projections on d1 is 2.75, and the standard deviation of the
two normal distributions is 0.35, i.e the distance between the
two means is 7.9 standard deviations. For the projections on d2
we have a distance of 0.6, the standard deviation is 0.5, and

measured in standard deviations, the distance is 1.2.

Clearly we may use theorem 3.2 again and successively obtain

directions

corresponding to eigenvectors of A with respect to W. Here r is
smaller than the dimension of the vectors and the number of

groups.

The vector

: = : = D'X
Y d'x
r
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will satisfy
D' WD=1 ,

i.e. the Y's are (empirically) uncorrelated. Furthermore each diX
maximizes the variation between group means subject to the
constraint that it is uncorrelated with the previous variables.
The Y's are called the canonical discriminant functions or the

discriminant coordinates.

If one e.g. selects the three most important (i.e. corresponding
to the largest eigenvalues) one can make a false color plot by
assigning one of those to the red, one to the green, and the last
to the blue channel. In this way one obtains a plot that

"maximizes" the differences between the original training sets.
The canonical discriminant functions are invariant to linear

transformations to the original variables. If we e.g. consider

the transformation (C non singular)

we have — with an obvious notation —
Vv =CVWC(C

A =CAC
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v

Figure 3.38 Different projections of two two—dimensional normal
distributions. Direction No. 1 corresponds to the first canonical
discriminant function.

and therefore

= = ' = {
Ay dy = A Wy dy <=> CAC dy ACVWC dy

Therefore d = C’dy is an eigenvector of A w.r.t. W, and the

projection of Y on dy will be
d! CX = ' "X = "X
v (C dy) d

This finishes the proof.
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Example In the sequel the techniques described above will be
demonstrated on some data from Ymer @, East Greenland. The image
used is a Landsat 5 scene and we are using bands 1, 2, 3, 4, 5,

6, and 7.

The training sets comprise 20 different lithological units,
quartzites, limestone, dolomites, Tillites, Cambrian and
Ordovician units, and Devonian sediments. The locations can be
seen in figure 3.39. The basic statistics are presented in tables
3.10, 3.11 and 3.12. Many of the units are very similar, and a

direct discrimination is very difficult.

The computations were done using PROC CANDISC from the SAS
package [SAS 85a].

In figure 3.40 is shown the CDF-plot. For comparison review

figures 3.7 and 3.8 which are standard false color images.

Many of the lithological units are very similar, and a direct
discrimination is difficult. However, it is clear from a compari-
son of figures 3.7, 3.8 vs. 3.40 that the CDF-plot shows many
details not present in the "ordinary" plot, and thus provides a
useful tool in the interactive interpretation and mapping of the

area.
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X St SW SA 100R2
B1 78.2 14.6 7.2 13.1 76.0
B2 35.0 9.7 4.6 8.8 7.7
B3 39.7 13.9 6.2 12.8 80.2
B4 40.5 10.3 6.1 8.5 65.1
B5 69.9 19.5 10.3 17.0 72.2
B6 122.1 10.3 5.6 8.8 70.0
B7 38.1 12.4 6.0 11.1 76.2

Table 3.10 Means, total standard deviations, within

standard deviations, among groups standard deviations and
100xthe multiple correlation coefficient for 6 Landsat 5

bands and 20 lithological units. The total number of
samples is 12574.

B1 B2 B3 B4 B5 B6 B7
B1 1.00 .97 91 74 66 .28 78
B2 .90 1.00 .98 .85 76 .34 88
B3 .87 97 1.00 .89 76 .42 89
B4 .59 .68 .69 1.00 91 .46 94
B5 .51 .57 60 .74 1.00 .37 96
B6 .32 .31 .30 .51 46 1.00 46
B7 .60 .67 .70 .61 90 .42 1.00

Table 3.11 Among groups correlations (upper triangle) and
within groups correlations (lower triangle).

CDF1 CDF2 CDF3
B1 -1.1119 0.9244 -2.3799
B2 -3.9185 2.2520 -0.5857
B3 6.5022 —-1.9420 1.2299
B4 -0.1228 -0.1009 0.6745
B5 -1.1036 0.7243 1.3712
B6 0.9821 -1.1484 —0.7645
B7 0.7101 0 4732 0.0918

Table 3.12 Coefficients for standardized vari-
ables for computing the canonical discriminant
functions.
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4.1 TIntroduction

When analyzing image data in order to decide whether particular
properties are present or not, classical discriminant analyses
have been used with considerable success e.g. in rembte sensing.
This approach, however, has some very serious shortcomings. As
mentioned earlier, when the imaging device is a multispectral
scanner, the resulting image will be a collection of

p—dimensional vectors

X;(1,3)
X(la,]) = E i=0, ¢+ , n—-1 j=0, .-+ , m—1

defined on a rectangular lattice giving the pixels. The X values
will typically vary in a random manner and will therefore be
represented as random variables. For homogeneous areas, the
distribution may often be assumed to be normal, with means (and

dispersions) depending on the area.

The most obvious way to achieve an identification of the
different geological units based on the data would be to select
training areas with a known geology (e.g. figure 2.2), estimate
the distributions of the pixel values X(i,j), and then determine
e.g. ordinary linear discriminant functions and use those in
classification of the remaining pixels. As long as different
units are characterized by substantial differences in mean values

this approach will work very well.
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The "natural optimality" of the pixel-by-pixel rules presupposes
independence. A glimpse on figure 2.1 shows that this is not a
reasonable assumption. There is a strong spatial continuity in
the image. This may be utilized in the classification. In recent
years several approaches to so—called contextual methods have
been proposed. Mohn, Hjort and Storvik [Mohn et al. 86] give a
good comparison of such methods, and they show that for a range
of models the error rates may be reduced considerably by using

contextual methods. These will be considered in a later chapter.

Instead we shall in the next sections show how information on the
dependence may be extracted by suitable filters, later these

results will be used as extra features in classifications.

4.2 Estimation of local orientation and local frequency.

In the sequel we shall study pairs of filters that may be used in
estimation of local orientation and local frequency. The
description will be based on a continuous Fourier representation,
since the "continuous" formulas are somewhat simpler than the

"discrete" ones.

We consider a function f(x) and define its Fourier transform by

F(u) = T T f(x) exp (—i2Xu'x)dx.

—00 —00
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The inverse transform is given by

f(x) = T T F(u) exp (i2lu'x)du.

Details on existence and properties may be found in e.g. [Goodman
68]. We shall only mention that f(x) real implies that F(u) is

Hermitian symmetric, i.e.
*
F(—u) = F (u)
If f(x) is even (and real), i.e. f(—x) = f(x), the Fourier

transform F(u) is real, and if f(x) is odd, i.e. f(—x) = —f(x),

the transform is purely imaginary.

A space—invariant linear filter may be described directly as
convolution with the impulse response function h(x), i.e. the

filtered "image" f is given by

B(X) = £ * h(X) = J J £(s) h(x—s)ds

or we may.present f by its Fourier transform F, i.e.
F(u) = F(u) H(u) ,

where the Fourier transform H of h is the transfer function or
frequency response function of the filter. We are looking for
filters that give orientation estimates that should be invariant

with respect to the frequency content in the estimated direction.
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>

Figure 4.1 Areas defining the sign function Sk(u)n

The simplest way to obtain this is to restrict ourselves to
filters that are polar separable, i.e. filters with transfer

functions

H(u) = g(vuTu) p(atan(u,/uy)) = g(6)p(4),
where 6 and ¢ are polar coordinates for u = (ul,uz)‘.

Corresponding to a finite number of directions ¢ ve consider

sign functions

Sy (u) = sign cos(atan(uz/ul) - ¢)

The function Sy (u) equals —1 in the shaded halfplane shown in
Figure 4.1 and equals +1 in the other half plane.
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Knutsson and Granlund [Knutsson and Granlund 83] consider filters

of the form

]

HY (w) = g(6) cos® (4 - )

Hp(u) = i Sy (w) Hp(w)

wvhere & and ¢ are polar coordinates for u and

g(d) = exp [ - I%? B2 lnz(g;)].

The constants A, B, ¢k, and 6i are parameters that may be used
in determining the shape of the filter. A is the angle
selectivity, B the bandwidth, ¢k the orientation and 6i the

center frequency.

Since HE is real (and even) it corresponds to a zero phase
filter. Hﬁ is purely imaginary (and odd) and hence causes a phase
shift of magnitude %. In the simplest (one dimensional) case a
cosine would be transformed to a sine, wherefore the filter is
called a quadrature filter. We shall use the term quadrature
filter pairs about Hﬁ and Hﬁ, The corresponding impulse responses
are denoted hﬁ and hﬁ. The filtered output from the two filters

are

£8(x) = £ * hS(x) = j J £ (s)hS (x—s)ds

£9(x) = £ * hO(x) = J j £ ()b (x-5)ds
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and we define the local orientational root mean squared (RMS)

value as ®
N 2 . 9.1
B = [HEEG) 17 + () (717
If we consider K evenly distributed directions
k
¢k=7r°K , k = 0,1, cee , K-1

we combine the output fk(x) from these K filters as

K—l ~ k
Z(x) = kE £ (x) exp(i2ng) .
=0

This corresponds to associating each fk(x) with an angle 2¢k and
adding them as vectors. If there‘is a dominant direction only
that fk will contribute, otherwise they will more or less cancel
each other. A more precise argument may be found in Knutsson
[Knutsson 82]. The direction of Z now contains information on the
dominant direction in the original (i.e. %arg(Z)) and the
magnitude of Z is a measure of the consistency of that

direction.

Estimation of local frequency is obtained by combining output
from two orthogonal filters. If a function has all its energy in
a single frequency, say r, then the ratio between the output from

the filter pairs with center frequencies 61 and 62 will be
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Solving this equation with respect to r yields
r=4 0,05 - R R
172
where

oo [ p2m 2]

We see that in this case it is possible to obtain an exact
assessment of the true frequency. In the general case we may use
e.g. 3 sets of quadrature filters, with low, with medium, and
with high center frequencies. The output from those may be
combined vectorially with medium frequency corresponding to
argument O, high frequency to argument % m, and low frequency to
% w. Analogously to the vectorial combination of orientation
measures, this will then produce a frequency measure, where the

direction corresponds to the frequency and the magnitude to the

certainty of the frequency determination.

The abovementioned procedures are implemented on the GOP 302
Image Processor, Contextvision [Contextvision 86]. The discrete
kernel weights have been determined by minimizing a weighted mean
squared distance between the "theoretical" transfer functions and
the transfer functions corresponding to the digital filter. In
the sequel (or,, or,) and (fr,, fr,) correspond to cartesian
representations of the complex valued estimates of local
orientation and local frequency. The window size actually used

was 11x11 pixels. Due to the considerable size of the window we
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obtain less precise estimates along borders between different

textures.

The results of applying this type of filters to an image like
figure 2.1 can be seen on figures 4.2—4.5. On figure 4.2 is seen
an orientation estimate. The result is color coded: Hue is
direction (green=N-S, red=E-W, red=SW-NE, yellow=SE-NVW,
intermediate directions have colors in between) and Intensity is
"certainty". Figure 4.3 is an averaged version of figure 4.2. The
frequency estimate is shown on figure 4.4. Again the result is
color coded : Hue is frequency (red=low, green=medium, blue=high,
intermediate frequencies have colors in between) and intensity is
"certainty'". Figure 4.5 shows an averaged version of figure 4.4.
In both of the averaged images one notices a pronounced

segmentation.
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4.3 Statistical Texture Estimates.

In this section we will consider filters based on some well known
basic statistical measures. Most of the filters are nonlinear in

nature.

First, let us introduce the local fractile filters.

The most widely used example of a fractile filter is the median
filter. The idea is that given a moving window of some size say
15x15, take the pixels within the window order them by value and
output the (152+1)/2'th pixel (i.e. the pixel in the "center" of

the local distribution).

Consider the following 3x3 window

8 35

9 4 8

79 2

The values within the window are ordered as follows

234578899

The output value will be the one ranked as number (32+1)/2 =5

i.e. 7.

A fractile filter will use the same principle except that the

output value will correspond to the wanted fractile. The 207
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fractile would correspond to pixel number 2 in this example i.e.
3 would be output. (More elaborate algorithms would output a

value linearly interpolated from pixels number 2 and 3.)
The fractile filters have the following properties

i) They can remove '"salt and pepper" or "shot" noise.
ii) They are edge preserving smoothing.

iii) They are computer intensive to calculate.

A good reference to the statistical properties of a median filter
is by Justusson (in [Huang 81]) who states some interesting
theoretical results using the median filter on images with
different types of '"noise" added. As an example consider an image
in which the pixels are from a double exponential distribution

. . 2 .
with mean p and variance o“, i.e

f(x) = V2 e V2 |x—pl/o , x € R

o

Then the asymptotic variance of Median(xl, cee s xn) (n large)
is

. o 2 _ 1 a2

Var(Median) ~ o) = 5 —(55

which is 50% smaller than the variance 02/n of the mean X. In
fact the median is the maximum—likelihood estimator of u. A
similar example where the noise is normally distributed gives the
opposite result (not surprisingly since the mean is the maximum
likelihood estimator of g in this case). According to Justusson

these results indicate that the median filter is better than the
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The other type of statistical texture estimates we will consider

is the moment filters.

The moment filters make local estimates of the ordinary
statistical moments used: mean, variance (standard deviation),
skewness and kurtosis.

The standard definitions of these measures are

mean = p = E(X)
variance = 02 = E((X—p)?)
standard deviation = o
E((X-)3)
skewness = 53
, E((X-p)*)
kurtosis = ——— -3

It should be noted that the mean estimator is a linear filter

while all the others are nonlinear.

In the sequel we shall use these definitions as a basis for
defining some measures which will prove useful and easy to

implement on the GOP-302.

The mean is computed as

1
mean;; = —=—— X ¥ X0 500
b) Vi1 k,1
K,1
k and 1 € [-K_,...,+K ]

K, can typically be 15 or 31 giving a window size of 31x31 or

63x63. The weights at each point within the kernel follow a
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circular gaussian function making sure that the values just
outside the window are effectively O so that there are no
boundary effects. On our system the kernel coefficients are
represented in signed 16 bit integers which determines the limit.
In the case with window size 63x63 this was accomplished simply

by making sure that Vo,32 < o~16

Having computed the mean we then determine an intermediate image

called diff

diff = X.. — mean. .
1] 1]
which is simply the difference between the original image and the
computed moving average at each pixel point.
The local variance, skewness and kurtosis are then implemented as

follows

. 1 : 2
Vi1 k,1
k,1
sdev.. = 4 vari. :
1] 1]
ou. . o 1 B (g 500
1] Y Vi1 sdev? .
k,1 1J
Y w4 (diff, )4
kurtij _ 1 k1l i+k, j+1 _ 3
) dev4 .
k,lwkl S evlJ

The reason for the odd looking implementation is the fact that
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the GOP-302 hardware does not operate with very high precision so
normal algorithms would create over— and underflows.

It is noted that the definitions of vari, sdev, skew and kurt do
not quite confine to the standard definitions since it is not the
mean at point (i,j) which is used all over the window area but a
moving average. This however does not seem to be a problem. In
table 4.1 is shown in one dimension what happens in the standard
definition and the implemented moving average version. The table

should be read as follows

x ~ input signal
m ~ mean

v ~ variance

s ~ skewness

k ~ kurtosis

2

suffix 1 standard definition moments, kernel = (1,2,1)

2 ~ standard definition moments, kernel = (1,4,6,4,1)
3 ~ implemented moments, kernel = (1,2,1)

4 ~ implemented moments, kermel = (1,2,1), but

convolved twice (effectively (1,4,6,4,1)).

Whenever there is a decimal point on its own it means "missing

value".

It is seen that the results are quite alike for the mean,
variance and kurtosis, but that the skewness behaves very
differently. However we will still interpret s3 as a skewness

measure.
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Table 4.1 Test signal (x), means(m-), variance(v-), skewness(s-),
kurtosis(k-) for the standard moment definitions (-1 and -2) and
for the implemented versions (-3 and -4) using different kernels
described in the text.
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In figures 4.9, 4.10, 4.11 and 4.12 are shown the results from
computing local versions of the mean, standard deviation,
skewness and kurtosis on the image in figure 2.1. The mean needs
no explanation. It is just a smoothed version of figure 2.1. The
standard deviation image (figure 4.10) is bright where there are
(local) large deviations from the (local) mean. Examples are the
border between land and water, the areas with small lakes and
small snow—clad areas. The water on the other hand is seen to
have a very low standard deviation together with the so-—called
Igaliko intrusive areas. The skewness (figure 4.11) measures the
amount of left tail in comparison to the amount of right tail in
the local distribution. If the distribution is strongly skewed to
the left the output will be reddish and if strongly skewed to the
right it will be greenish. The areas with small lakes and other
small dark speckles are red and areas with small white speckles
are green. Note that the Dolemite areas are more or less reddish
and the icebergs are green. The kurtosis estimate should be
negative (red) if the distribution is flat topped and positive
(green) if the distribution has broad tails. The estimate is seen
on figure 4.12. It is difficult to say if the image enhances any

relevant information in this case.
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4.4 Co—occurrence matrices.

