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Abstract. In a medically motivated sun-exposure study, ques-
tionnaires concerning sun-habits were collected from a number of
subjects together with UV radiation measurements. This paper
focuses on identifying clusters in the heterogeneous set of data for
the purpose of understanding possible relations between sun-habits
exposure and eventually assessing the risk of skin cancer. A general
probabilistic framework originally developed for text and web min-
ing is demonstrated to be useful for clustering of behavioral data.
The framework combines principal component subspace projection
with probabilistic clustering based on the generalizable Gaussian
mixture model.

INTRODUCTION

In the studied sun-exposure experiment, questionnaires concerning sun-habits
were collected from 187 subjects. In addition, daily UV radiation were mea-
sured at a 10 minute sampling rate using a specially designed “sun-watch”
worn by the subjects. The ultimate objective is to relate the heterogeneous
data of sun-habits, UV dose and other data (e.g., medical records) with the
purpose of assessing the risk of skin cancer for individual subjects. This
paper focuses on the sub-task of identifying relevant structure in the com-
bined data set of categorical sun habit diaries and real valued daily UV dose
measurements. We aim at identifying relevant structure using hierarchical
probabilistic clustering, which allows for interpretation of various features
representations, e.g., the role of sequence information. Although the method



presented in [7] can be invoked for hierarchical clustering, we resort to sim-
ple probabilistic clustering in this work. The diary records can be viewed
as a vector of categorical data, whereas the daily UV dose is a continuous
measurement, which is measured for different persons during 138 days. The
long-term theoretical aim is to identify a hierarchical probabilistic clustering
model which efficiently handles combinations of categorical and continuous
data. However, the idea of the present paper is to study the capabilities of
our flexible multimedia text and images data mining framework [4, 5, 6, 7, 9]
for analysis and understanding of behavioral data.

MODELING FRAMEWORK

Suppose that we have M different feature modalities which are represented
by feature (column) vectors, z,, = [Zm1, " s ZmL,.], m € [1; M] with dimen-
sions L,,, and let z = [z, -, zp] be the complete data vector. Behavioral
features will be represented by a number of feature modalities and the UV
dose measurement by yet another. Probabilistic clustering aims at modeling
the probability density of the complete data vector, p(z), with the purpose
of identifying meaningful cluster structure.

Preprocessing

Conditioning. Let B,, = {1,2,--, L, } be the L,, dimensional event space
for feature modality m. In this work, z,,;, i € By, will represent the likelihood
that event i occurred, as given by z,, = Z,,/||Zm||2 where Z;,,; is the number
of occurrences of event i, i.e., a histogram. This representation is motivated
by previous work on multimedia mining [4, 5, 7, 9] as it provides insensitivity
to the length of the record, and further, unit length normalization || - || pro-
vides a more uniform spherical distribution of features than, e.g., frequency
normalization ), 2y = 1.

Consider a training data set D = {z(n)})=, of Ni, examples. In order
not to eliminate an arbitrary scaling between feature modalities the feature
vectors are further studentized as @, (n) = (zm(n) — Up)/Sm, where u,, =

Nt;l Znep Zm(n), S%n = (Lm)il Zi(Ntr - 1)71 Znep(zmi(n) - Nmi))2-

Subspace Projection. In order to achieve models with high generaliza-
tion ability we pursue the idea of Latent Semantic Indexing (LSI) [2], which
was developed and successfully applied for text and multimedia mining, see
e.g., [4, 5]. For each modality the feature space is projected onto a latent
eigenspace. Define the N, x L, training data matrix
X = [z (1); ;2] (Niy)] and perform a singular value decomposition
X,,=USV'. Assuming Ny, > L, then U is the Ny, X L, matrix of left
eigenvectors as columns, S is the L,, X L,, matrix of singular values arranged
in decreasing order, and V is the L,, x L,, matrix of right eigenvectors as
columns. The selection of subspace dimensions, d,, < L,, is done separately



for each modality using the probabilistic PCA formulation described in [3]
in which there is d,, dimensional signal space with full covariance structure
and a L,, — d,, dimensional noise space with diagonal covariance structure
02 sise.m - I The subspace dimension is selected to minimize the generalization
error associated with the probabilistic PCA model. The feature vector is thus
projected onto the d,, dimensional signal subspace y = VsTig:c and the noise
subspace is ¥ = Vpgise® Where V' = [Viis, Vinoise] and Vg corresponds to
the d,, largest singular values.

Window size selection

The analysis of sun exposure data is performed during a period of 138 days
by using an analysis window of a number of days, and the optimal size of
the window is an important issue which needs to be addressed. For example,
taking the full set of records belonging to a given person will produce a set
of points in the space that will not form any particular clusters, since each of
them will contain most of the observed patterns. On the other hand, taking
one diary record at the time will significantly increase the computational
complexity and preclude the possibility of analyzing time effects. We invoke
the generalization scheme is used to select the optimum window size, see [3].

For all modality histogram feature vectors % calculated over the different
window sizes w, the common feature spaces L,, are selected by removing low
occurring terms, which enables the comparison of unsupervised generalization
errors. For each window size, the modalities are projected onto optimal d,,
dimensional signal and L,,, —d,;, dimensional noise-subspace using the method
described in the previous paragraph. The resulting density for x is then given
by

M
p) =py) - [[ pvm) (1)

where p(y) is the density of the Guassian mixture model described below,
and p(v) = N(0,02 60, - I). The window size is selected by minimizing
the generalization error estimated from a test set of Niest samples, that is,

— Ntest
G= _Nteslt > one1 logp(z(n)).
Unsupervised Gaussian Mixture Model

In order to pursue probabilistic clustering we deploy the Gaussian mixture
model is the joint signal subspace y = [y, - ,y),] defined in [4, 6, 8].

