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ABSTRACT

Statistical signal processing approaches based on Independent Component Analysis (ICA) algorithms for clutter
reduction in Stepped-Frequency Ground Penetrating Radar (SF-GPR) data are presented. The purpose of the
clutter reduction is indirectly to decompose the GPR data into clutter reduced GPR data and clutter. The
experiments indicate that ICA algorithms can decompose GPR data into suitable subspace components, which
makes it possible to select a subset of components containing primarily target information (like anti-personal
landmines) and others which contain mainly clutter information. The paper compares spatial and temporal
ICA approaches on �eld-test data from shallow buried iron and plastic anti-personal landmine dummies. The
data are acquired using a monostatic bow-tie antenna operating in the frequency range from 500 MHz to 2.5
GHz.

Keywords: Anti-personal landmine detection, ground penetrating radar, independent component analysis,
statistical signal processing, clutter reduction.

1. INTRODUCTION

The Ground Penetrating Radar (GPR) is widely used in the application of detection of landmines. The ad-
vantage of using a GPR is given by the fact that a GPR is able to detect buried objects in the received
electromagnetic �elds scattered from the ground. This property makes the GPR able to detect landmines, and
in particular anti-personal landmines of plastic with a low content of metal1, 2. Mostly, those kinds of landmines
are buried close to the surface of the ground, where the detection of objects is very weak due to the strong
clutter scattering from the ground surface. Clutter hampers the detection of the landmines and therefore gives
a signi�cant problem for automatic landmine detection systems. In general, the clutter that e�ects a GPR
can be de�ned as those signals that are unrelated to the target scattering characteristics but occupy the same
frequency band as the targets. Clutter can be caused by multiple re
ections, e.g., in the antenna, between the
antenna and the ground surface, and the non-mine targets buried in the ground. However, on the detection of
shallow buried landmines the ground surface clutter is the strongest and most signi�cant clutter. To increase the
detection of shallow buried objects it is therefore necessary to deploy proper ground surface clutter reduction
methods on the GPR signals to enhance the detection of shallow buried landmines.

The literature suggests a number of clutter reduction methods, such as likelihood ratio testing3, parametric
system identi�cation4{7, wavelet packet decomposition8, 9, subspace techniques10{14, and simple mean subtrac-
tion1. However, many of these fail to detect shallow buried landmines, mostly because of the statistical nature
of the clutter, e.g., the ground surface is not perfectly 
at or even relative smooth. Another problem is that
many of the methods use reference signal estimates of the signature of a landmine. These reference signals are
used to remove signal that are unrelated to the reference. However, a target signal which has little correlation
with the reference signals may not be detected, hence, be classi�ed as clutter.
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To reduce the clutter we have suggested another promising approach11, 12 based on decomposition of the
GPR signals into clutter and landmine signals using Principal Component Analysis (PCA) and Independent
Component Analysis (ICA). In this work we focus on reducing the ground surface clutter using statistical
unsupervised learning methods based on spatial and temporal ICA. The basic idea using ICA is to decompose
the received GPR signals into subspaces of clutter signals and landmine signals, respectively. Previous work12

addressed the use of temporal ICA only.

In this paper we extent the work by considering spatial ICA and more elaborate experimental studies.
Section 2 presents the spatial and temporal ICA based clutter reduction methods and section 3 describes for
selecting of relevant ICA components. Finally, section 4 provides a comparative study of the presented methods,
which are tested on GPR-data collected at an indoor GPR measurement facility at the Technical University of
Denmark.