Another texture generating technique which has been useful in
image classification is based on the so—called "Grey Level

Co—occurrence Matrices'.

A co—occurrence matrix is defined for a certain displacement and
a certain window size. Normally one considers only the
co—occurrence matrices which are computed from the nearest
neighbors. Given a displacement and a window the cells in the

co—occurrence matrix are computed as follows

c(i,j) = the number of times a pixel with intensity i has a

neighboring pixel with intensity j at displacement d.
C(i,j) = normalized version of c(i,j).
Thus we may say that the co—occurrence matrix has the same
relation to a histogram as the autocorrelation function has to

the variance.

The principle can be seen in the example in figure 4.13 [Haralick

et al. 73]
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0011

image 0011

(or window) 0 2 2 2

2233

j—value

0123 0123 0123 0123
ol4210 4100 6020 2130
. 12400 1220 0420 1210
value 5 | 4 576 1 0241 2222 31002
30012 0010 0020 0020

displacement displacement displacement displacement

= (091) = (171) = (190)

+(07_1) +(1a_1) +(_19O)

= (_191)
+(0,-1)

Co—occurrence matrices from nearest neighbors

Figure 4.13 Example of small image and some co—occurrence

matrices.

Several problems are noticed. If the intensity values have a

range between O and 255 the size of the co—occurrence matrix for

one single displacement is 256x256. The number of matrices grows

with the number of needed displacements. In this way the data

generated can get out of hand. To solve this problem a number of

information preserving parameters can be computed from the

co—occurrence matrices. Three of the more common ones are

energy T C(i, )2
entropy — X C(i,j) log(C(i,j))
contrast ¥ C(1,]) (i‘j)z
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If the image can be considered isotropic then the matrices with
the same distance of displacement can be averaged, thereby saving

even more Sspace.

A very early reference to the subject is [Darling and Joseph 68]
who call the co—occurrence matrices "Information in the X and Y
directions". They consider using the conditional information
content in the co—occurrence matrix as a discriminator in

satellite imagery.

A standard reference is [Haralick et al. 73] who use the name
"Grey—tone spatial—dependance probability—distribution matrices'".
They define 14 parameters which can be computed from the
co—occurrence matrices. The test images consist of both satellite

imagery, aerial photographs, and photomicrographs.

[Conners et al. 83] consider using several of the parameters
defined in [Haralick et al. 73] as features in classifying
surface defects in wood. According to Conners the co—occurrence
matrix texture analysis approach has been proven useful on a
variety of texture analysis problems. Furthermore comparison
studies have shown it to be a superior method, and that
perceptual psychology studies have shown it theoretically capable
of matching a level of human perceptual performance. References

to these studies can be found in the article by Conners et al.
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4.5 (Bina Markovian Random Fields.

A number of authors have considered the use of Markovian random
fields as a method to describe and analyze textures in images, or
at least "data defined on a lattice". Among the most well known
must be mentioned [Besag 74], [Hassner and Sklansky 81] and
[Cross and Jain 83].

To introduce the concept of a Markovian random field we must

state some definitions.

Let there be given data on an NxN lattice. X(i,j) denotes the
brightness level at a point. (i,j). Re—labeling X(i,j) to X(i)
where i=1,2,...,M and M = N2 gives some simplification in the

notation.

Definition 1: Let L be a lattice. A coloring of L denoted X is a
function from the points of L to the set {0,1,...,G—1}.

Definition 2: A collection of subsets of L described as
n:{nijl(i,j)EL,ning} is a neighborhood system on L if and only
if M55~ the neighborhood of pixel(ij) is such that

1) (i,j)fﬂij

2) if (k,l)enij then (i,j)e€nq for any (i,j)eL.

Definition 3: A Markov random field is a joint probability

density on the set of all possible colorings X of the lattice L
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subject to the following conditions:

1)  Positivity: p(X) > 0 for all X with p(X;)>0

2)  Markov property: p(X(i)|all points in the lattice
except i)=p(X(i)|neighbors of i)

3) Homogeneity: p(X(i)|neighbors of i) depends only on the
configuration of neighbors and is translation

invariant.

We will limit our attention to the case where the probability of
a point X(i,j) having gray level k is binomial, with parameter
determined by its neighbors. By neighbors we will only consider
points up to a certain distance away from the considered

(center—) point.

The so—called autobinomial model [Besag 74] is defined by means
of the probability p(X=k|neighbors) which follows a binomial
distribution with parameter 6(T) and number of trials equal to
the number of grey levels minus one, G-1. 6(T) is given by the

expression

exp(T)
1 + exp(T)

where T for a first order model is given by

T=a+b(1,1) (t+t')+b(1,2) (u+u').
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For a fourth order model we would have

T = a+b(1,1) (t+t')+b(1,2) (u+u')
+b(2,1) (v+v')+b(2,2) (z+2')
+b(3,1) (m+m')+b(3,2) (1+1")
+b(4,1) (o1+01'+02+02')+b(4,2) (q1+ql'+q2+q2")

where t,t',...,q92,q2' are points in the neighborhood of F defined

as follows

ol m ql
02 v u v/ q2
1 t X t' 1'
ql’ z' u' v' ol'

q2' m' o02'

The models of second and third order follow from the fourth order

model by setting the higher order b's to O, which brings us to

Definition 4: The order of a Markov random field process on a
“lattice is the largest value of i such that b(i,1) or b(i,2) is

nonzero.

Definition 5: A Markov random field is isotropic at order i if
b(i,1)=b(i,2). Otherwise, it is said to be anisotropic at order

i.

Most of the textures one is interested in describing incorporate

some sort of anisotropy which may be called "directionality" of
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the texture. Considering the first order model where T was given

by
T=a+b(1,1) (t+t')+b(1,2) (u+u') ,

it is seen that positive values of b(1,1) cause clustering in the
horizontal direction and positive values of b(1,2) cause
clustering in the vertical direction. For the second order model
the parameters b(2,1) and b(2,2) control the clustering in
diagonal directions. For more complex models even more complex

textures can be described.

The binary case where the point variables only can take values O
and 1 is a special case of the binomial model. The conditional

probability of x is given by

exp (xT)

p(E=x|T) = 1 + exp(T)

A large amount of textures using this and related types of models
has been generated by Hassner and Sklansky [Hassner and Sklansky
81], Cross and Jain [Cross and Jain 83]. A few examples are shown
in the following. They have been taken from Carstensen
[Carstensen 88]. When looking at figures 4.14 to 4.17 it should
be noted that for a fairly parsimonious model one can describe

fairly complex textures.

It is possible to estimate parameters in the models and generate
textures with the estimated parameters with notable success

[Cross and Jain 83, Carstensen 88].
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Figure 4.14 First order isotropic auto—binomial model. Parameter

values are: a = 0, b = 0 (random noise). The black proportion is
50%. From [Carstensen 88].
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Figure 4.15 First order isotropic auto—binomial model. Parameter
values are: a = —2.4, b = 1.2. The black proportion is 49.47%.

From [Carstensen 88].
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Figure 4.16 Second order isotropic auto—binomial model. Parameter
values are: a = —1.9, b(1,1) = 0.1, b(1,2) = 0.1, b(2,1) = 1.9,
b(?,Q) = 0.075. The black proportion is 53.4%. From [Carstensen
88] . '
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Figure 4.17 Second order isotropic auto—binomial model. Parameter
values are: a = 0.16, b(1,1) = 2.06, b(1,2) = 2.05, b(2,1) =
—2.03, b(2,2) = —2.10. The black proportion is 50.9%. From
[Carstensen 88].
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CHAPTER 5
LINEAMENT INTENSITY ANALYSIS

5.1
5.2
5.3
5.4

Introduction
Visual Lineament Analysis
Filtering

Estimation of Local Direction
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5.1 Introduction

One of the most widely used applications of Landsat data in mine-
ral exploration and geological mapping is structural interpreta-
tion expressed as different types of lineament analyses. In geo-
logy a lineament may be defined as a mapable simple or composite
linear feature of a surface, whose parts are aligned in a
straight or slightly curved relationship, and which differs
distinctly from the pattern of adjacent features and presumably
reflects a sub—surface phenomena. The surface features making up
a lineament may be geomorphic (caused by relief) or tonal (caused
by contrast differences). Lineaments are well expressed on Land-
sat images and the regional coverage. Many investigations con-
cerning the possible relationship between Landsat lineaments and
ore deposits have been performed, and the results indicate that
lineament analyses can be effective guides to some ore deposits,
cf e.g. [Marshall 79]. Normally, such lineament analyses are
performed as ordinary photogeological analyses. Such a procedure
is extremely cumbersome and time consuming and with the improved
spatial resolution of the new generation of land observation
satellites and shuttle based scanners (SPOT, ERS, MOMS) regional

analyses will be next to impossible to do.

In this chapter a scheme for automated identification and
processing of lineaments in digital images is presented. The
lineaments will be of interest of their own. However, they may
also be considered as macro textures, and they be used as
features in classifications. The lineament scheme in this chapter

is based on two basic assumptions:
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(1) All types of linear features — also human made ones — are of
interest.

(2) It is the processed lineament maps which are of interest.

The first step in the procedure is a high pass filtering based on
a data dependent filter. Then the image is transformed to a
binary image where the resulting positive pixels represent the
upper 15-25% fractile of the filtered values. After skeletonizing
a local direction of the positive pixels is calculated for each
positive pixel, and finally density maps are obtained for

selected directions by counting within a moving window.

The obtained results are compared with independently obtained
results from a traditional (manual) procedure. The study area is
around Igaliko, South Greenland. A preliminary description of the

results is given in Conradsen et al. [Conradsen et al. 86c].

5.2. Visual lineament analysis

In the visual procedure linear features were mapped on photo
prints of Landsat images at a scale of 1:100,000. In total 924
linear features of a length less than 20 km were identified. They

wvere digitized and analyzed statistically.

The histogram diétribution wvas detrended with a sinusoidal curve
which was fitted by using least squares. Significant lineament
directions are identified by looking on '"runs" above and below
the trend curve. The results was a subdivision of the histogram

into 10 lineament direction classes. The results are shown in
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figure 5.4.

For each of these classes lineament density maps were produced.
For two of the interesting directions the result is presented in

figure 5.5.
The éubdivision also formed basis for construction of rose dia-

grams in subareas. A more detailed description of the work is

presented in [Conradsen et al. 86b].

5.3 Filtering

In this section we shall shortly describe the filters that have

been used. A more detailed description is given in [Conradsen and
Nilsson 87]. The output from the filters is simply the difference
between a minimum mean squared error prediétion of the value at a

given pixel and the original value, i.e.
X(1,3) - X(1,3)

where X(i,j) denotes the value at pixel (i,j) and the circumflex
denotes predicted value. The predictions are based on pixels
(u,v) satisfying

2

@< (p-1)2+ (v-3)?% <p? .

Such a filter will be called a COI(p,q) filter.
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The minimum mean squared error property relates to the
autocovariance function of the image when considered as a random
field. It is estimated by empirical correlations giving
c(ij) =2 5% (x. . = %) (Xops wos — %)
»J N r s IS r+i,s+j

where

r,s

o
I
=
= M
» M
o

and N is the number of observations used in the estimations. It
can be shown that

-~

X. .=EX; .| X
B(X 51

2
1,] )

2 (2 (2
pp @ < ()7 + (=5)7 < p

i.e. the conditional mean of Xi j given the pixel values from the
b

predictor set.

In table 5.1 is presented the filter weights of a C0I(5.1,2.8)
filter for band 7 of the Landsat 3 MSS scanner. On figure 5.2 is
seen the transfer function of the filter and on figure 5.3 is
seen the residuals of the output of the filter tresholded above

the 85% fractile. The structure of the area is clearly seen.
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i ) 0 1 2 3 4 5
5 61 98 * * * *
4 —47 =50 10 85 * *
3 11 27 —4 —43 72 *
2 * * -15 17 4 *
1 * * * -14 -17 78
0 -1000 * * -0 =5 6

-1 * * * -2 —26 78

-2 * * 28 -10 -2 *

-3 11 * —42 —43 75 *

—4 —47 -32 24 90 * *

-5 61 90 * * * *

Table 5.1 Filterweights hi . for i = -5,...,0,...,5, j =0,...,5

for C0I(5.1,2.8) filter. The weights for negative j's are given
by symmetry around (0,0).

5.4 Estimation of Local Direction

The filtered image is skeletonized in order to reduce the width
of lineaments to one pixel. On the basis of the skeletonized
image, a local direction in each pixel with a data value is
estimated. The principle idea is — for each pixel that is a
lineament candidate — to compute the first principal component
based on all lineament candidates in a neighborhood of the center
pixel. Due to the rectangular nature of the grid, this will
normally cause a bias. By means of results from 'geometric'

probability it should be possible to give analytic adjustments
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for this bias. We will, however use empirical results based on an
evaluation of the importance of different sizes and shapes of the
neighborhood and of different weights that are multiplied on the
coordinate values. We call the combination of neighborhood and
weights the kernel of the local estimation procedure. In figure
5.7 and 5.8 we show the results obtained with eight different
kernels. It was obvious that kernels with a small diameter give a
bias towards 0°, 45°, and 135° (mathematical definition of
degrees i.e., 0° equals the abscissa axis). Furthermore it is
seen that a circular neighborhood gives less bias than a
rectangular. The weight functions that have been evaluated are
uniform, bell-shaped, and (half)torus—shaped. It follows that the
torus shaped weights and bell-shaped weight decrease the bias
substantially compared to the uniform weights. Based on the
results for the smaller neighborhoods it was decided to use the

torus weights in the sequel.

In this way we may determine a local direction for all the
'positive' pixels in the thresholded version of the high pass
filtered image by means of the modified first principal component
directions. For different directions we can now estimate a local
directional intensity simply by counting in a neighborhood the
number of pixels having the considered direction as first

principal component direction.
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Figure 5.4 The histogram of the distributions of lineaments
directions for the visual and for the automated analysis.

The histogram is shown in figure 5.4, and there seems to be a
good correlation between the results from the manual and the
automated procedures. The local direction densities are shown in
figure 5.6 for the same angles as were used in the manual
analysis presented in figure 5.5. Again it follows that there is

a good agreement between the two results.

Skeletonizing was performed using a modified version of a set of
skeletonizing routines from the SPIDER package [Tamura 83]. The
local direction and density programs were written in standard

fortran.
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¥

Figure 5.5 Density maps of linear features for two significant
directions based on the visual analysis. The area in the frame is
also analyzed automatically (figure 5.6).
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Figure 5.6 Density maps of linear features for the
directions as shown in figure 5.5.
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Figure 5.7 Histograms of the estimated local directions for a
random binary image. The upper part corresponds to a squared
support for the kernel with uniform weights, the lower part to a
circular support with uniform weights.
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6.1 Introduction.

In this chapter we shall consider classical Bayes classification
as opposed to contextual classification to be described in
chapter 8. The problem is here that of classifying a pixel into
one of two (or more) classes using some directly measured or
derived feature not taking into account the spatial structure of

an image.

The quality of the resulting classified image is often poor in
the respect that one has a number of "stray'" misclassified pixels
in areas one would expect (or rather: would wish) was smoothly
segmented. The last parts of the chapter consider different
techniques to obtain this. One possibility is to use majority
type filters which will replace the pixel under consideration
with the majority class within some predefined neighborhood.
Another possibility is to assign a certainty measure to the
classified pixel so one can assess the quality of the
classification in that way. A third approach is a hierarchical
classification scheme were the idea is to classify the image in
two or more steps. In the first step the image is subclassified
into say land and water. The second step classifies the water
into fresh and salt water and land into barren rock and vegetated
areas and so on. In this fashion one can use different features

for the different steps and thereby improving the classification.

6.2 Bayesian Classification.

The subject in this section is the 'classical' discriminant
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analysis. A more detailed exposition may be found in most books
on multivariate statistical analysis as e.g. T.W. Anderson

[Anderson 84].
Consider the classes (populations)
My sees M

On the basis of p features (or variables) we want to classify

each pixel as belonging to one of the classes Ty sees Mo

For a given pixel we have measured the p dimensional feature

vector

If the pixel belongs to TS then it has the frequency function
£i(x).

Assume we have a loss—function as given in table 6.1, and assume

we also have knowledge of the prior distribution
g("ri) - pi, i=1, o eo g k.
Then the pixels discriminant score is defined as:

S;(x) = 8, = —[py£,(OL(1,1) + ... + pf (OL(k,1)]
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Choise
7r1 7!-2 ° e e 7rk
Ty 0 L(1,2) oo L(1,k)
True m, L(2,1) 0 coe L(2,k)
state
e L(k,1) L(k,2) cen 0

Table 6.1 Loss function for letting pixel belong to TS when
true class is LEE )

Note, that the loss of choosing the correct class L(i,i) is O.

This means there are no terms containing pifi(x).

The posterior probability for T, is

p f,(x) _pf (%)
pf (x) + ... + pE(x) ™ h(x)

k(m |x) =

It is seen that S: is a constant (~h(x)) multiplied with the
expected loss in the posterior distribution of 7 by choosing the
i'th class. The multiplicative factor —h(x) is negative, so the
Bayes solution is to choose the class with the maximum

discriminant value, i.e. choose T, if

If we simplify the problem by assuming that the losses L(i,j) are

equal (i # j) we have

* *
Choose T instead of ”j if Si > Sj
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that is if

"-(5 p f (x) —pif.(x)) > _(IE/ p i, (%) - pii;(x) &

Pifi(x) > ijj(x)
In other words we may choose, as discriminant value
S! = pifi(x)

The Bayes rule in this case is to choose the population with

maximum posterior probability.

If the pi's are unknown or impossible to estimate it is customary

to set the priors equal and choose the discrimant value
Sg = fi(x)
i.e. select the class with the maximum observed probability.
We now turn to the Bayes solution in the case with Gaussian
distributions and equal losses and unequal covariance matrices,

i.e.

L N(l‘i 921 ), or

f.(x) = 1 1 xp(— 1 (x=p.) 37 (x—ps.
0 = o e R § o) T )

for i =1, ... , k.
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A monotone transformation will not affect our decision rule so we
will take the logarithm of fi° This gives (apart from the common

factor (2#)~p/2)
S! = — ilog(detS.) — L(x—p.) '3t (—p:) + lo
iT 732 i) T g\EAy) sy R & Py

If we look at the difference between Si and Sj we obtain a
quadratic form and the discrimination is therefore called a

quadratic discrimination.

Now consider the Bayes solution in the special case with Gaussian
distributions and equal losses and equal covariance matrices. If

we assume equal covariance matrices the factors
- %log(detE) er%x'ﬁ_lx

are common and can be neglected. The dicriminant value is then

reduced to

This function is linear (affine) in x, and the discrimination is

called a linear discrimination.

As an example of the ordinary classification with equal (linear
discrimination) and unequal covariance matrices (quadratic
discrimination) consider the results in figures 6.1 and 6.2
(equal covariance matrices) and figures 6.3 and 6.4 (unequal

covariance matrices).
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The results are clearly different and it is difficult to
determine which is the better. On one hand it may be argued that
using different covariance matrices is most satisfactory. On the
other hand the equal (pooled) covariance matrix approach is
certainly more robust since all observations in the training sets
contribute to one pooled covariance matrix. The contribution to
the covariance matrix from each class can be weighted either by
class or by pixel. In this case the weighting was by class i.e.
the individual covariance matrices are just averaged. The basic
statistics are listed in table 6.2 with the pooled correlation

matrix at the bottom.

The computations were done on the GOP-302 using the standard
classification software. The results were in part checked by

using PROC CORR from the SAS package [SAS 85a].
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Water nobs=11372 Intrusives nobs=5725
B4 B5 B6 B7 B4 B5 B6 B7
B4 1.00 1.00
B5 76 1.00 .92 1.00
corr B6 .56 .62 1.00 .73 .78 1.00
B7 .31 .36 .33 1.00 .49 .54 .89 1.00
mean 14.8 7.5 1.12 .01 19.3 22.0 24.2 10.0
sdev 1.31 1.41 1.12 .29 2.15 3.08 3.46 2.71
Granite nobs=8231 Barren gran. nobs=4191
B4 B5 B6 B7 B4 B5 B6 B7
B4 1.00 1.00
B5 .72 1.00 .95 1.00
corr B6 .31 .44 1.00 .82 .87 1.00
B7 .20 .33 .93 1.00 .62 .68 .87 1.00
mean 15.5 16.9 26.7 15.7 19.3 22.0 24.2 10.0
sdev 1.04 1.69 3.23 3.45 2.15 3.08 3.46 2.71
Dolerite nobs=13277 Pooled
B4 B5 B6 B7 B4 B5 B6 B7
B4 1.00 1.00
B5 .88 1.00 .89 1.00
corr B6 .71 .62 1.00 .63 72 1.00
B7 .67 .36 .33 1.00 .44 .55 .91 1.00
mean 13.9 14.3 25.3 15.2
sdev 1.48 2.77 5.59 5.31 1.77 2.61 3.70 3.29

Table 6.2 Basic statistics for training areas in the Igaliko
scene.
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6.3 Postprocessing.

Postprocessing is a general term for processing techniques that

are applied to an already classified image.

The problem with the ordinary classification schemes (e.g. as in
6.2) is that one does not take the spatial nature of the image
into account. The problem is of a similar nature as that of using
principal components on image data. If the classifier is
operating on a rock-pixel we would find it likely to have a rock
pixel on each side of it. This is not taken into account when

using classical classification schemes.

There are several ways of getting around this problem. In this
thesis we will consider preprocéssing the input data (contextual
and non—contextual features) to a classical classification,
postprocessing the output from a classical classification, and
using a so—called contextual classification scheme. All three
schemes utilize the assumption that nature does not have abrupt
changes, that there is some kind of spatial continuity in an

image .

The classical way of postprocessing a classified image is to
apply a so—called modus— or majority—filter over the image. The
behavior of such a filter is to consider a given neighborhood
around the pixel of interest, to compute the class frequencies
for the different classes in the neighborhood and to assign the
most frequent class to the current pixel. As an example consider

figure 6.5.
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AAAAA
ABBBB .ABB.
AACBB .ABB.
AACCA . AAAL
AAAAA .

Classified image Postprocessed with

3x3 modus filter.

Figure 6.5 Area processed by a 3x3 modus filter. Left: input,
right: output.

It is seen that small speckles of classes within a homogeneous
area of another class are removed. This is the case with class

C which is completely disregarded in the end result. Ambiguities
can result when 2 or more classes have the same count. The
simplest way of dealing with this is to always output the first
or the last class considered as this is easy to implement on a

computer. However the ambiguity introduces an unwanted bias.

On figure 6.6 is shown the result of applying a 3x3 modus filter

on the classified image on figure 6.4. Mosf of the "stray'" pixels
have disappeared and in most areas there is a '"clotting" effect.

This produce can in turn be iterated.

On figure 6.7 is shown the effect of using a very large modus

filter (15x15). The "clotting" is even more pronounced.

The computations were done using a program written for the

GOP-302.
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In the example in figure 6.5 it may seem unreasonable to remove
class C because it appears as a contiguous area. This can be
avoided by implementing a modified version of the filter called a

logical smoothing filter [Townsend 86].

The basic idea in logical smoothing is to apply 2 rules to the

smoothing.

1. If the central pixel is connected to another pixel (choice
between 4— and 8—connectivity) in its neighborhood do not

use the second rule.

2. If the first rule did not apply, output the result from a

modus filter.

The steps above can be applied iteratively to the output image

until no further changes occur.

4—connectivity is obtained when the central pixel is connected to
its N, E, S and W neighbors. 8—connectivity is obtained if also
the NE, SE. SW and NW neighbors are included. As a curiosity it
can be noted that for a binary image a 4—connected foreground

implies an 8—connected background and vise versa.

Townsend does not describe the filter for other window sizes than
3x3. Other authors have described logical smoothing filters e.g.

[Duda and Hart 73].
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AAAAA . .

Classified image Postprocessed with

logical smoothing

Figure 6.8 Area processed by a logical smoothing. Left: input,
right: output.

Townsend's filter would produce the result shown in figure 6.8

using same input as in figure 6.5.

That is, except for the boundary output, the input pixels are
unaltered as they are all connected to at least one of their own

kind.

The result of logical smoothing the classified image from figure
6.4 is shown in.figure 6.9. Compared to figure 6.6 one notices
that logical smoothing has gotten rid of "stray" single pixels.

The procedure can again be applied iteratively.

The computations were done using a program written for the

GOP-302.
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6.4 Reject class.

Another improvement is the introduction of a reject class. By
this we mean a null class consisting of pixels of which we are

not very certain or that we do not want to classify.

Consider a quadratic classification as in figure 6.10 where we
are looking at the decision boundary in feature space for two
classes. It is seen that near classes A and B we may have
reasonable classifications, but class A has part of its
decision—area on the other side of B. This is consistent with the
quadratic classification rule, but nevertheless a bit peculiar

and maybe an undesired side—effect of this type of model.

If we restrict each class to a certain distance (measured in
units of Mahalanobis distance) from the class-mean we have a
situation as in figure 6.11 where the classes are restricted to
the shaded areas and the pixels which may fall outside are

considered as falling into the reject—class.

This feature has been implemented on the GOP-302 and examples of
the results obtained can be seen on figure 6.12 where all pixels
have been classified as belonging to some class and figures 6.13,
6.14, 6.15 and 6.16 where the pixels falling outside a distance
of 20, 10, 5 and 3 Mahalanobis distances from the mean of the

assigned class are rejected (black).

There is no training class for ice/glacier or water and it is
interesting to note that the ice/glacier on the upper right and

the lake on the lower left fall into the reject class at a very
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Figure 6.10 Decision areas for classes A and B for a quadratic
classification problem.

early stage (figure 6.13, Mahalanobis distance ~ 20) and that all
water and ice is rejected on figure 6.14 (Mahalanobis distance ~
10). As the accepted distance gets smaller (figures 6.15 and

6.16) even the areas with shadows are rejected.

Since there are as many as 20 different training sets in this

classification no attempt has been made to provide a legend.

The training sets are as defined in figure 3.39.



168

6.5 Hierarchical Population Structure.

Instead of classifying all classes in an image at once one may do
this in two or several steps. In this way one would classify all
pixels as belonging to one major class e.g. water, land and ice.
In a later step one classifies the water pixels into e.g. salt
water and sweet water, the land into barren rock and vegetated
areas, the ice into ice and snow. In a further step the barren
rock may be classified into one of several types of rock e.g.

granite, basalt, slate and so on. The principle is shown in

figure 6.17.
granite
—— barren rock basalt
— land —— slate
——— vegetation
——— sweet water
whole scene —1— water —
——— salt water
e 1 CE
— jice e
e Snow
step O step 1 step 2 step 3

Figure 6.17 Example of a hierarchical classification scheme.

The advantages of this scheme are numerous. Firstly very few
features in each step will often suffice. Secondly one can use

the optimal features for each branch in the hierarchy. In
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[Conradsen and Gunulf 86] an example is shown where the

misclassification rate decreased from 8.987% to 0.55%.

The disadvantages are that the classification requires two or
more steps, and perhaps the greatest disadvantage is that once a
pixel has been misclassified in an earlier step there is no "way
back'". Say a basalt pixel in the tree above in the first step was
classified as water, then it can only be classified as sweet

water or salt water in the next step.

It may be tempting to try to design a reject class scheme and
reclassify all pixels that fall into the reject class in some

way .

For the Ymer B scene an attempt was made to utilize an
hierarchical classification scene. There are 20 training sets in
the scene and the average correct classification is 51.17%
(measured on the training sets). This seems unsatisfactory and it

was desired to try a hierarchical classification scheme.

The first step is to determine which classes should be merged
together in '"superclasses'". To determine this a clustering
technique was used. The estimated canonical mean vector (as
described in chapter 3) was used as input to a clustering
algorithm. Only the first three components were allowed to
influence the computations. The result can be seen on figure 6.18
which shows a dendrogram of the output. The dendrogram can be
read top—down or bottom—up. Read bottom—up it indicates at which
level classes are merged e.g. classes 14 and 15 are the first to

be merged etc. The classnumbers can be interpreted via table 6.2.
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: dolomite (white/yellow)
: limestone (black/grey)
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shale (red/brown), barren

delta + young alluvial fans

: limestone
: shale (red/yello
¢ quartzites
: quartzites éwhite)

: quartzites

: quartzites/shales

: shales (red)

: quartzite (yellow/brown), partly shaded

: dolomite(white)

: glacial deposits

: shale (red/yellow), sunlit
: quartzite
: limestone

yellow/brown), sunlit

black)

black/grey)
w%, partly veg. covered

red)

bedgroup
bedgroup 8
bedgroup 15
bedgroup 12
old alluvial fans
tillite
bedgroup 10
bedgroup 13
bedgroup 9
bedgroup 14
bedgroup 10
bedgroup 2
bedgroup 4
bedgroup 6
bedgroup 1
bedgroup 7
bedgroup 13
moraine
bedgroup 3

: shales (black)

Table 6.2 Geological description of the different training sets.
The "superclasses'" are marked with A, B and C.

6

7 12 13 14 15 10 11 17 18 16 19 20 4 5

Figure 6.18 Dendrogram of clustering of Ymer 0 training sets.

"Superclasses" are marked with A, B and C.
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The dashed line in the middle of figure 6.18 is where it was
decided to stop clustering. The number of classes for the first
step dropped in this way from the original 20 to 10.

It is interesting to note that Superclass A consisting of classes
13 and 16 have the remarks "sunlit" in the geologists notes.

In the same way superclass B consisting of classes 10, 17, 4, 1
and 6 are marked mostly, as '"shale". Classes 14, 5, 7, 9, 12 and
18 comprise superclass C and are marked mostly as '"chalks" and

"quartzites". This consistency gives a certain optimism.

Clustering was performed using PROC CLUSTER from the SAS package
[SAS 85a].

Feature selection in step 1 was done by the stepwise
Jeffreys—-Matusita algorithm described in chapter 7.

The optimal band selection operating on the original bands gave:
1, 3 and 7. This seems a logical choice. The first step must be a
step where very different classes are to be discriminated between
so one would expect a selection of spectrally very different
bands. For comparison it is noted that the band selection for an
ordinary classification was 3, 4 and 7. Step 2 is to reclassify

superclass A, B and C into their respective component.
The optimal selection of bands were
for A : 1, 3 and 4

for B : 3, 4 and 7
for C : 3, 4 and 5
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It is clearly seen that the band selection for A is shifted
towards the blue, for B it is shifted towards the infrared and
for C it is intermediate. This is consistent with A being
"sunlit" and B being '"shale'". For C the band combination is not
so straightforward.

Unfortunately the classification accuracy rose only minutely from
51.17% to 51.847% and even then only after having adjusted the
prior probabilities for the "superclasses". 0On the other hand the
result is 76% and 72% correctly classified depending on the
priors for step 1 (with 10 classes) in the hierarchical scheme.
The confusion matrices figures 6.19, 6.20 akb and 6.21 a&b are
shown in graphical form to ease the interpretation because of the
large number of classes. The squares on the diagonal of the
figure should be as big as possible indicating correct

classification.
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Figure 6.19 Confusion matrix in shaded form for classification of
the Ymer @ scene. The average of fractions of correctly
classified pixels is 51.17%
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Figure 6.20 akb Confusion matrix in shaded form for
classification of the Ymer @ scene. The 20 original classes have
been merged into 10. The average of fractions of correctly
classified pixels is 76.087 for figure a (equal priors) and
72.217% for figure b (priors proportional to number of merged
classes in superclasses).
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CHAPTER 7
FEATURE SELECTION
IN
DISCRIMINANT ALGORITHMS

7.1 Introduction

7.2 Feature Selection in the Linear Case
(F—test)

7.3 Feature Selection in the Non-Linear Case

(Jeffreys-Matusita's Distance)
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7.1 Introduction.

In some of the past chapters one may have noticed that not all
the possible features have been used for the discriminations. If
one has experience in classifications then one will know the
problem that given a (large) number of features, it is not always
-a good idea to include all features in a classification. If one
includes features sequentially then the outcome may be that the
misclassifications decrease for each of the first few features
included in the analysis, but then the number of
misclassifications increase after a certain number of features
have been included. Another problem may be that one has numerical
problems in computing the determinant or inverting the covariance
matrices. Both these problems can be described as results df
overfitting the data. If the number of dimensions is very large
then the data can not span the feature space properly and the
model is not valid. If on the other hand highly correlated
features are included, the covariance matrix becomes very badly
conditioned.'Apart from this the cost of computing is usually
proportional to the square of the number of features included,

which is yet another problem.

In this chapter we will describe two useful techniques for
selection of the "best" features for classification. The first is
a method used extensively in standard computer—packages as BMDP7M
[Dixon 85] and is useful for linear discriminant analysis, the
other has been developed by the author for use in quadratic
discrimination. Both methods are of a '"stepwise'" nature and can
be used for finding say the best single feature for

discrimination, the best pair of features for discrimination etc.
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7.2 Feature Selection in the Linear Case.

A very natural and statistically sound method of finding the best
features for classification in the linear case is based on the

F-test statistic for extra information.