2. CLUTTER REDUCTION USING INDEPENDENT COMPONENT ANALYSIS

To reduce the clutter in the GPR data we focus on unsupervised statistical methods based on spatial and
temporal Independent Component Analysis (s-ICA and t-ICA). The s-ICA and t-ICA method are two com-
plementary ways to subspace decompose a multi-channel signal into a set of weighting vectors (eigenimages)
and a associated set of time signals using ICA15{17. The s-ICA and t-ICA method are inspired by a recently
suggested clutter reduction method based on Principal Component Analysis (PCA11, 12). The s-ICA and t-ICA
method for clutter reduction resembles that of the PCA method. The major di�erence is that the subspace
formed by ICA is not orthogonal as in PCA. Moreover, the independent components (IC's), which are the
counterparts of the Principal Components (PC's), are statistically independent. We thus expect the IC's to
have a more distinct time and spatial localization. From recently presented work12, t-ICA clearly shows a more
distinct time localization than PCA. Brie
y, the s-ICA and t-ICA basically decomposes GPR signals into a
set of eigenimages and associated time signals. The s-ICA �nds independent eigenimages and a associated set
of time signals, whereas the t-ICA �nds independent time signals and a associated set of eigenimages. From
the s-ICA and t-ICA, clutter reduction is then obtained by selecting components, which contain landmine-like
signatures only.

To employ the ICA subspace decomposition methods on the GPR data, a signal space must be de�ned. The
space observed is spanned by the multi-channel GPR time-domain signals as expressed by the signal matrix
X 2 RP�N expressed by

X = fXp;ng = fxp(n)g = fxi;j(n)g = [x(1);x(2); � � � ;x(N)]; (1)

where P is the number of time-domain signals, which are received by scanning the GPR above the ground surface
in the x- and y-direction, N is the number of samples in each of the received time-domain signals, and xi;j (n)
is the time-domain signal received at the antenna located at position

�
x; y
�
=
�
x = (i � 1)4x ; y = (j � 1)4y

�
,

where i = 1; 2; � � � ; I , and j = 1; 2; � � � ; J . 4x and 4y are the antenna location step size in the x - and y-
direction, respectively, and p = i + (j � 1)I . I and J is the number of antenna locations in the x- and
y-direction, respectively. In general we expect that the mean value of X is equal zero, EfXg = 0. Hence, we
may rede�ne xp(n) to xp(n) = �xi;j(n), where

xp(n) = �xi;j(n) = xi;j(n)�
1

IJ

IX
i=1
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xi;j(n); p = i+ (j � 1)I; i 2 [1; I ]; j 2 [1; J ]; p 2 [i; JI ] (2)

That is, in the signal matrix X, i.e., xp(n), n = 1; 2; � � � ; N , is the p'th received time-domain signal, or in
practice, the p'th received time-domain signal subtracted by the mean value of the ensemble of received time-
domain signals. Equation 2 is also known as the mean-subtraction clutter reduction method1.

PCA. In order to compare and in order to provide at reduced rank data set19, 20 as input to the s-ICA and
t-ICA, we �rst employ the PCA on the data set. PCA was executed using singular value decomposition (SVD),

X = UDV > =

NX
i=1

uiDi;iv
>

i ; Xp;n =

NX
i=1

Up;iDi;iVn;i (3)



where the P �N matrix U = fUp;ig = [u1;u2; � � � ;uN ] and the N �N matrix V = fVn;ig = [v1;v2; � � � ;vN ]

represent orthonormal basis vectors, i.e., eigenvectors of the symmetric matricesXXT and XTX, respectively.
D = Di;i is an N �N diagonal matrix of singular values ranked in decreasing order, as shown by Di�1;i�1 �

Di;i;8i 2 [2;N ]. The SVD identi�es a set of uncorrelated time signals, the principal components (PC's):
yi = Di;ivi, enumerated by the component index i = 1; 2; : : : ; N and yi = [yi(1); � � � ; yi(N)]>. That is, from
the PCA we can write the observed signal matrix as a weighted sum of �xed eigenvectors (eigenimages), ui,
that often lend themselves into direct interpretation. The PC's and the eigenimages are used as inputs to the
t-ICA and s-ICA, respectively. The dimension of the PCA data set will be d � N . That is, we model X only
from non-zero eigenvalues20.