We measure the variables Xyy ooos xp and wish to test if we can
drop the last q of the p variables from the discrimination. We

have the\separation

1

*p—q *1

*p—q+1 "2,
L %p ]

Separating the mean vector and variance covariance matrix in the

same way give

(1)
#y s | B Fi2

T "1(2) ) Y91 oo

We now compute Mahalanobis distances between the populations from
both the case where we have full information (all p variables)
and the case where we have reduced information (dropped the last
q variables) assuming n, and n, observations from the populations

Ty and oy«



180

We obtain
2 _ . ) 1,
DS = (g — )" B (g = ing)
and

2 = @ - wy g @t - wlt)

Then a test statistic for the hypothesis: The last q variables do.

not contribute to a better discrimination is

—p— 2
) n,+n,—p-1 ° n, n, (Dp Dp—q)
a (:ni+n2)(n1+112—2)n1n2Df)_q

If the hypothesis is true, then
z € F(q, ny+ny,—p-1).
The BMDP7M computer program [Dixon 85] has a stepwise algorithm

which incorporates the above mentioned F—test statistic. Roughly

the algorithm is as follows:

1. Start with no variables included.
2. Compute the marginal F-test statistic for the non-included
variables.

3. Include the variable with the largest F—value larger than
F—to—include.

4. Compute the marginal F-test statistic for the included
variables.

5. Exclude the one with the smallest F—value that is smaller
than F—to—exclude.

Repeat steps 2 to 5 until no more variables can be included or
excluded.
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By setting F—to—include > F-to—exclude it can be proved that one

will not loop infinitely.

The BMDP7M program has been used in the following example where
we will describe the techniques and results of a discriminant
analysis on a joint data base from the southern part of Greenland
(see inset on Figure 7.2) and is about 20,000 km? . The climate is

subarctic and vegetation is found only in the lower lying areas.

The data used in this example include Landsat data and geolo-
gical, geophysical, geochemical and radiometrical data. The area
is covered by 4 Landsat Scenes and in total 8 tapes have been
used for the investigation. In addition to the tapes,
photographic prints of Landsat images at a scale of 1:1,000,000

were used for structural analyses.

The Landsat images were chosen as the data set onto which the

other data sets were registered.

The geometrical correction was based on 18 fixpoints recognizable
on the Landsat images as well as on the available topographical
maps 1:250,000. The correction involved a resampling of the
pixels from a 79x57 m? size to a 50.8x50.8 m? size. The odd
format was chosen in order to make it possible to produce maps in
the same scale as ordinary topographical maps with the Applicon

plotter.
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Geochemical data were available from the South Greenland regional
uranium exploration project [Armour—-Brown et al. 80, 82, 83].
This project has analytical data for 20 elements from more than
2,000 sample sites all over the area. Among the 20 elements the
following were selected for further treatment in the present
project: K, Rb, Sr, U, Nb, Y, Ga and Fe in stream sediments and U

in stream water.

It was chosen to bring the geochemical data on to the same grid
as the Landsat data using kriging followed by spline
interpolation. The calculated variograms for the geochemical
variables show a very large range of influence lying between 20
and 40 km. This indicates that the variation is due to 'global'
changes and thus justifies interpolation between samples
separated by distances in the km range. Concentration values were
estimated for a grid with side length 1 km by means of panel
kriging (see e.g. [Journel and Huijbregts 78]). In order to avoid
a chess board effect in the subsequent graphical displays, a
further 'smooth' interpolation is needed from the 1x1 km? grid
down to the Landsat grid. By means of bicubic splines, values for
a 'Landsat grid', i.e., with pixel size 50.8x50.8 m? have then
been determined. The spline programs used are from the IMSL

library [IMSL 80].

Radiometric data consisted of helicopterborne gammaspectrometric
measurements and basically the flight lines followed the topo-
graphic contours. The data include measurements of U, Th, K, and
total concentrations and in total 300,000 recordings were avail-
able. In order to get an interpolation that preserved the ob-

served maxima, the maximum value within a grid of size 1x1 km?
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was found. Based on these maxima, a minimum curvature interpola-
tion by the method of Briggs [Briggs 74] was performed. This gave
values for all grid points. From the 1x1 km? grid, values in the

Landsat grid were obtained by bicubic spline interpolation.

Aeromagnetic data were available as 11 contoured map sheets
(scale 1:100,000) covering the main part of the area. In order to
be used for the present purpose, the contour maps were digitized
manually and subéequently converted into image format by an in-
terpolation procedure. From the contour plots, values in a

1x1 km? grid were obtained by means of Briggs' method

[Briggs 74]. The values in the Landsat grid were then found by

the bicubic spline interpolation.

The data described above are the raw data used in the analyses.
Besides this, spectral anomalies and structural information de-
rived from the Landsat imagery were used. The spectral anomalies,
which represented oxidized zones, were enhanced by techniques of
ratioing, factor score analysis and classification [Conradsen

et al. 84, 86a]. The structural analysis consisted of visual
mapping of lineaments on photographic prints (scale 1:1,000,000)
of Landsat images [Conradsen et al. 86b]. In all 924 lineaments
were mapped and subsequently digitized. By a statistical analysis
these lineaments were divided into 10 subpopulations each
corresponding to a main direction (see chapter 5 on lineament
intensity analysis). For each subpopulation a concentration map

was determined and used in some of the following analyses.
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Discriminant analysis of joint database

After the inclusion of the geophysical and geochemical variables
in the database and the generation of new variables from the
original Landsat imagery such as factor scores, ratios, lineament
density etc. the total dimension of the variable containing the
available information on each pixel is around 40. It is very dif-
ficult to use all these variables in an ordinary multivariate
analysis aiming at locating zones with a high potential for
mineralizations. In the sequel we shall describe an attempt to
design a scheme capable of extracting the relevant joint

information.

The basic philosophy is that we divide the entire area into
squares of size 5x5 km?. Among those a number of squares are
selected in such a way that they represent the following popula-

tions

Min. centr.: A square situated entirely within a uranium
mineralized area.

Min. marg. : A square situated marginally to a uranium
mineralized area.

Bar. centr.: A square situated entirely within a barren area.

Bar. marg. : A square situated marginally to a barren area.

By Barren areas are meant areas which our present knowledge

suggests are barren.
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The number of squares from each of those populations are

Min. centr. : 17
Min. marg. : 21
Bar. centr. : 14
Bar. marg. : 5.

Each of the squares contains 10,000 (resampled) Landsat pixels.
This number is so big that one cannot retain all individual
values in the discriminant analysis. Instead a number of

'"information preserving' statistics are defined. Those are

Minimum and maximum
1%, 5%, 957% and 997 quantiles
Mean and median

2 x standard deviation.

It may look like double work first to interpolate the geochemical
and geophysical data down to a pixel size of 50.8x50.8 m?2 and
then degrade the data to a size of 5x5 km?. However, the
above—mentioned quantities contain information on the local

gradients etc. which may not be found easily in other ways.

Furthermore the percentage of land within each square was
calculated. The information on the lineaments was given as the
intensity of linear features in each of the ten intervals which
represent the main directions of the linear features in the area
[Conradsen et al. 84, 86b]. This gave in all 240 variables on
which a number of discriminant analyses were run with the BMDP7TM

[Dixon 85] program Stepwise Discriminant Analysis. Based on these
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computations and on the geological significance of the variables
19 variables, were selécted as base variables. Using the BMDP7M
program once more gave the results shown in Table 7.1. Two sets
of results, corresponding to inclusion and exclusion of the
detrended aeromagnetic values, are given because the coverage of
the aeromagnetic data is incomplete in the eastern part of South
Greenland. The results obtained without using the aeromagnetic
values will be applied in the subsequent classifications for that
part of Greenland. From Table 7.1 it is seen that the best
discrimination between the data from the training sets is made
from the U maximum values. In Figure 7.1 the canonical
discriminant functions based on the training sets are shown, and
it is seen that the two groups, i.e., the mineralized group and
the barren group, plot in well defined and separate clusters. In
all 1084 squares had to be classified. In order to avoid an
overoptimistic result the prior probability of having a Min.
centr. square was put equal to 1%, and the remaining 997 was

distributed uniformly over the three remaining classes.

Table 7.1 shows that the second and the third best discriminating
parameter are respectively the 17 quantile of the Landsat MSS
band 4 and the 997 quantile of the factor 4 scores. A possible
explanation for this could be that the low values of band 4
depict shadow areas which may occur in connection with steep
topographic slopes. The geologic knowledge of the area (see
below) indicates that some types of uranium mineralization are
connected with NE-SW to ENE-WSW fractures and faults which are
expressed in topographic linear features. There may, therefore,
be some correlation between uranium mineralizations, some topo-

graphic features and the low digital values of MSS band 4. The
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factor 4 scores are known from other investigations [Conradsen
and Harpsth 84] to depict color anomalies which are known to
represent iron—oxide stained rocks. Such staining is found in at
least two cases in association with the uranium mineralized areas
used as training areas. The 997 quantile of the factor 4 score
therefore could have significance as to the classification of

uranium mineralized areas.

The evaluation of the classifications are given in Table 7.2. We
see that there are no misclassifications between the Min. and the
Bar. groups whereas there are several misclassifications within

these.

The evaluations were done by reclassifiying the training areas in
two ways. The first is the ordinary reclassification method, the
second is the so—called jackknifed evaluation. Jackknifing is a
technique where the observation to be reclassified is not used
for estimating the discriminant functions. This is repeated for
all observations to be evaluated. Jackknifing will usually result

in more misclassifications but also a more honest evaluation.

The discrepancy between the ordinary and the jackknifed evalua-
tions is not big, but could indicate an overfitting leading to
exclusion of some of the variables. This is the topic for further
investigation. We see that 69 squares are classified as Min.
centr. The total result of the classification is shown in Figure

7.3.
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Conclusions

In the combination of different types of data sets one is left
with the problem of the differences in resolution of the various
sets and the problem of a very high dimensional dataset where it
is not obvious which features are to be included. In the present
example we have seen that data with a coarse resolution
(geochemical and geophysical data) can be successfully
interpolated down to a fine resolution such as that of Landsat
MSS imagery in a two step procedure. The first step includes
panel kriging (for the geochemical data) and minimum curvature
interpolation (for the geophysical data) down to a grid size of
one by one km. Further interpolation down to Landsat MSS size is

then accomplished by a bicubic spline interpolation.

The information on mineralizations is regional. Therefore it is
the goal to find areas of a reasonable size that show a potential
for mineralization. It is, of course, important how the size is
fixed. There is however no obvious way of doing this, and the
size 5x5 km? was chosen more or less arbitrary. Then for each of
the 5x5 km? squares, new variables, characterizing the statistics

of the 10,000 pixels included in the square, were defined.

The stepwise discriminant analysis program BMDP7M has been used

for the feature selection and classification.

The squares classified as mineralized areas fall into two groups.
One group includes squares which are situated in juxtaposition to
the training areas. This is taken as an indication that the clas-

sification is geologically meaningful, because many of the data
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types we are dealing with only vary significantly on the regional
scale, and it is therefore likely that pixels next to training
areas would be statistically comparable with these. The other
group includes squares which indicate completely new target areas
for future uranium exploration. One area shows all the geological
potentials for uranium mineralizations, except for the presence
of uranium in geochemical and radiometric measurements. Future
investigations may show whether the area is significant from a
uranium exploration point of view. The other area has the
geologic potentiél as well as the presence of uranium and this

area may constitute a future exploration area.

As a general conclusion it can be said that the shown combination
of several types of data sets and analysis of these are a
fruitful undertaking which can result in locating new geologic

exploration areas.
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Variable F-step O | Step where F—to—enter
entered

Band 4 17 quantile 9.82 2 7.98

Band 5 997 quantile 0.91 19, 18 0.20, 0.34
Band 7 Maximum 5.88 17, 13 3.60, 2.08
Q4/7 Minimum 0.71 18, 17 1.30, 1.12
05/6 95% quantile 0.60 16, 12 1.43, 1.80
F2 2 x std. dev. 0.67 9 2.22

F3 Minimum 2.52 5 5.72

F4 997% quantile 6.48 3 9.71
Lineam. dens. 70 210 6.96 15, 15 1.55, 1.87
Lineam. dens. 220° 280 0.98 10, 7 2.17, 4.87
Lineam. dens. 290, 430 7.06 14, 15 1.27, 2.49
Lineam. dens. (153%, 1760 3.67 13, 10 4.27, 6.14
Magn. detrend. median 9.28 7 12.82

Fe minimum 1.01 8, 11 4.17, 3.33
Rb 5% quantile 7.14 4 4.82

Sr minimum 1.89 6 4.44

U maximum 10.01 1 10.01

Y median 3.15 11, 8 2.90, 6.67
Mean of 997% radiometric

quantiles 4.63 12, 9 4.43, 4.92

Table 7.1. F-values in step where entered and in step O for the
variables used in the final classification of the squares. The
numbers in the pairs correspond to respectively inclusion and

exclusion of the aeromagnetic values.

From group Classified into group

Min.centr. Min.marg. Bar.centr. Bar.centr.
Min. centr. 5, 4 12, 13 0, 0 o, 0
Min. marg. 0, 3 21, 18 0, 0 0, 0
Bar. centr. o, O 0, 0 13, 13 1, 1
Bar. marg. 0, O 0, 0 0, 2 5, 3
Unknown 69 511 329 175

Table 7.2. Ordinary and jackknifed evaluation of the

classification scheme. The figures in each pair represent the
number of cases classified as shown, the first in the ordinary
evaluation, the second in the jackknifed.
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Figure 7.1. Diagram showing the first and second canonical
discriminant function. The mineralized groups (MINCENTR) and
MINMARGN) cluster to the right while the "barren" groups
(BARCENTR and BARMARGN) cluster to the left.
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7.3 Feature selection in the non—linear case —

Jeffreys—Matusita's distance.

In the search for good features, i.e. features that give a low
probability of misclassifications, other measures of separability
of distributions than the "simple'" F-tests used in the previous

section may turn out useful. We consider again populations
71'1, ceey, 7rR
and have a measurement x with frequency function

f(x|my) = £5(x)

if the observation comes from population ey Often fi will
correspond to a multivariate normal N(gu, Ei)9 i.e.
1

1 "1
f.(x) = exp(— 5(xs—p;) T; (x:—p:))
1 J/det T, 27P A e

The divergence of distributions fi and fj is defined as

D - B(les i) c10n 24P
ij = E(log i9109) | ;) + E(log T%TXT JEDI

In the multivariate normal case we have

= fer [(%-2) (551-5D)]

+ %tr[(zzl~231)(#i“ﬂj)(ﬂi“ﬂj)']
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An alternative to the divergence is the Jeffreys—Matusita

distance (see e.g. [Matusita 66])

15 = [ VHTT - V)2 ax] /2.

We furthermore introduce

pij = jQ VET®) VE;GT dx
and have
2 _ _ s T

The quantity aij is called the Bhattacharyya distance between fi
and fj. In the multivariate normal case we have (see [Kailath

67])

1 ' Ei + Y.4-1
aij = ~log pij =3 (ﬂi_ﬂj) [" 5 'l] (ﬂi—ﬂj)
det[(Z, + Z.)/2]
+ % log 1 J

ydet Ei det Ej

If we replace the population values for means and dispersions in
the two expressions we obtain quantities that are closely related
to the test statistics for assessing whether the means or the

dispersions are the same.
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Relation to test—statistic for equal means:

If we let
El = 22 = X
then
1 "1
aij = g(“i_ﬂj) D (ﬂi”ﬂj) 9

which is essentially Hotellings T2 if we substitute

fus for By
ﬂj for uj
5 for X

Relation to test—statistics for equal covariances

If we let
By = Ky = H
then
[ Ei+2. ]
a5 = % log det 2

VrdetZi detEj
If we substitute

£. for X
¥. for IX.
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and 2i and Sj are estimated from an equal amount of samples

ni=nj=n? we essentially have Bartlett's test—statistic

n-1
detEi detEj

const-

J det; + detEj
for testing equal covariances.

Although the divergence has a longer history of use in pattern
recognition it is not as useful in multiclass discrimination as
the Jeffreys-Matusita distance. This is due to the fact that Dij
overemphasizes the importance of classes that are well separated.

This is not the case with Jij due to the exponential term.

There exists a useful relation between the distance measures and

the total probability of misclassification Pe namely
1
I exp(—Dij/Q) < Pe
1 2 \2 1 1.2
see Kailath [Kailath 67] or Swain [Swain 78a].

In this context we will consider the average Jeffreys—Matusita

distance in the feature selection, i.e.

K K

J._= 3% % J.. . .
ave = ;% 2 iy p(m;) p(73)

where p(wy) is the prior probability for class v.



198

With this definition and utilizing that Jeffreys—Matusita
distance is a monotonically increasing function of the number of
variables (proof of this can be found in Appendix A for the
multivariate normal case) we can define the following algorithm

N = number of variables in subset

Start

include step

include the variable which contributes the most to Jave N
9

exclude step

exclude the variable which contributes the least to Jave,N—l
if Jave,N—l (old) > Jave,N—l (new) then include the
selected variable from include step and go to include

else goto exclude

This algorithm does not take singularities into account and it
does not make checks on whether combinations have been evaluated
before. However the actual implementation takes all these things
into account. The algorithm is implemented in standard fortran
and uses linpack routines [Dongarra et al. 79] for some of the

matrix manipulations.

Example. In table 7.3 are shown the correlation matrices for two
training areas used in a bigger classification of west Ymer 0,

Central East Greenland. It is obvious that the correlation
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B1 B2 B3 B4 B5 B7
Bi 1.00
B2 .80 1.00 Bedgroup 8
B3 73 .97 1.00
B4 .64 .90 .94 1.00
B5 .65 .66 .68 .66 1.00
B7 .63 .64 .69 .65 .01 1.00
B1 B2 B3 B4 B5 B7
B1 1.00
B2 .91 1.00 Bedgroup 12
B3 .88 .99 1.00
B4 .82 .93 .96 1.00
B5 —-.33 -.20 —-.12 .06 1.00
B7 -.39 -.31 —-.24 -.07 .93 1.00

Table 7.3 Correlations between six TM-bands for two training sets
on Ymer . The numbers of observations are 127 and 323.

structure is different between the two populations. In the first
we have negative correlations between the "visible" bands 1, 2,
3, 4 and the "infrared" bands 5, 7. In the second population the
correlation between the two spectral parts is approximately O or
positive (B4 « B5, B7). Feature selection based on ordinary
linear discriminant analysis will therefore not necessarily give
a near—optimal result. In the analyses in the sequel
discrimination between 20 different geological units was tried.
The units were different types of quartzites, quartenary layers

etc.

Beside the six TM bands we also consider the minimum/maximum
autocorrelation factors (MAF) and principal components (PC) as

described in a previous section.
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1
100 X F Rank T Rank
in step O

B1 18.8 5 .8098 8
B2 21.2 5 8237 7
B3 24.5 1 .8473 4
B4 11.2 12 7745 10
B5 15.6 7 .8693 3
B7 19.9 4 .8782 1
PC1 20.5 3 .8359 5
PC2 16.3 6 .8736 2
PC3 71 14 .6609 14
PC4 14.1 9 7073 12
PC5 5.4 15 .5275 16
PC6 5.4 16 .4755 17
MAF1 11.7 11 .8279 6
MAF2 13.2 10 .7996 9
MAF3 7.4 13 7224 11
MAF4 14.6 8 .6670 13
MAF5 4.3 17 .5386 15
MAF6 1.3 18 .3056 18

Table 7.4. 0.01xF value in step O for test of equality of the six
group means (based on linear discriminant analysis) and the
average Jeffreys-Matusita distance for 1 variable.

In table 7.4 is shown the Jeffreys—Matusita distance between the
distributions and the observed F-statistic (x0.01) for testing
equality af group means. There are major differences in the

relative ordering of the variables.

In table 7.5 we have shown the maximum average Jeffreys—Matusita
distances between the six groups based on different sets of
variables. It e.g. says that for 2 features (chosen from all
features) the maximum value of Joye 18 1.08. This number is the

average of the individual distances in table 7.6. Such a table

has been generated for all selections.
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Variables (features)
No feat. Bs PCs MAF's All

1 .88 .87 .83 .88
2 1.07 1.05 1.08 1.08

1.15 1.15 1.16 1.16
4 1.20 1.20 1.20 1.20
5 1.22 1.22 1.22 1.22
6 1.23 1.23 1.23 1.23

Table 7.5. Maximum average Jeffreys—Matusita distances between
the 6 classes for different sets of possible features.

A B C D E F
A 0
B 1.34 0
C .76 1.20 0
D .40 1.32 .63 0
E .92 1.35 1.29 1.04 0
F .65 1.32 1.20 AT .79 0

Table 7.6. Jeffreys—Matusita distances between the classes based
on TM band 6 and MAF 2. The average distance is 1.083.

It can be noted that an exhaustive search of "the best 1" "the
best 2", ... etc. features for this classification would mean
computation of 310762 Jave values. The above mentioned stepwise
algorithm computed only 480 Jave values. (Equivalent to reducing
the CPU-time on an IBM—-3081 from 28 hours to less than 3

minutes.)

The optimal combinations found in this way are shown in table

7.7. Here we have also presented the equivalent combinations of
variables found by stepwise linear discriminant analysis. If we
want the "optimal" combination of say three variables selected

among all 18 variables we must find the columns with three dots
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under the heading "Joint set'". If we use the Jave criterion we

will get

B7, MAF2, B1

and if we use the stepwise linear discriminant analysis we get

B3, MAF4, PC2

i.e. a set with no common variables.

In table 7.8 is shown the F— and Jave—distances based on the two
optimal combinations. We see that there are major differences in
the "separability" of the classes by the different sets of

features.

From the construction alone it is believed that the first set is
superior. A detailed study of the classification of pixels from
outside the training set has not been finished yet, but in other
studies we have found that the features obtained by the

Jeffreys—Matusita distance method give better classifications.

In conclusion we state that feature (variable) selection in
multivariate cases should be done with due respect to the fact
that the dispersion matrices often are different. The "optimal"
combinations obtained in this way may differ considerably from
what is obtained in stepwise linear discriminant analysis, and it
is our experience that better classifications are often obtained

" _ "
by the means of Jave features'.



203

Var. J-M selection Stepwise linear selection
Ind. sets Joint set Ind. sets. Joint set
#Bands| 1 2 3 4 5 6 123456 123456 123456
B1i e © @ ® 0 & @ @ & @
2 [ e © ® @ @
3 ® 6 6 © © e @ ©e ® © 6 ©@ © ® 8 © © & ©
4 ® ©6 @ © ® © O ® o
5 e © ® © © ©
7 ® 8 @ 6 © © ® 6 © ®6 © © ®
PC1 © © 6 © © ® © 6 @ © © ®e 6 @
2 ® © © ® © © e © © © ® © @ ©
3 ® © @ ® © @
4 ® ®© @ © ® © @ © ©
5 e e @ e
6 ] @
MAF1 ® © © © © © e e © @
2 @ © © @ © e & ® (] ® © 6 @ @
3 e & @ e 6 @
4 @ © © © @ © ®© © © © ® 6 6 @ @
5 e ® o e e ® o
6 ] @ @

Table 7.7. Best n features, n =1, 2, --- , 6, chosen from
different sets of features by J.-M. selection and SLD selection.
The best combination of e.g. 3 variables is found by selecting
the column with exactly 3 e. The positions of the dots give the
variables.

A B C D E F
A 0
B 46.2 0
C 2.6 11.7 0
D . 7.5 .3 0
E 8.6 4.9 1.5 1.2 0
F 1.2 15.3 .2 0.0 2.3 0
A 0
B 1.34 0
C .76 1.20 0
D .40 1.32 .63 0
E .92 1.35 1.29 1.04 0
F .65 1.32 1.20 s .79 0

Table 7.8. F—values (x0.01) and Jeffreys—Matusita distances
between six training sets based on the "best" two variables.
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CHAPTER 8
CONTEXTUAL CLASSIFICATION

8.3
8.4
8.5

Introduction

An Example of a Binary Random Field and its
Estimation

Classification with Contextual Features
Owen — Hjort — Mohn

A Simple Alternative to Owen — Hjort — Mohn
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8.1 Introduction

With the increasing importance of image analysis in many branches
of science and technology much emphasis has recently been put on
development of so—called contextual methods in image
classification. These methods include models e.g. of Markovian
type for the spatial distribution of the populations and models
for the spatial dependence in the error terms in such models. On
the other hand the relevant information in image data are often
characterized not by differences in mean values and
variances—covariances for the multivariate (normal) feature
vector, but rather by the structure in the spatial dependence
between pixels. A direct modeling of such dependencies leads to
complicated models that due to computational problems still are
of less importance in practical work with classification.
Alternatively it is suggested to use filters to estimate
contextual features that may be included in the feature vector
describing each pixel. Then different discrimination methods may
be applied on the augmented feature vector. The shown examples on
classification of satellite data demonstrates that this may be a

very powerful technique.

As pointed out earlier, the main problem with the ordinary
classification schemes are that they tend to be non—spatial in
nature. Often the algorithms are taken from standard
computer—packages as e.g. BMDP7M [Dixon 85]. For very many years
in the youth of geological remote sensing when more or less the
only images to be used were from Landsat, there was no severe
problem with the classifications because the size of the first

Landsat pixels were so large that they tended to be smoothed in
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some sense.
This effect has been described and mathematically justified by
Switzer [Switzer 80], who applies a moving average filter to the

data prior to classification.

After the appearance of sensor systems with greatly improved
spatial resolution as Landsat TM and SPOT the problem of not
considering the spatial nature of the data becomes larger in the

types of application we consider.

A direct way of performing other contextual classifications
comprise analyses where the classification algorithm has been
designed to take the spatial nature of an image into account. A
very good summary and comparison of several different contextual

"classification algorithms can be found in [Mohn et al. 86].

Another way of introducing contextuality into a classification
may as mentioned be to create contextual features. MAFs are
examples of such features as the MAFs are generated by taking the
neighbors into account. Other contextual features are e.g. the
textural features described in chapter 4. The latter gives way
for classifying a one channel image where the desired information

does not really lie in the pixel intensity.

8.2 An Example of a Binary Random Field and its Estimation

The methods used in the contextual algorithms assume some kind of
e.g. Markovian structure of the spatial arrangement of the

populations. Some introduce a parametric, spatial dependence
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between error terms in the model. In many cases, however, the
populations are characterized by differences in the spatial
correlation. Consider e.g. the binary image shown in Figure 8.1a.
It is a realisation of a so—called second order Markovian Random

Field (MRF). The model used was introduced in section 4.5.

The center part of Figure 8.1a was generated with parameter

values
a=-1.3, b(1,1) = 1.5, b(1,2) = 0.5, b(2,1) = b(2,2) = 0.5

by a method similar to the one described in [Hassner and Sklansky

81].

In the surrounding part b(1,1) and b(1,2) were interchanged and
the remaining parameters were unchanged. Therefore the means are
the same for the two halves. In both halves approximately 407 of
the pixels are black. It is therefore obvious that a procedure
based solely on mean values must fail when trying to discriminate

between the two textures.

In Figure 8.1b we have shown the result of a discrimination using
the markovian structure assigning the class that maximizes the
conditional probability (as defined in section 4.5). It follows
that using the spatial dependence enables a better

classification.



209

e, =4 - I‘ » " 7 q (e ". ch o :
'”:§£QEHW?-P'%‘ﬁ€ o, ? 3
S e

PO ORI b e S AR M A

<o

o

Figure 8.1 a—d a)(Upper left) Two different textures generated
by 2. order Markovian random fields. b) (Upper right
Discrimination using markovian structure. ¢)(Lower left)
Postprocessed by majority filter. d)(lower right) Postprocessed
by weighted majority filter.
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The result can be enhanced considerably by postprocessing the
result with a majority filter (or a modified version hereof). The
results are seen in figure 8.1 c&d. The discrimination is seen to

be more or less perfect.

In more complicated situations it may, however, be difficult to
obtain training sets that allow for a modeling of the spatial

dependence.

8.3 Classification with Contextual Features

Using contextual features in a classification scheme rather than
using a classification algorithm which is contextual in nature is
appealing because of the ease of implementation and the speed of

computation.

The MAF's described in chapter 2 have properties that make them
good candidates. They'are contextual in nature and are serious
competitors to simple principal components. A more or less
automated procedure would be to include the first few MAF's thus
giving an extra bonus in reducing the dimensionality.

As mentioned earlier smoothing may be a possibility. This effect
is described by Switzer [Switzer 80] who stated that if the image

generating process is of the type

K
Z(xq,%x5) = iElﬂi6i(Xl’x2) + €(xq,%5)
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where
Z(xl,xz) is the data vector for the pixel at position x,,x,
K is the total number of classes
By is the mean vector for class i
61 is a spatially correlated random indicator function

€ is a spatially correlated zero—mean random noise function.

Furthermore we assume that the degree of spatial continuity is
such that the probability is close to 1 that a pixel and its
nearest neighbors all belong to the same category. Then some sort
of local "smoothing" will result in an optimal or near optimal
classification.

The above mentioned model is simple and very appealing, it seems
sound to believe that the scene in some way is segmented in the
underlying classes represented by their mean—vector and that

there is added noise.

In Figure 2.2 was shown some training areas that are used in a
multispectral classification. "Green" consists of so—called
Julianehaab Granites and "Violet" of Igaliko intrusives, and it
is the objective of the study to discriminate between those two
rock types. '"Red", dolerite and the like, is included in order to
get a better coverage of rock types, and "Blue", water, is
included for similar obvious reasons. As an alternative to
including classes dolerite and water one could have introduced a
reject class. Since this would cause a merging between land and
water it would then be more difficult to evaluate the classified
maps visually. The granites are covered with vegetation whereas
the intrusives are barren. Immediately to the west of the granite

training set ("Green") we also have granites ("Yellow"), but most
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of those are either barren or snow covered. Due to the high
reflectance of chlorophyl in the near infrared area and the
absorption in the red parts of the spectrum there are substantial
differences between the distributions of pixel values from barren

and from vegetation covered rock. The variables used are

B4 = Landsat Band 4

2

wavelength 0.5 — 0.6 um

B5 = Landsat Band 5

2

wavelength 0.6 0.7 pm

B6 = Landsat Band 6

2

wavelength 0.7 — 0.8 um
B7 = Landsat Band 7

2

wavelength 0.8 — 1.1 um

ory = real part of smoothed local orientation based on B7

ory = imaginary part of smoothed local orientation based on
B7

frl = real part of smoothed local frequency based on B7

fr2 = imaginary part of smoothed local frequency based on B7

Means and standard deviations of the 8 variables are shown in
Table 8.1 for the 4 training sets. Furthermore is shown the means
and standard deviations of the Landsat bands for a test area
consisting of barren Julianehaab granites. It is seen that or,
and fr, in this case are the best (individual) discriminators
between the granites and the intrusives. In Table 8.2 is
presented the correlations between the Landsat bands for the two
primary training sets, the vegetation covered Julianehaab
granites and the Igaliko intrusives, and for the basic test area,
the barren granites. The results presented are based on all
pixels in the contiguous training sets, and no attempts were made
in order to avoid the biasedness (in the variances—covariances)

that may result from the spatially correlated pixels.
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Variable Veg.cov.gran. Barren gran.
Mean St.dev | Mean St.dev

B4 15.51  1.04 18.91 2.48
B5 16.86 1.69 21.55  3.48
B6 26.67 3.23 24.45 3.65
B7 15.73  3.45 10.98 2.59
or, -3.42  7.68 -2.75 12.22
or, 16.68 11.53 12.97 18.44
fr, 65.97 15.06 54.04 13.86
fr., ~22.20 17.05 | —41.60 17.02

§3;e$§ 8231 4191

Variable Intrusives Dolerite

Mean St.dev Mean St.dev

B4 19.28 2.15 13.92  1.48
B5 21.98 3.08 14.31  2.77
B6 24.16  3.46 25.32  5.59
B7 10.07  2.70 15.23  5.31
or, 1.04 5.59 | —38.55 17.03
or, ~11.77 6.54 | —25.55 16.68
fr, 10.99 12.83 79.50 16.31
fr, —9.58 13.78 | —32.29 17.79

gg;egﬁ 5725 13277

Table 8.1. Mean and Standard Deviation for the 8 variables for
the 4 training sets and means and standard deviations for the 4
original bands for the barren granites.
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Vegetation cov.gran.
B4 B5 B6 BT

B4 1.00

B5 .72 1.00

B6 .31 .44 1.00

B7 .20 .33 .93 1.00

Barren granites
B4 B5 B6 B7

B4 1.00

B5 .95 1.00

B6 .82 .87 1.00

B7 .62 .68 .87 1.00
Intrusives

B4 B5 B6 B7

B4 1.00

B5 .92 1.00

B6 .73 .78 1.00

B7 .49 .54 .89 1.00

Table 8.2. Correlations between the 4 original bands for the two
main training sets, i.e. "vegetation covered granites" and
"intrusives", and for the test area '"barren granites'.
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We assume joint normality for the variables, i.e.
population i <—> N (ui, Ei)

The first classifications (presented in chapter 6) were only
based on the 4 Landsat bands. For each pixel with value x that

must be classified we compute a score for each population
S.(x) = 1n(p:) + = In(det®.) — L (i)’ £ (e—pu:)
i\x) = py) * 5 i/ T2 A i KAy

and the pixel is allocated to the population that gives the
largest score. The estimated means and dispersion matrices are
obtained from tables 8.1 and 8.2. This classification corresponds
to ordinary quadratic discriminant analysis. The results are
presented in figure 8.2. It is seen that the test area with
barren granites west of the granite training set is
"misclassified" as intrusives. This is not strange. It was argued
earlier on that the barren granites and the barren intrusives
looked very similar. This is supported by the empirical moments

shown in tables 8.1 and 8.2.