Temporal ICA. t-ICA embodies the assumption that each PC, yi, is a linear combination of M temporal
independent time signals, the IC's. The t-ICA is processed in two steps. First, X is projected to a subspace

spanned by M , M � d, selected PC's., e.g., the �rst M PC's. That is, Y = eU>

X, where eU = [u1;u2; � � � ;uM ]
and Y is an M �N matrix, Y = [y1;y2; � � � ;ym]

>. Hence, the t-ICA problem is de�ned as

Y = AtSt; (4)

where At is the M �M matrix of mixing coeÆcients and St is the M �N matrix of independent time signals,
(IC's). Secondly, the mixing matrix, At, and the matrix of independent time series, St, are estimated16, 17.

The original signal matrix is reconstructed as bX = W tSt =
PM

i=1wtisti , where W t = eUAt is the matrix
of eigenimages. sti = [sti(1); � � � ; sti(N)] and wti = [wti(1); � � � ; wti(P )]

> is the i'th independent time signal
and associated eigenimage, respectively. From the t-ICA clutter reduction can then be obtained by selecting
components which mainly contain landmine-like signatures and then reconstruct the signal matrix, bX . A more
detailed description of this procedure is given in Section 3.

Spatial ICA. s-ICA embodies the assumption that each eigenimage, ui, is composed of a linear combination
of M spatially IC eigenimages. The s-ICA is done in two steps. First is X projected to a subspace spanned
by M selected PC's., e.g., the �rst M PC's, i.e., similar to the t-ICA, where we get Y and have eU . Then, the
s-ICA problem is de�ned as

eU>

= AsSs; (5)

where As is the M �M matrix of mixing coeÆcients and Ss is the M �P matrix of independent eigenimages,
IC's. Secondly, the mixing matrix, As, and the matrix of independent eigenimages, Ss, are estimated16, 17 in a

similar way as for the t-ICA. The original signal matrix is reconstructed as bX>

=W sSs =
PM

i=1wsissi , where
W s = Y As is the matrix of time signals. ssi = [ssi(1); � � � ; ssi(P )] and wsi = [wsi(1); � � � ; wsi(N)]> is the i'th
independent eigenimage and associated time signal, respectively. s-ICA clutter reduction resembles that of the
t-ICA clutter reduction (refer to Section 3).

But how do we get As, At, Ss and St? The literature provides a number of algorithms for estimating
the A mixing matrix and the S source matrix�. Basically they can be divided into two families in which the
�rst deploy higher (or lower) order moments of non-Gaussian sources, whereas the other family uses the time
correlation of the source signals. In the present case we expect that the sources are both non-Gaussian and
colored. We deploy a member from the �rst family: the widely used Bell-Sejnowski16 algorithm using natural
gradient learning.

3. SELECTION OF COMPONENTS AND RECONSTRUCTION

The clutter reduction is obtained by selecting components that have landmine-like signatures only. The features
we can base our selection on are temporal features and spatial features. We suggest three selection methods,
which are based on temporal features, spatial features, and combined temporal and spatial features.

Temporal Features : selecting components only using information from W s and St. Consider the pro-
jection onto the subspace spanned by K selected time signals which mainly contain information about the

�For a resent review the reader is referred to21.



landmine object, i.e., W t = X eS>t , eSt = [sti1 ; sti2 ; � � � ; stiK ]
> for the t-ICA, and Ss = fW>

s X
>, fW s =

[wsi1
;wsi2

; � � � ;wsiK
] for the s-ICA. The selection of the components can be done by inspecting the time sig-

nals only. If we know were the ground surface is located in time, we then remove those time signal components
that peaks before and at the ground surface. The clutter is subsequently reduced by reconstructingX from the
subspace as given by

bX =W t
eSt ; bX>

= fW sSs (6)

for t-ICA and s-ICA, respectively.