For comparison a similar classification, now without the
unvegetated Juliannehab granite class has been included as figure

8.3. The result is — as expected — even worse.

In order to investigate the nature of the populations further the
pixel values (in band 7) along two cross sections of the granites

and of the intrusives are shown in Figure 8.4. The two sections
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are shown as white bands in Figure 8.5. In the granites the
transition from non-vegetation to vegetation occurs app. at pixel
no. 100.

A shift in level is observed, but the correlation structure is
more or less constant, and very different from the intrusives. In
figures 8.6, 8.7 and 8.8 are shown close—ups of granites with and
without vegetation and of the intrusives. It follows that the
spatial pattern looks much more similar for the two granites
irrespective of differences in absolute levels than when
comparing intrusives and barren granites. Therefore it seems
obvious to generate new features describing the local texture in

the images by means of the techniques described in chapter 4.

Firstly we shall consider using local orientation and local
frequency. The used values of local orientation and local
frequency are the spatially smoothed ones from figures 4.3 and
4.5 in order to get values that are representative for larger
areas. Such a presmoothing of variables before using them in
classifications corresponds to some of the contextual methods for
classifying image data that were mentioned earlier in section

8.3.

On figure 8.9 is shown the result of a plot of all possible
scatterograms of the orientation and frequency measures. It is
seen that there seems to be a fairly good possibility for
discrimination between the different lithologies. This figure can
be compared to the analogous plot for the spectral bands only in

figure 2.5.
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The result of classifications based on the textural variables
only (that in turn are based on the single band showing most
local contrast, B7) is shown in Figure 8.10 and the result from
using as well the original bands as the textural variables are
shown in Figure 8.12. In both cases it follows that the barren
granites are (practically) no longer misclassified as intrusives.
Due to the fact that the granites and the intrusives are
characterizable through textural measures defined by means of
Fourier techniques, it is possible to distinguish between the two
rocktypes irrespective of presence or absence of vegetational

cover.

Since the water is classified well in the spectral case and the
lithology is classified well in the textural case a combination
plot using the water from the first case (figure 8.2) and the
lithology from the second (figure 8.10) has been produced and can
be seen as figure 8.11. This can be thought of as a hierarchical
classification as described in chapter 6. Also, for the
comparison reasons are included figures 8.13 and 8.14 which as
figure 8.3 are classified disregarding the "barren Juliannehéab
granite" class. The results are similar to figures 8.10 and 8.12
respectively which again proves the usefulness of computing

textural features.
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DN-values from Typical Julianehaab—Granite,
MSS band 7, line 89, samples 0—-249

.30 =
=3
e}
op=q
0
[=
o
e
(=]
=20 —
10 —
M
0 T T T T !
0 50 100 150 200 250

Pixel Number.

DN-values from Typical Igaliko—Intrusion,
MSS band 7, line 271, samples 323—-473

.30+
=)
=
o g
/2]
=]
o
add
(=
=20 —
10
Y T A}l T T ]
250 300 350 400 450 500

Pixel Number.

Figure 8.4 Variations of pixel values for band 7 along the white
stripes crossing the training sets defined in figure 8.5.
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Figure 8.5 Localities of lines for which the pixel values are
plotted in figure 8.4. The training areas are the same as defined
in figure 2.2.

Figure 8.6 Close up of Igaliko intrusives (~ II) on figure 8.5
and violet on figure 2.2.
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Figure 8.7 Close up of vegetation covered granites (~ I) on
figure 8.5 and green on figure 2.2.

Figure 8.8 Close up of granites without vegetation (~ V) on
figure 8.5 and yellow on figure 2.2.
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between water and land are again grossly misclassified because of

the smoothing effect from the filters.

8.4 Owen — Hjort — Mohn.

In this section we will focus upon one particular contextual
classification algorithm and we will see an example of its use.
The considered algorithm has a neighborhood system called the
cross i.e. the four nearest neighbors and spatially dependant
feature vectors. In [Szbg et al. 85] and [Mohn et al. 86] other
contextual algorithms can be seen, and in the latter a comparison
is made between several different methods.

Consider a scene consisting of N pixels. The class of pixel i is

denoted by C;. C; is ome of K given classes, {1, ... ,K}, with
prior—probabilities Mys oee 5 Tge To predict the classes we have
available the feature vectors Xl, oo ,XN. The conditional

probability density of X;, given Ci = k, is denoted fk(xi). The
neighborhood system consists of the center pixel and its four

nearest neighbors and is as mentioned often called the cross

We consider the augmented features vector

D. = {X., X.n, X X

i i XN Xip0 Xig0 Xyl
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and the posterior probability can be written
- - 1 .

where Rk(Di) is called the contextual adjustment factor and is

given by:
R (D) = DY g(aabacadlk) °
kM a,b,c,
h(XiN’XiE’XiS’XiWIXi’k’a’b’c’d) (**)

(a,b,c,d) is one of the possible K4 configurations of classes in
the four arms of the cross, and g(a,b,c,d|k) is the probability
of this configuration, given the center pixel is of class k. The
h—function is the joint—probability density of the feature
vectors of the arm pixels, given the feature vector of the center
pixel and the classes of all pixels in the cross. (Traditionally
the feature vectors are usually assumed conditionally
independent. Then h is the product of the corresponding four

probability densities.)

The denominator f(Di) is the unconditional density of the five

' K
spectral vectors, making ¥ P.(k | D;)=1.
k=1

The spatial dependence comes into the model as follows. The
feature vector is written as the sum of the two independent

components
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where

{ Y.[(C; = k) € Ny, (1-6)%) s
. . _ _ i—j
(g4>--->8y) multinormal with Ee, = 0, Eeiej =9 6%

Here |i-j| denotes the Euclidean distance between pixels i and j.
The Yi — terms are independent given the classes and take care of
the class—dependency of the feature vectors whereas €45+--,Ey are
autocorrelated noise terms. -

p is the autocorrelation between neighboring pixels

@ is the proportion of the variance—covariance structure

due to the noise

Y is the local variance—covariance structure

To construct a classification rule, we need to substitute in (*)

an expression for f(DiIk,a,b,c,d). This is a normal density in 5d

dimensions
-XiN- . -ll'a- [ X, 08,7, BB, & ]
X;p m S, /8, 5, o
Xis | € Nsq be |, X, B, ok
Xiv Ky %, ox
R e S =

given that the classes are a,b,c,d,k. Here

a = correlation between l1-neighbors = @6,
B = correlation between y2-neighbors = Q¢§9,
v = correlation between 2-neighbors = 929,
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We need a suitable expression for the h—term in formulae (**),
which is the joint conditional density of (XiN’XiE’XiS’XiW) given

Xi and given the classes.

By Anderson [Anderson 84] p. 37, this density is normal with mean

vector

[ #y + a(X5=m) ]
S (X)) = ‘

L _ i - | Hd + a(X;—14) |

CRCECEY

“a,
Hr
NC
Hq

and covariance matrix

[ (1-0?)E, (B-a?)E, (ra?)E, (f-a®)X ]

(1-0?)X, (B-a?)X, (r-a?)X
Be = (1-?)%, (B-a2)T
(1-a2)X

A large amount of matrix algebra will give the h function. An

explicit expression may be found in (Szbg et al. 85)

Now considering nature to supply at the most two different
classes within the cross and suppose the feature vectors are

conditionally independent. Then

g(k,k,k,k|k) = p + (q+r)m

g(k,k,m,m|k) = g(m,k,k,m|k) = g(m,m,k,k|k) = g(k,m,m,k|k)

= qm /4
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g(k,k,m,k|k) = g(k,k,k,m|k) = g(m,k,k,k|k) = g(k,m,k,k|k)
= rm /4

g(a,b,c,d|k) = 0, otherwise
An expression which is feasible to program is

Pr(C;=k|D.) =
const-m £, (X;){[p+(q+r)m] e -3 [s; (k,k,k,k)+qy ; (k)]-

+ % % m [e 7[s; (k,k,m m)+q2 (k,m)] , o—2[s;(m,k,k,m)+qy, (k,m)]
m#k
+ o—tls;(m,mk,k)+qqy; (k,m)] | e—;[si(k,m,m,k)+q2i(k,m)]]

ZELZZ T [e_‘% [Si(k9k9m>k)+Q3i(k9m)] + e"‘%’[Si(kakak’m)+Q3i(kam)]]
m#k
+ o255 (m,k,k,k)+qg; (k,m)] e—%[si(k,m,k,k)+q3i(k,m)]]}

where

a5 (k) = 2at[2a(Xj—py) — 4X; + 4y 1! Z_l(Xi—ﬂk)

Ao (k,m) = 2et[2a(X;—p ) — 4K, + 2 + 24 ]" Zml(Xi—ﬂk)

dg; (kom) = 2at[2a(X;~n) — 4%; + 3+ p ] T (X )
Here

X; = iy + Xip + Xyg + Xy /4

X
a = 6p , B = 99¢§, v = 992 R t =u+ 2v +w

4
1
s; (ky ko kg ky) = u in( lJ—uk ) 'y (XlJ—ﬂk )
4
1
+ QVJzi( ij ”k )Y (X4 i+l ”k3+1)
2
* 2w E (X 13‘”k )! 2—1(X i,j+2 ”k )

(S
Y
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where we have changed the notation
EinoXipXig Xiw) —> Ry1.%55X55:%54)

Finally

_ a(a+c)—2b2 _ _ b(a—c _ 2b2—c(a+c)
U= d , VT ‘L‘H‘l , "= d ,

where

jo ¥
i

(a—c) (a+c—2b) (a+c+2b)

a=1- a2 , b=, ¢c=79-a

2
For further proof the interested reader should refer to

[Sebp et al. 85].

This version has been programmed in standard fortran.

The experiences with the above mentioned algorithm are that there
certainly is a great improvement over the more naive pixelwise
classifications. However the algorithm is very CPU-time consuming
— so time consuming that one must consider using other methods.
However the algorithm is a very interesting step forward in
classification and represents more or less "state of the art" in
classification of digital images. As such it can be used as a

yardstick with which one can measure other algorithms.

In the following is shown some results of running the contextual
algorithm on the Igaliko scene. The result of a total

classification and a close up can be seen on figures 8.16 and
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8.17 respectively. Comparing with the ordinary classification
results on fig 6.1 and close up on figure 6.2 one sees a much
more pleasing segmentation of the area with far less '"stray"

pixels.

The values of p, 6 have been estimated by means of computing the
autocorrelation structure along a line of pixels corresponding to
the Igaliko intrusive marked in figure 8.5 using PROC ARIMA from
the SAS package [SAS 84]. The estimated values were p=0.8092,
6=0.9769. The values for p, q and r are the same as Owen [Owen
84] proposed for a simple Poisson model of the boundary lines,

i.e.

p the probability of an X-pattern is (arbitrarily) set to
0.8 for this scene.

q the probability of an L-pattern is then
(1-p) - (v2-1) = 0.08228

r the probability of a T-pattern is then
(1-p) - (2-y2) = 0.1172 ,

The contextual classification algorithm is derived under the
assumption that all class covariance matrices are equal. In

[Sebp et al. 85] a remark implies the possibility of a relaxation
using the actual class covariance matrices for fk(xi) and the
pooled matrix elsewhere. This was tried out and the conclusion
was that this gives considerably more pleasing results, see
figure 8.18 and 8.19 respectively. Therefore the rest of the
results have been processed using this technique.

Figures 8.20 to 8.23 display a small study of the robustness of

the choice of parameters.
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Looking at figures 8.20 and 8.21 or figures 8.22 and 8.23 it is
seen that the procedure seems to be very robust towards a wrong
choice of p, q and r values (i.e. the probabilities of the

X—, L—, and T-patterns). Whereas different values of p and 6 from
figures 8.20 and 8.21 to 8.22 and 8.23 has an effect, the latter
are considerably more "segmented" than the first. Since a low
value of p should mean low segmentation it must be 6 that is the

controlling parameter in the classification of this scene.
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8.5 A Simple Alternative to Owen — Hjort — Mohn.

Switzer [Switzer 80] proposes to use added bands computed as some
sort of average over the neighborhood, e.g. the mean value of the
immediate N, E, S, W neighbors doubling the number of bands. This
was tried in the Igaliko test area but the resulting covariance
matrix was singular or near—singular so it was decided to reduce
the dimensionality of the feature vector to 4 by applying a
principal component solution to pairs of bands i.e. for band 4
the value of the center pixel and the average of its N, E, S and

W neighbors etc.
We consider the model from the previous section

Y, € N, (1-6)F)

- = oli-il
E(g;) =0, E(eiej') = Q 6 %

Then
Xi € N(I‘is Y

and in particular

i X4 i i By ] [ 1 a a a a ]|
XiN 1y a1 B 7 B
XiE € N By , a B 1 [B v ® X ,
XiS Hy a v B 1 p
] XiW | I By ] ] a B v B 1 |
L o
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where
® denotes tensor or Kronecker product

and

a=00, B=0"260, v=0%0

It is then easily shown that if

>

1
i =1 Ky + X4 + X5 + Xy
then

X. b 1 b
X. €N 00 1+29¢§9+929 ® %

In this particular example 6 and o have been estimated to (see

previous section)

N
]

0.9769
0.8092

(o]
]

The covariance matrix between X and X is then estimated to

-

1 feY
COV(X’XNESW) = 06 %(1+2p¢§64p29) ®X

_ [ 1.0000 0.7905
| 0.7905 o0.7720 | ® %
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The eigenvalues and vectors are

Al = 1.6847 Az = 0.0873
_ 0.7559 —0.6547
vy = Vo =
0.6547 0.7559

Using only the first principal component we thus expect to retain
957% of the total variation of each band-average pair and halve

the number of dimensions.

The result of such a scheme is shown in figures 8.24 and 8.25

which should be compared to figures 8.18 and 8.19 respectively.

It is seen that the segmentation, although not as good as 8.18
and 8.19 is much more satisfactory than in the ordinary
classification in figures 6.3 and 6.4, and the idea is a
CPU—cheap alternative to the very elaborate algorithm by Hjort

described in the previous section.

As a simple extension one could evaluate the covariance matrices
between the different band-average combinations separately and/or

directly.

The eigenvectors and values were computed using the Matlab
package [Moler et al. 86]. The new features were computed using a
program written for the GOP-302. The classification was done

using the standard classification package on the GOP-302.
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CHAPTER 9
CLUSTERING AND SEGMENTATION

9.1 Introduction
9.2 Clustering
9.3 Segmentation
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9.1 Tntroduction.

Clustering and segmentation are very similar processes. A
distinction between them might be to say that clustering is a
partitioning (or segmentation) of the feature domain, while
segmentation is a partitioning (or clustering) of the spatial

domain, which makes them dual processes.

9.2 Clustering.

A clustering algorithm can be characterized as an algorithm which
with no (or almost no prior) knowledge of the different ingoing
classes in the image will label pixels which have some
similarity. The similarity measure may be different for the
different procedures and the amount of a priori knowledge to the
number of classes and so on varys.

There are numerous methods to choose from, generally they fall in

two groups: hierarchical and non-hierarchical [Anderberg 73].

Hierarchical methods start of with all the observations in a
cluster by themselves. According to some measure of similarity
the two clusters most alike are merged to form a new cluster.
This is repeated until there is only one cluster containing all

the observations.

Non—hierarchical methods begin with a start—partitioning of the
observations and the task is then to gradually re—partition the

observations until some stop criterion is met.
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The start partitioning is done by measuring every observations
similarity to a number of centerpoints (or seeds). Depending on
the algorithm the number of centerpoints are known or unknown and
the similarity measures are used to assign the point under

consideration to a certain centerpoint.

Some similarity measures which are freqﬁently used (all in

feature—space) include

Mahalanobis distance to a centerpoint
Euclidean distance to a centerpoint
Mahalanobis distance between points

Fuclidean -distance between points

In the following examples of the two different types of
clustering algorithms to be found in commercially available

software are described.

One procedure called "PROC CLUSTER" [SAS 85a] uses an
agglomerative hierarchical clustering procedure. Each observation
begins in a cluster by itself. The two closest clusters are
merged to form a new cluster replacing the two old clusters.
Merging of the two closest clusters is repeated until only one
cluster is left. The similarity measures are numerous and
include: average linkage, the centroid method, complete linkage,
density linkage and several others. This procedure is heavily

sensitive to the number of observations (pixels) and will not
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work at satisfactory speed for more than a few thousand
observations. Computation speed is on the order of n-log(n), n?
or n3 depending on which linkage method is selected. SAS refer to

a large number of authors, among these Anderberg [Anderberg 73].

An alternative procedure called "PROC FASTCLUS" has a better
CPU-performance, but on the other hand will not work well with
few observations. In "PROC FASTCLUS" a set of points called
cluster seeds is selected as a first guess of the means of the
clusters. Each observation is assigned to the nearest seed to
form temporary clusters. The seeds are then replaced by the means
of the temporary clusters and the process is repeated until no
further changes occur in the clusters. The similarity measure is
Euclidean distance. Seed selection can be done manually or
automatically. If it is done automatically the first observation
is the first seed. The second seed is the firstcoming observation
which has a distance of some predefined size from the first seed.
The third seed is the first observation which is separated from
seed 1 and 2 in the same manner and so on. This technique of
course requires iteration. Computational speed is hard to

estimate but will be more or less proportional to n.

An operation on the GOP-302 called "cluster'" uses an algorithm
related to that of "PROC FASTCLUS" and is inspired by the paper
of [Mantaras and Aquilar-Martin 85]. The procedure is the
following. Consider a number of centerpoints M. Looking at a new
observation (pixel) compute the Euclidean distance to all

centerpoints. If the distance to all centerpoints is above a
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certain threshold T then a new centerpoint is defined with the
observation as centerpoint, else the observation is used to

update the nearest centerpoint using

Koy
mj = mj + (x—mj)

where
mj is centerpoint
k is k'th point in this class
x is current pixel

KO is a parameter that determines the inertia or "memory".
This algorithm also requires some sort of iteration.

The clustering methods are of great help when one does not know
anything or very little about the data. One can apply clustering
to the data and see which result comes from different of the
ingoing parameters. Another great help is to use clustering on
training areas which have been selected for supervised
classification, if the training area is not homogeneous then it
will split up in the clustering thus revealing a two (or multi)
population problem. Say one is looking at vegetated and
non—vegetated granite, then an attempt to cluster the training
set consisting of both types of granite will show that it is
necessary to consider two classes namely '"non-vegetated' and
"vegetated" granite and then after the classification to merge
the two together. This is clearly the case with the Igaliko

scene., Probably it is noticed best on the scatterogram figure
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3.2. However the scatterogram also shows the limitation of
clustering, because normally one does not take into account the
elongated shape of the different classes and this may cause a

problem in clustering.

Sound use of clustering procedures as the above mentioned must be
based on experienée. There is no way to guess which algorithﬁ
will be the appropriate for a specific task except if the task

itself dictates an algorithm.

Generally the hierarchical methods perform well and here average
linkage seems to be a good choice for the similarity measures. If

speed is an issue then non-hierarchical methods may be required.

For image processing clustering of whole scenes will normally
require a fast method, but if one wants to cluster—analyse
training areas then hierarchical methods might be worth thinking

of .

For remotely sensed scenes as the one presented in this thesis
clustering has not performed very well on a whole scene basis in

comparison with ordinary classification.

As an example where clustering did come in handy consider the
hierarchical classification scheme for Ymer @ presented in

chapter 6.5.
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9.3 Segmentation.

By segmentation we will mean the process of dividing the image
into different regions. Thus a classification or a clustering
might be a segmentation. The segmentation process deviates from
(classical) classification and clustering in that it is only
concerned with the segmentation of the image, not with the
assignment of different classes or labels to the regions.
Segmentation is again a fairly large discipline and we will only

summarize some different techniques.

[Fu, Gonzalez and Lee 87] describe segmentation as the process of
subdividing a scene into its constituent parts or objects.
Furthermore segmentation algorithms are generally based on one of
two basic principles: discontinuity and similarity. The principal
approach in the first category is based on edge detection; the
principal approaches in the second category are based on

thresholding and region growing.

For the first type of segmentation they consider using local
analysis for edge detection i.e. a gradient operator and then
some sort of edge linking, or a global analysis by the Hough

transform or some graph—theoretic technique.

For segmentation by threshold and region growing they consider
global and local thresholds. The difference between a global and
a local threshold being that a local threshold's value depends on

the position in the image whilst a global threshold is fixed for
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the whole image. Region growing is a process similar to that of
clustering but in the spatial domain. One can define algorithms
that use pixel aggregation using a number of initial seeds or by
splitting the image into subpartitions and then merging if the

subpartitions are alike.

Segmentation is useful like clustering in exploring unknown data.
As stated earlier you might say that clustering is a sort of

segmentation of the feature space or vice versa.

Mégier et al. [Mégier et al. 84] consider using global
statistical parameters over whole fields as input to a normal
classification algorithm. They then classify on a field by field
basis rather than a pixel by pixel basis. This technique of
course has contextual properties and perspectives. The achieved
classification gain was from 53% to 75% correctly classified area

in a SPOT simulated image.

The method of Mégier et al. demands fields borders to be present
i.e. the area must be segmented in beforehand. Parmes [Parmes 84]
suggests segmenting images by means of region growing. It then
seems very natural to combine the two ideas i.e. first segment
the scene as Parmes suggests and then classify the segmented

regions as Mégier et al. suggest.
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10.1 Introduction.

This chapter is devoted to the (non-exhaustive) discussion of
some interesting topics which have not been studied in praxis by
the author but nevertheless request some attention as possible

candidates for later improvement of a "toolbox'".

The first and second sections describe iterative restoration
methods for images. The concept is developed for and demonstrated
on single channel images, but there is no limitation on the
number of bands and the described methods should work on

multichannel images also.

Geman and Geman introduce a new very interesting concept — the
line process — which is a dual (imaginary) process that runs
between the pixel sites thereby describing the borders between

regions.

Besag describes a method which seems to have very nice
restoration properties and which requires far less iterations

than the Geman's.

Section 10.4 describes another more primitive relaxation
algorithm which can be used in an iterative classification
scheme. The method works by updating the prior probabilities for

each pixel.
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Section 10.5 describes a fairly new classification method called
Classification And Regression Trees (CART) which is rather robust

and fast and has been seen to give good results.

The chapter is concluded by an approach called the Multitemporal
Markovian Classifier which is a method of classification using
information from multitemporal scenes using an autoregressive

approach.

10.2 Geman and Geman, Restoration by Simulated Annealing.

[Geman and Geman 1984] introduce some very interesting concepts
into the field of image restoration, the major part of which has
given inspiration to many other authors and doubtlessly they will
and have influenced the image processing state of the art. The
paper by Geman and Geman has actually been referenced quite often

since 1984.

Their paper is concerned with the maximum a posteriori (MAP)
estimate of the original image. The concept is based on Markovian
random fields and Bayesian theory, but they introduce several

interesting new features to the methods.

Firstly there is a concept of both an intensity (pixel) process
called F and a line process called L. The intensity process is
the usual concept of a Markovian random field, but the line
process is new and is to be thought of as an imaginary boundary

drawn between pixel sites. The idea is to encourage the lines
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where there is a large probability of a boundary between pixels,
say between distinct classes, and to discourage the appearance of
lines where there is a low probability of a boundary. The

intensity process, F, is considered a Markovian random field.

Secondly there is a concept of iterated restoring of the image in
a way which has an analogy in "annealing" i.e. the process by
which certain chemical systems can be driven to their low energy,
highly regular, states. An example can be found in the heating
and cooling of iron. If the heated iron is cooled slowly it
becomes soft. If it is cooled fast e.g. by dropping it into water
it becomes hard and maybe brittle. Another example is the Ising

model of ferromagnetism.

Geman and Geman give a "temperature lowering'" algorithm which
guarantees that as the temperature approaches zero the annealing
algorithm will have brought the image to its lowest "energy'".
(This unfortunately requires infinitly many iterations, and the

Gemans themselves show examples with up to 1000 iterations.)
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Their algorithm is defined in terms of

i) The image pair of the original image
X = (F,L)
where
F is the pixel or intensity process and
L is the line process.

F is modeled as a Markovian random field.

ii) Image degradation

G = p(H(F))oN
where
G is the degraded image
H is the blurring matrix (point spread function)
¢ is a possibly nonlinear (memoryless)
transformation

N is an independent noise field
® denotes any suitably invertible operation (e.g.

addition or multiplication)

The relaxation algorithm is designed to maximize the conditional
probability distribution of (F,L) given the data G=g, i.e., find
the mode of the posterior distribution P(X=x|G=g). This is known
as maximum a posteriori (MAP) estimation. Because of the enormous
computational requirements (the number of possible intensity

images is £m2 where L=number of allowable grey values, m is side

size of image) an exhaustive search is unfeasible.
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10.3 Besag, Iterated Conditional Modes.

Besag [Besag 1986] considers a method he calls Iterated
Conditional Modes (ICM), which turns out to be more or less
equivalent to the method by Geman and Geman described in the
previous section but with instantaneous freezing. So the
optimality guarantee from the previous section does not apply
here. On the other hand Besag suggests a number of iterations
between 6 and 8 before convergence is assumed, which is orders of

magnitude less than the Gemans.

At first sight it may seem as if Besag's method is inferior to
that of Geman and Geman, but this is only true if you really

want the MAP estimate.

In the discussion to Besag's paper [Besag 86] there is an example
that shows the exact MAP solution is an inferior estimate of the
"true" conditions compared to ICM which is stopped after a few
iterations. This is so because of unwanted "long range" effects,
i.e. in say a 1000 iterations the center image pixel has become

influenced by the pixels on the border of the image.

10.4 Relaxation.

In the two previous sections we have seen examples of relaxation
the purpose of which was to allow iterative estimation of the
underlying original image.

Yet another possibility would be e.g. in a classification

algorithm to allow iterative updates of the prior probabilities.
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On the first iteration one would classify in the usual fashion
using say equal priors but save the likelihoods of each pixel
belonging to each class. The next iteration would then consist of
using updated priors for each pixel computed as say the average
of the likelihoods in a small neighborhood etc. This method is
essentially the same algorithm as described by Switzer [Switzer

et al. 82].

10.5 Classification and Regression Trees.

A fairly new computer based approach to classification is the
so—called Classification and Regression Trees (CART) method

[Breiman et al. 84].

The idea looks quite a lot like hierarchical classification, but
also has some major features of its own. As an example for
discussion consider the tree diagram on figure 10.1 for
classifying mineral samples into one of two classes, either "no
gold potential” (Gold = 0), or "possible gold potential" (Gold >
0). (From [Conradsen et al. 88]).

Several interesting features are noted.

1. It is possible to be classified as "Gold = 0" or "Gold > 0" in
different ways depending on the route. This is different from the
hierarchical classification procedure presented in chapter 6,
where an early misclassification high up in the hierarchy meant

that the pixel was deemed to be misclassified finally.
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2. The classification is made up of simple binary questions and
answers. This makes the procedure very simple and it turns out
also very robust. In practical applications of classification it
very often turns out that the usual assumptions of normality,
independence etc. do not hold. The CART procedure can account for
many of these problems by constructing "approximating
decision—surfaces" of virtuélly any complexity. Because of the
simple binary questions the procedure does not have large and
unstable (often nearly singular) matrices or other problems to

deal with also it is not as computationally demanding.
The building of a classification tree consists of several steps:

1. Acquiring a learning sample from which one can derive the
tree. In the example the learning sample consisted of the records
of 66 mineral samples taken near the Almaden test area. The
records contain the contents of 23 different elements together

with an identification of if the samples contained gold or not.

2. Constructing binary "splits" so that the data of each split of
a subset is '"purer" than the data in the parent subset. This is
continued all the way down the tree. The binary split depends on
the value of only a single variable. This of course can be
expanded for as far as needed, ending up with a "perfect"

classification of the learning set.

3. "Pruning" of the tree. This is done because lots of records
(pixels) are classified in their own branch of the tree, i.e. the
final bin only contains one record at the end of the

classification. Pruning is a robustification of the tree, where
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START
Is In(Mg) < 8.25 7
no
Is In(Y) < 1.77 ?
yes
no
Gold = O Gold = O
yes
Is 1n(Ti) < 6.59 7
no
Gold > O
yes
Is 1n(Ba) < 5.96 7
no
Gold = O
yes
Is 1In(Cr) < 3.83 7
no
Gold > O
yes
Is 1n(Co) < 2.07 ?
no
Gold = O
yes
Gold > O

Figure 10.2. CART decision- tree for classification for gold.
(From [Conradsen et al. 88]).

insignificant branches are cut off and the tree is minimized. In

the example the tree was pruned with 330 (new) mineral samples.
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10.6 Multitemporal Markovian Classifier.

Many authors have considered the inclusion of multitemporal
scenes i.e. scenes of the same area but sensed on different
dates, as a way of enhancing the performance of a classifier. See

e.g. [Swain 78], [Haralik et al. 80] and [Lo 86].

In chapter 2 is shown an example of canonical correlation
analysis in the Almaden region where multitemporal scenes helped
classify the different regions of interest. It is known that the
first canonical correlation image is the linear combination of
e.g. the winter bands that look most like the respective linear
combination of the summer bands. Since the most obvious change
between summer and winter is the change in vegetation, the
interpretation of these images is that they account for the
information that did not vary over time e.g. mainly geological

information.

A very appealing way of modeling the multitemporal data has been
described by Kalayeh and Landgrebe [Kalayeh and Landgrebe 86].
They use a Markov model on crop data to describe the transitions
of a certain pixel from one phase to another. The way this
happens is specific for the different crop types, vegetations,

geologies man-made features etc.

Considering class i with pixel values Xi(t) at time t then a

simple model would be

X; (£) — M, (8) = p; (+=1) (X, (t-1) = M (t=1)) + V. (¢)
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where
M;(t) is class i's mean vector at time t.
pi(t—l) is the temporal correlation matrix between
multivariate observations at time t and t-1.

W.(t) is (gaussian) white noise.
Letting Yi(t) = Xi(t) - Mi(t) we have
Y (t) = p; (8-1)Y, (t-1) + W, (%)
which can be imagined as an autoregressive process.

The classification rule for an unknown profile

Y(t), Y(t-1), ... , Y(t-P) is

If

BY(), Y(t-1), «ov , Y(tP) | w;)
= max p(Y(6), Y(t-1), oo, Y(6P) | )

k=1, 2, , m

then assign

[Y(t)9 Y(t_l)a eee Y(t_P)]
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to class i where

f)(Y(t), Y(t’_l)a oo 9 Y(t_P> I w)

P
= [ 'El N(Y(t=j+1)5 p; (t=3)-Y(t=j3), V. (t=3j)) }
N

J
x [N(Y(t-P); 0, £, (t-P)))]

where
wy is class i
2i is cov[Y(t) |w;]

P is the number of time samples.

The classifier is claimed to perform significantly better than
both the maximum likelihood classifier and the so—called cascade

classifier [Swain 78b].
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CHAPTER 11
CONCLUSION

In this thesis a number of techniques considered useful in the
analysis of remotely sensed data with special regard to
geological applications have been presented. The use of a great
deal of these has been demonstrated on test areas typical of

geological interest.

Many of the used techniques are simple extensions of normal
(multivariate) statistical analysis e.g. principal components,
factor analysis, classical discriminant analysis etc. Others have
been developed for or adapted to the spatial nature of an image
e.g. MAF's, (other) contextual features, contextual
classification algorithms, Markovian random fields etc. Combined
these algorithms form a sort of "toolbox" from which the remote
senser can draw the most promising parts for his application. It
should be noted that the new techniques in no way make the old
ones out—dated. On the contrary the new methods just help

complete the "toolbox'".

There is no doubt that the future will bring into every—day use
the algorithms which are now only feasible on large mainframes,
vector—processors or dedicated hardware. The rate of decrease of
the cost of computer equipment has never ceased and nothing
suggests that it will do so. We will in the future see hardware
dedicated to very specialized algorithms, the GOP-302 is just a

start.
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Apart from this a number of new philosophies have been presented
which the author believes represent the future or the near
future. These include multi—temporal Markovian random fields,

CART, etc.

One conclusion is sure. The world will never grow out of the need
of clever remote sensers. It will never be possible to substitute
the human brain with an artificial intelligence type of feature
except maybe for the most trivial applications. The need for
careful analysis of the remotely sensed data can never be done
automatically (see e.g. [Langaas and Bie 87]). One should always
bear in mind that someone has to program the artificial
intelligence. Take an example as the principal component analysis
on Traill @ in chapter 3. Many textbooks claim that the
interesting information is in the first principal components, yet
the example showed the opposite. Even the use of MAFs can not
guarantee that the useful information is in the first MAFs. With
the "toolbox" growing bigger every year, the job is getting

harder and harder, but also more and more fun.

With this thesis the author hopes to have provided the reader
- with a good look into what has dominated the remote sensing of
geology at IMSOR throughout the past few years and where we hope

to go from here.