Spatial Features. Selecting components only using information from W t and Ss. Consider the pro-
jection onto the subspace spanned by K selected eigenimages which mainly contain information about the

landmine object, i.e., St = fW>

t X, fW t = [wti1
;wti2

; � � � ;wtiK
] for the t-ICA, and W s = X> eS>s , eSs =

[ssi1 ; ssi2 ; � � � ; ssiK ]
> for the s-ICA. The selection of the components can be done by inspecting the eigenim-

ages only. We then remove those components that show no spatial landmine-like signatures. The clutter is
subsequently reduced by reconstructing X from the subspace as given by

bX = fW tSt ; bX>

=W s
eSs (7)

for t-ICA and s-ICA, respectively.

Spatial Temporal Features. Selecting components only using information from W s and St, W t, and
Ss. That is, selection of components that shows both temporal and spatial landmine-like signatures. Consider
a subspace spanned by K components as in the spatial and the temporal feature selection methods. Then
we select components that show landmine-like signatures in both eigenimages and time signals. The clutter is
subsequently reduced by reconstructing X from the subspace as expressed by equation 6 and 7.

The overall objective of the ICA methods is automatic detection of the landmines by automatic selection of
the components based onWs, Ss,Wt, and St. However, this work is done on a very small data set. Therefore,
the selection of the components is done by visual inspection of eigenimages and time signals.

4. CASE STUDY: M56 IRON AND PLASTIC LANDMINE DUMMIES

The comparative study of the t-ICA and s-ICA methods for clutter reduction in GPR data was performed on
�eld-test Stepped-Frequency GPR data. The �eld-test data was collected using a monostatic bow-tie antenna
operating in the frequency range from 500 MHz to 2.5 GHz. The data was acquired using a HP8753A network
analyzer. The bandwidth of the antenna determines the resolution, which is approximately 7.5 cm in free-space.
The frequency-domain data was Fourier transformed to the time-domain using a sampling frequency of 10.24
GHz, which corresponds to a free-space sampling of 2.9 cm in the depth direction, which is below the resolution
set by the antenna bandwidth. In a measurement area of 126 cm � 90 cm M56 landmine dummies of iron and
plastic (�lled with bees wax) were buried in the center of the �eld in relative wet soil 5 cm below the surface.
The dimension of the landmine dummies are: diameter 5.4 cm, and height 4 cm. The measurement area was
scanned so every antenna positions were located (4x = 1 cm) � (4y = 1 cm) from each other.

In Figure 1 and Figure 2 are the PCA results shown. The Figures show the �rst M = 21 eigenimages,
ui, i = 1; 2; : : : ;M , and associated PC's, yi, i = 1; 2; : : : ;M , for the iron dummy and the plastic dummy,
respectively. In total we got d = 24 and d = 23 eigenimages and associated PC's for the iron dummy and for
the plastic dummy, respectively. However, the last eigenimages and PC's shows only noise-like textures, as also
are shown from the �rst 21 eigenimages and PC's due to the fact that the later eigenimages and PC's shows
noise-like texture only. All the components are sorted after variance. That is, the �rst component contributes
most to X, where as the last component has the lowest contribution to X. The variance is given by Di;i for
the i'th component. For the signal matrix, X, we have P = 127� 91 = 11557 antenna positions. That is, P
received time-domain signals at P locations. The number of samples, N , was 62. The eigenimages and PC's
are used as inputs to the s-ICA and t-ICA methods.

The PCA end up with a data set of dimension d = 24 and d = 23 for the iron and plastic dummy, respectively.
The higher the dimension, d, is, a higher number of components to select exist. Further, the time-domain signals



from one landmine may be spread out in more than one component. This makes the selection of components
rather complex. The solution to this is to compress the information into fewer components. That is, having a
subspace decomposition method that is able to lower the dimension of the data set without loosing information,
e.g., a subspace decomposition method that seeks the most optimal dimension. However, the Bell{Sejnowski
ICA (BS-ICA) is not able to reduce the dimension of the data set in that way. Therefore, one way to reduce
the number of dimensions is to reduce the number of inputs, with the cost of information. In order to see how
the ICA performs on smaller subspaces, e.g., is it possible to compress the landmine-like signatures into fewer
components, the t-ICA and s-ICA were tested on subspaces using the �rst M = 15, M = 10, and M = 5
eigenimages, ui, and associated PC's, yi. These eigenimages and PC's were selected due to the fact that later
eigenimages and PC's than M = 15 shows only clutter-like signatures and that the contribution from those
components in X is small (low variance).