It is a pity that there today is
so little useless information.

Oscar Wilde
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APPENDIX A
JEFFREYS-MATUSITA'S DISTANCE
IN THE MULTIVARTATE NORMAL CASE

In the following we give an explicit formula for
Jeffreys—Matusita's distance in the multivariate normal case. We
furthermore show that the distance is an increasing function of

the number of variables.

We again introduce Jeffreys-Matusita's distance between two

distributions with frequency functions f1 and f2 as

12

(S 1 /H® - [5HE 1%
Q

We have

J5= [ f,0dx + [ fy(x)dx -2 f S Edx
Q Q Q

= 2(1"9‘712)

where

010 = s{ JE1 00 T,(0dx

is the Bhattacharayya coefficient.
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We will investigate the behavior of J12 in the case of

multivariate normal distributions.

Firstly we shall find an algebra expression for 312. This is done
through an series of lemmas. The proofs of those are all

straightforward, but require some decent bookkeeping.

Lemma 1. Let A be nxn positive definite and let b be nx1 and c¢ is

scalar. Then

J; exp (— % [x'Ax — 2b'x + c])dx
R

= (2m)/ ————%——— exp(- 3¢ + 2b'A71p)
e

Proof We have
x'Ax — 2b'x + ¢
= (x-Ab)'A(x - A7) —b'AIb 4 ¢
Therefore

exp (— %[x'Ax - 2b'x + c])

= (27r)n/2 1 1 1
VaIT A (M Saoo L

« exp (- 5(x — A'b)A(x — A7Tb))

x exp (- %c + %b'A_lb)
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and the results follows using the fact that the density of the

multivariate normal has integral 1.

Q.E.D

Lemma 2 Let 21 and Zb be positive definite. Assuming that the

involved matrices exist we have

Zzl _ 2;1 (211 + 251)—1 2;1 _ (211 + zé)_l

Proof. We have

Pl oA S
Therefore

[EI1 + 251]-1 EI1 -1 = _[211 . 251]_1 251
and

1 1 14-1 1 1
) A s Rl e
1 1 1,-1 1
SRR ST DT o el

= (5 [+ 51 )T =[5+ BT

the proof is concluded.

Q.E.D
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Lemma 3 Assuming that the involved matrices exist we have
1 1 1 1,-1 1 1
Lg%y " o+ B ] X + 571 B 7sy + Ty ]
- '2—1 _ ] 1
R )
_ 1 ey -1
= -5 — ) ' [5E + 55)] “(8y - py)

Proof. By straightforward calculations it is seen that the left

hand side equals
1 1 - 1
205 (5] + 55117 B
Rl D A R
1 1 11 1 yy—1
M R N N Rl 2N
- ] -1 ] "‘"1
= 2p1 (B + Bo] Tpy - pi[B + Dol ey
: -1
- LB+ Bl T,
where we have used lemma 2. This expression clearly equals
= (g = 1) [B) + 5170 (g — my)

and the proof is finished.

Q.E.D.
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Lemma 4 Assuming that the involved expressions exist we have

{det[R7t + 551 1) /2 [detE, detm,]” /4

¢fdet 21 det Zé

_ [ 3 det (T,+5,) }_1/2

Proof. Straightforward.

Theorem. Let fi correspond to a multivariate normal distribution
with mean y and dispersion matrix Ei. Then the squared

Jeffreys—Matusita distance between fl and f2 equals

2
I = 2(1-py9)

where
— 1 ] 1 ""1
—ln P19 = 'g(l‘l - /‘2) [5(21 + 22)] (l‘]_ - 1‘2)

1
1 5 det (Z;+%,)
+ §ln
vfdet 21 det 22

Proof. We have

010 = g; J T 00 Tp(0dx
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= (2m) /2 (det, detx:,)” /4

< f exp[~ F0x = ) 5 e - )
R

- 100 = mp) SR (x - ) | dx
since
(= ) 'Sk = py) ¢ (x = ) "ot (x = )
= x! (I + B hx - 20 N+ w5
I
the integral equals (by using lemma 1)
em™2 [Ldet (7t + 551)]7F exp(-E)
where
4B = - % - w5
[+ I IE + BT A + 5

The theorem now follows by applying lemmas 3 and 4.
Q.E.D.
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Relation to the likelihood ratio test.

There is a close connection between the likelihood ratio—test
statistic and Jeffreys—Matusita's distance if we replace the
parameters in the latter with maximum likelihood estimates —
especially in the case where the numbers of observations in the

two groups are the same.

We consider observations

12 °°° o Xn 9 Xi € N(I"19 21)

Yls MRS Yn 9 Yi € N(I‘Qa 22)

and introduce the ML-—estimates.

$ =1 % X -%) (X -X)°
172 Vi i

1 h \ 2 )\ ¢t
%:Eigl(Yi—Y) Y; -9

Then we have the following theorem

Theorem 2 We consider the test

versus all alternatives. Then the logarithm of the likelihood
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ratio test statistic L is proportional to

det %(21 + %)
Jdet 21 det fé

— 5= 1In L =

sdaap et @n e 51 @)
~ — 1In P19
using In(il+x) =~ x

Proof. According to Anderson [Anderson 84] p. 409 we have that

the likelihood ratio criterion is

_ (det B )n/z(det £)"/2 [det 2(8, + £)]"
[det 5 (8,+5)]1™ (det [5(8,+5,)+3(X-¥) (2-1) '])?

Using the formula

det(B) = det(B,,) det(B,; — B, B 22 By,)
-1
= det(B,,) det(B,, — By, By B,,)

on the matrix

give

1 det(¥ + a a')
a' T a-= det X
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This relation immediately gives the desired result.

Q.E.D.

Monotonicity of Jeffreys—Matusita's distance.

In this section we shall prove that the Jeffreys-Matusita
distance between two populations increases by addition of an
extra variable. This theorem is crucial in assessing the
non—cyclical behaviour of the selection algorithm described in

section 7.3.

We prove the theorem through a series of more or less well known

results on partitioned matrices.

Lemma 5 Let A and Aml be conformably partitioned as

11,12
A A A A
A= [ 11 12] and A1 = [ ].

Ay Ay W21 422
Then
AN = (A - Ay AG3 Ay ]TH = ATT 4 ATT Apy 477 Ay AT
e A T
A%2 = [Agy = Aoy AT Ap]TH = G5 + Koy Ay AMY A, AT
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22 11
det A = det A,,/det A = det Ay,/det A
Proof. See e.g. [Graybill 83] p. 183.

Lemma 6 Let A be symmetric, and let the partitions be as above.

Then

All A12
§

-1
x'y') [Azl 2122 3} - x' Ay ox

-1 22 -1
= (y - A21 Al1 x)' A (y - A21 A11 x)
Proof. The left hand side equals

x’(A11 - AI%) x +y' A%? y+2y' A%t x

T | 22 -1 22 22 -1
= x' A11 A12 A A21 A11 x+y' A“y-2y' A A21 All x
-1 22 -1
= (y = Ay Ajp )" AT (v — Ay Ay )
Q.E.D.

Lemma 7 Let A and B be positive definite and conformably

partitioned

A A B B
A = { 11 12} and B = [ 11 12}

Ayy Ay By Boo
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Then

11)
Jdet A det B Jdet A11 det B

det 3(A + B) det 3(A;; + B
>

11
Proof The function

det A 4
A-Ingee

is strictly convex ([Marshall and 0lkin 79], p. 478).

Therefore

det(3 Ay, + & B . )
T T <5 1n + 5 1ln
det(: A + I B) 2 det A 2 det B

1n

- 1n det A11 det B11
- det A det B

Discarding the ln and rearranging terms give the desired result.

We are now able to state the main theorem of this section.

Theorem 3 The squared Jeffreys—Matusita distance is strictly

increasing in the number of variables.

Proof. Follows immediately from the two preceding lemmas taking

the positive definiteness of A%2 into account.
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Update formulas

In the sequential computation of Jeffreys—Matusita distances the
following formulas for inclusion of an extra variable may be

useful.

Assume that we at a given stage want to compute

o -1
I. = | %
i+1 [);, 02}
y

i+l T

|
~~
N—-
<
N’

% ]
<o O
| SEE—

L
l[Syummn
< N

and

i+1

]
(=W
[¢)
+
9, NEB
%ql\? Q
| E—

based on knowledge of

-1
I, = %

— ! -1
Mi = X Zx x

and

D. = det 2&
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The solution to this problem follows immediately from the two

first lemmas in the preceeding section. We introduce
a; = 1/(02 -0oI, o")
y i

and have

il
o

i+1

i+l i i
Di+1
It follows that all the updates may be done by simple matrix

multiplications and thus avoiding the direct computations of new

inverses.
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APPENDIX B
SUMMARY OF
COMPUTER PROGRAMS

In the following we will present a few of the computer programs
which have been developed in the course of this thesis. The
computer programs described by no means exhaust the amount of
programs developed, the intention is only to describe some
programs which might be of use for others.

Function: To convert between IHS and RGB color coordinate
systems.

Name: ihs2rgb

Purpose: To convert 3 input images (intensity, hue and
saturation) to 3 output images (red, green and blue).

Language: GOP-302 Pascal, for the floating point processor.
Length: About 90 lines of Pascal-like code.

Portability: Not easily, but it should be possible to use the
central part of the routine.

Related routines: rgb2ihs (conversion from RGB to IHS), luv2rgb
(conversion from Taylor color coordinate system to RGB), rgb2luv
(conversion from RGB to Taylor color coordinate system).
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Function: To compute linear combinations from a number of input
bands.

Name: score

Purpose: To compute (a number of) output linear combinations from
a number of input bands. The linear combinations are user
specified. As output is also given a suggested offset, gain pair
for each linear output combination, which will make use of the
full dynamic range (0-255). (This then requires another pass).

Language: GOP-302 Pascal, for the floating point processor.
Length: About 60 lines of Pascal-like code.

Portability: Not easily, but it should be possible to use the
central part of the routine.

Related routines: The image calculator on the GOP-302 can perform

some of the same calculations on one linear combination at a
time.

Function: Compute the MAF estimates of a number of input bands.

Name: MAF

Purpose: To compute the MAF estimates from a specified number of
input bands. As a side effect the principal component estimates
are computed also.

Language: SAS—macro language.

Length: About 150 lines of SAS code.

Portability: Very difficult unless you have a SAS system. Only
the main implementation ideas can be utilized.

Related routines: none.
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Function: Fractile filter.

Name: fractile

Purpose: To compute a (user specified) local fractile estimate
from one input band. The implemented routine is an enhanced
version of the standard median filter implemented on the GOP-302.

Language: GOP-302 Pascal, for the floating point processor and
the filter processor.

Length: About 167 lines of Pascal-like code and a specialized
kernel.

Portability: Very difficult. The implementation relys very
heavily on use of the GOP-302 specialized hardware.

Related routines: modus and the standard median filter on the
GOP-302.

Function: Mean filter (large neighborhood)
Name: mean.

Purpose: To compute the local mean of an image. The implemented
version can handle very large neighborhoods, up to 63x63, using a
Gaussian shaped (or user defined) filter kernel. The routine also
outputs the difference image (original minus mean) for further
use by '"sdev" "skew" and "kurt".

Language: GOP-302 Pascal, for the floating point processor and
the filter processor.

Length: About 113 lines of Pascal-like code, a specialized kermel
and a specialized lookup—table.

Portability: Very difficult. The implementation relys very
heavily on use of the GOP-302 specialized hardware.
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Related routines: sdev (estimation of the local standard
deviation), skew (estimation of the local skewness) and kurt
(estimation of the local kurtosis). AVER (in standard fortran).

Function: Standard deviation filter (large neighborhood)

Name: sdev.

Purpose: To compute the local standard deviation of an image. The
implemented version can handle very large neighborhoods, up to

63x63, using a Gaussian shaped (or user defined) filter kernel.

Language: GOP-302 Pascal, for the floating point processor and
the filter processor.

Length: About 113 lines of Pascal-like code, a specialized kernel
and a specialized lookup—table.

Portability: Very difficult. The implementation relys very
heavily on use of the GOP-302 specialized hardware.

Related routines: mean (estimation of the local mean), skew

(estimation of the local skewness) and kurt (estimation of the
local kurtosis).

Function: Skewness filter (large neighborhood)

Name: skew.

Purpose: To compute the local skewness of an image. The
implemented version can handle very large neighborhoods, up to

63x63, using a Gaussian shaped (or user defined) filter kermel.

Language: GOP-302 Pascal, for the floating point processor and
the filter processor.
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Length: About 117 lines of Pascal-like code, a specialized kernel
and a specialized lookup—table.

Portability: Very difficult. The implementation relys very
heavily on use of the GOP-302 specialized hardware.

Related routines: mean (estimation of the local mean), sdev

(estimation of the local standard deviation) and kurt (estimation
of the local kurtosis).

Function: Kurtosis filter (large neighborhood)

Name: kurt.

Purpose: To compute the local kurtosis of an image. The
implemented version can handle very large neighborhoods, up to
63x63, using a Gaussian shaped (or user defined) filter kernel.

Language: GOP-302 Pascal, for the floating point processor and
the filter processor.

Length: About 128 lines of Pascal-like code, a specialized kernel
and a specialized lookup—table.

Portability: Very difficult. The implementation relys very
heavily on use of the GOP-302 specialized hardware.

Related routines: mean (estimation of the local mean), sdev

(estimation of the local standard deviation) and skew (estimation
of the local skewness).
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Function: Skeletonization of an image.

Name: SKELET.

Purpose: To compute skeleton of an image. The implemented version
can handle images larger than available core. The user can
specify the threshold above which skeletonization is to be
performed.

Language: FORTRAN-77.

Length: About 692 lines of Fortran code.

Portability: Fairly easy. The implementation uses SPIDER
subroutines for the actual skeletonization.

Related routines: a skeletonization routine has also been
implemented on the GOP-302.

Function: Mean filter (large neighborhoods possible)

Name: AVER.

Purpose: To compute the local mean of an image. The implemented
version can handle images larger than available core and is
(nearly) independent of kernel size. The user can specify the
size of the (square) kernel to be used.

Language: FORTRAN-77.

Length: About 220 lines of Fortran code.

Portability: Fairly easy.

Related routines: mean (routine for the GOP-302).
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Function: Angle estimation.

Name: ANGLE.

Purpose: To compute the local angles in an image. Choise between
different weightings of the neighborhood. The routine is designed
to be used after SKELET. The implemented version can handle
images larger than available core.

Language: FORTRAN-77.

Length: About 241 lines of Fortran code.

Portability: Fairly easy.

Related routines: orient (standard routine on the GOP-302).

Function: Modus filter (or majority filter).

Name: modus.

Purpose: To compute the mode of an image. The implemented routine
is based on some of the code from the standard median filter
implemented on the GOP-302.

Language: GOP-302 Pascal, for the floating point processor and
the filter processor.

Length: About 152 lines of Pascal-like code and a specialized
kernel.

Portability: Very difficult. The implementation relys very
heavily on use of the GOP-302 specialized hardware.

Related routines: fractile and the standard median filter on the
GOP-302. modus.
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Function: Logical smoothing (noise removal)

Name: lsmooth

Purpose: To remove noise in an (classified) image. The algorithm
is due to Townsend [Townsend 86]

Language: GOP-302 Pascal, for the floating point processor and
the filter processor.

Length: About 69 lines of Pascal-like code and a specialized
kernel.

Portability: Difficult. The implementation relys heavily on use
of the GOP-302 specialized hardware.

Related routines: modus.

Function: Feature selection by means of Jeffreys—Matusita's
distance.

Name: jefmat.
Purpose: To compute the optimal band selection for
classification. The input format is as the statistics file from

the GOP-302 classification package.

Language: FORTRAN-77, some routines from the Linpack package are
used for matrix manipulation.

Length: About 1132 lines of Fortran code.
Portability: Fairly easy. Already works on a variety of machines.

Related routines: The stepwise feature in BMDP7M (BMDP) and
STEPDISC (SAS).
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Function: Contextual classification using the method of
Owen—Hjort—Mohn.

Name: NRC.

Purpose: To perform contextual classification on an image. The
user supplies the basic statistics (priors, means and
variance—covariances) for the classes. The implemented version
can handle images larger than available core.

Language: FORTRAN-77.

Length: About 616 lines of Fortran code.

Portability: Fairly easy.

Related routines: ordinary classification routines.

Function: Create weighted average between the center and N, E, S
and W neighbors.

Name: cnesw

Purpose: To create a weighted average between the center pixel
and the mean of the four surrounding immediate neighbors. The
weight between center and neighbors is user specified.

Language: GOP-302 Pascal, for the floating point processor and
the filter processor.

Length: About 62 lines of Pascal-like code and a specialized
kernel.

Portability: Difficult. The implementation relys heavily on use
of the GOP-302 specialized hardware.

Related routines: score.
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