In Figure 3 and Figure 4 are shown the �rst 12 components from the t-ICA and s-ICA using the �rstM = 15
PC's, eY = [y1;y2; � � � ;y15]

>, as input to the t-ICA and �rst M = 15 eigenimages, eU = [u1;u2; � � � ;u15], as
input to the s-ICA. In Figure 3 some of the eigenimages of the iron dummy experiments shows strong landmine-
signatures, in particular eigenimage number 5 and 6 for the t-ICA and number 6 for the s-ICA. However, the
signatures are more clearly pronounced for the s-ICA. Further, fewer eigenimages for the s-ICA shows landmine-
like signatures. That is, the t-ICA spread the landmine information out in many components, whereas the s-ICA
is able to compress the information in to few components. The time signals shows better localization for the
t-ICA than for the s-ICA. That is, for the t-ICA the eigenimages can be associated with a particular depth.
From the results it is shown that the t-ICA provides a better time separation, whereas the s-ICA provides at
better spatial separation. For the M56 plastic dummy results, shown in Figure 4, similar results are obtained.
However, the landmine-signature is less pronounced due to the low scatter from the landmine.

In Figure 5 to Figure 7 are the results of the clutter reduction shown. The images shows the total power
of the �rst 30 samples of the received GPR time signal at each antenna location. That is, bXppow =

PL

n=l x̂
2
p;n.

The power is calculated using a rectangular window of size L = 30. By using the window size L = 30, we
cover the area from the input of the antenna to approx. 20 cm under the ground surface. From the results in
general it is clear that the selection method based on combined spatial and temporal features gives the best
performance, particular when choosing M = 15 components. It is also shown that the t-ICA has a better
performance than the s-ICA, when using only temporal features, and the s-ICA has better performance when
using only spatial features. This is true for both the iron dummy and plastic dummy. However for the plastic
dummy the best result is obtained when choosing a subspace of M = 5 components. Why the performance is
poor at small subspaces may be found in the simple way we select the inputs to the s-ICA and t-ICA. From
Figure 1 and Figure 2 it is clear that most of the landmine information is in component 5 to 12. By removing
those components, which we do when we select the �rst M = 5 components, we will loose information. In
Figure 6 and Figure 7 are mesh plots shown, they clearly shows that the clutter is reduced in the GPR data.

5. CONCLUSION

This paper provided a comparative study of spatial and temporal ICA for clutter reduction. The ICA methods
were based on the Bell{Sejnowski ICA. From the results we have that the t-ICA provides more peaky time
signals than the s-ICA, due to the fact that the t-ICA gives independent time signals. Hence, the t-ICA shows
better performance in time localization. However, s-ICA shows more landmine-like eigenimages than the t-ICA,
due to the fact that the eigenimages are independent in the s-ICA. Hence, s-ICA shows better performance
in spatial localization. Three component selection methods were suggested and compared. They were base on
temporal feature selection, spatial feature selection, and combined spatial and temporal feature selection. The
combined showed best performance. That is, the best clutter reduction is obtain by selecting components were
both eigenimages and associated time signals shows landmine-like signatures. Future studies will concentrate
on ICA methods based on both spatial and temporal features and methods for automatic component selection.
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Iron Dummy PCA Results
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Figure 1. Eigenimages (xy-plane), ui, and associated PC's, y
i
, for the M56 iron dummy. Only the �rst M = 21

eigenimages and associated PC's are shown. It should be noticed that it is the power of the PC's that are shown.

The power is calculated using a non-causal Kaiser window of size 3 with the characteristic parameter set to 2�. The

eigenimages shows very strong landmine signatures in a few eigenimages, e.g., eigenimage 5 and 6, and the associated

PC's also peaks in a depth corresponding to the buried depth (1.8 nanosec.). Eigenimage 1, 2, and 3 and associated PC's

shows strong ground surface signature. The eigenimages shows the variations in the ground surface and the associated

PC's peaks at the ground surface (1.0 nansec.). The remaining eigenimages and PC's shows more mixed clutter-landmine

signals. However, they have much less power. It is clear that the separation in time is poor. The eigenimages and PC's

are used as inputs to the s-ICA and t-ICA.
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Figure 2. Eigenimages (xy-plane), ui, and associated PC's, y
i
, for the M56 plastic dummy (�lled with bees wax). As

for the M56 iron dummy, it is only the �rst M = 21 eigenimages and associated PC's that are shown. Again it should be

noticed that it is the power of the PC's that are shown. The power is calculated using a non-causal Kaiser window of size

3 with the characteristic parameter set to 2�. Due to the weak scattering from the plastic dummy the eigenimages shows

very weak landmine signatures. However, eigenimage 5 and 6 shows landmine signatures, and the associated PC's also

peaks in a depth corresponding to the buried depth (1.8 nanosec.). Eigenimage 1, 2, and 3 and associated PC's shows

strong ground surface signature. The eigenimages shows the variations in the ground surface and the associated PC's

peaks at the ground surface (1.0 nansec.). The remaining eigenimages and PC's shows more mixed clutter-landmine

signals. However, they have much less power. It is clear that the separation in time is poor. The eigenimages and PC's

are used as inputs to the s-ICA and t-ICA.
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Figure 3. Eigenimages (xy-plane) and associated time signals for the t-ICA and the s-ICA having the �rst M = 15

PC's, y
i
, and eigenimages, ui, as input, respectively. Only the �rst eigenimages and time signals are shown. From the

eigenimages and time signals it is clear that the t-ICA provides a good time separation, and the s-ICA provides a good

spatial separation.
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Figure 4. Eigenimages (xy-plane) and associated time signals for the t-ICA and the s-ICA having the �rst M = 15

PC's, y
i
, and eigenimages, ui, as input, respectively. Only the �rst eigenimages and time signals are shown. From the

eigenimages and time signals it is clear that the t-ICA provides a good time separation, and the s-ICA provides a good

spatial separation.



Landmine Dummy Clutter Reduction Results
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Figure 5. Reconstructed power images. In general, it is clear that the component selection method based on com-

bined spatial and temporal features shows the best performance. The t-ICA and s-ICA are compared with the PCA

method11, 12. The t-ICA and in particular the s-ICA show both better performance than the PCA and the mean sub-

traction method. It should be noticed when using the component selection method based on temporal features the t-ICA

shows best performance, and for the component selection method based on spatial features the s-ICA shows best perfor-

mance. In overall, the s-ICA combined with the component selection method based on combined spatial and temporal

features show the best performance. The landmine dummy is located in the center of each image.
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a) Mean b) t-ICA, 15 PC's, Temp.
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Figure 6. a): mesh plot of mean-image. b): mesh plot of the t-ICA using 15 PC's as input and temporal feature

component selection. c): mesh plot of the s-ICA using 15 EI's as input and spatial feature component selection. d):

mesh plot of the s-ICA using 15 EI's as input and spatial/temporal feature component selection.

Plastic Dummy (Bees Wax) Clutter Reduction Results
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c) s-ICA, 15 EI's, Spa. d) s-ICA, 5 EI's, Spa./Temp.
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Figure 7. a): mesh plot of mean-image. b): mesh plot of the t-ICA using 15 PC's as input and temporal feature

component selection. c): mesh plot of the s-ICA using 15 EI's as input and spatial feature component selection. d):

mesh plot of the s-ICA using 5 EI's as input and spatial/temporal feature component selection.