K
p(y) =Y p(ylk) - p(k) (2)
k=1

where p(y|k) = N (,, ) are Gaussian densities, and p(k) are nonnegative
mixture proportions with ), p(k) = 1. The parameters p; and Xj are es-
timated from the training data set D = {y(n)}"*, by minimizing negative



log-likelihood cost function £ = —N* 3" log(p(y(n))) through a modified
expectation-maximization method. In order to ensure generalizability p; and
3, are estimated from the disjoint sets of observations and the optimal num-
ber of mixture components is found by the AIC-criterion [1]. The complete
generalizable Gaussian mixture algorithnm (GGM) is described in [4, 7].

Model Interpretation

In order to find key-features corresponding to each of the clusters, centers o,
are back-projected to the original space of normalized feature histograms!.
In the case when projection does not have positivity constraint the resulting
normalized histogram vector contains negative values which can be believed
to be of no importance, hence are set to zero. The key-features are then
selected as the features which explain the majority cumulative feature distri-
bution mass.

The used framework makes it possible to describe the behavior of every
new person in the experiment by using both cluster assignment and associ-
ated key-features. The confidence of assigning the person Per into the given
cluster k can be expressed by the posterior probability:

pklPer) = o= 3" plbly(n) - py(w), 3)
plkly() P(R)
plkly(n) o (@

where y(n) is a feature vector for combined modalities of the size d, n =
1,2,..., Nper, where Np,, is the number of samples for person Per.

SUN EXPOSURE STUDY

A specially designed device, measuring received sun radiation (PID), was
worn by the group of subjects. In addition, subjects were requested to fill
out a diary concerning their sun behaviors during each day of the study (for
more details, see [10]). Eight selected questions are presented here:

Variable Values

1. Holiday yes/no

2. Abroad yes/no

3. Sun Bathing yes/yes-solarium/no

4. Naked Shoulders yes/no

5. On the Beach/Water yes/no

6. Sun Factor Number no/26 values in range 1-60
7. Sunburned no/red/hurts/blisters

8. Size of Sunburned Area mno/little/medium/large

L Another way would be to project the most probable feature vectors from each of the
clusters identified, e.g. by Monte Carlo sampling.



Thus, two types of data were collected: continuous measurements of the sun UV
radiation (PID) and categorical diary records. Each diary record is represented by
an 8 dimensional vector and describes a specific behavior of the particular person
during the particular day. The total number of possible events for the presented
set of questions equals 20736, however, only a small fraction of 423 events actually
exist in the investigated data set.

CLUSTERING OF THE SUN EXPOSURE DATA
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Figure 1: Framework for clustering: 1) the data is windowed into several histogram
vectors and together with the co-occurrence matrix and the PID (UV dose) his-
togram forms a pattern/window matrix. 2) data is then normalized and projected
onto the orthogonal d,, dimensional signal spaces. 3) the Gaussian mixture algo-
rithm is used to cluster the data. 4) In order to interpret the results, cluster centers
are back-projected to the original space where key-features are identified.

Figure 1 presents the general framework of preprocessing, clustering and data
postprocessing. In the first step, data is windowed creating vectors that contain
data from consecutive days.

In the study we define three different modalities. Diary and sun exposure
histograms are defined as zm = >.;7, 6(2m, — i), i € B. The sun exposure mea-
surements were quantized into 100 bins before computing the histogram. Further,
we used the co-occurrence histogram of diary records, zm,» = > ;2" 6(2m, — 1) -
0(Zm,i+r — j), where 7 is an lag and i,j € B are co-occurring events. We merely
used lag 7 = 1 co-occurrence feature. There are 207362 possible co-occurrences and
again only small fraction is present in the actual data set.

All modalities are screened against rare patterns by removing those which have
occurrence below a certain threshold.



RESULTS

The set of 19171 diary records and corresponding PID values were selected for the
clustering experiments. Data are complete i.e., there is no missing records or PID
values. The missing record problem for the current data set was partly addressed
in [10]. The sun behaviors of 187 subjects during summer period were collected.
Of this 10 persons were hold out for evaluation.
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Figure 2: The generalization error for different window sizes. The mean curve is
an average over 50 experiments with the cross-validation 80% for the training set
and 20% for the test set. Errorbars show the deviation from the mean curve.

Figure 2 presents the generalization error computed for different window sizes.
The curve is averaged over 50 experiments in which training was performed on the
random chosen 80% of the data set and the generalization error was estimated on
the remaining part. Window of the size 5 gives the lowest generalization error,
however, any choice in the range 5-10 also will give reasonable results.

For the window of size 5 the training and the test data set contains 1346 and
337 samples, respectively. Each sample consist of the diary histogram, the co-
occurrence matrix and the PID histogram. The diary histogram is reduced from
423 to the 25 features that contain 90% of the total mass. In a similar way, the
PID histograms are reduces from 100 to 75 features and the co-occurrence matrix
is reduced from 1451 to the 36 most often occurring pairs of patterns?.

Figure 3 shows the generalization error for individual modalities calculated with
respect to different number of principal components. The mean curve is an average
over 15 experiments and 80% of the set was used for the training set and 20% for
the test set. Errorbars show the deviation from the mean curve. The minimum

2Tn the case of the co-occurrence histogram, the threshold for removing patterns is 80%
of the mass.
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Figure 3: Subspace selection. The generalization error for the individual modalities
calculated for different number of principal components. The mean curve is an
average over 15 experiments with the cross-validation 80% for the training set and
20% for the test set. Errorbars show the deviation from the mean curve. The
minimum of each of the curve shows optimum size of the signal subspace.

of each of the curves show optimum size for the signal subspace. For the diary
histograms 9 principal components is used, for the co-occurrence 8 and for the PID
histograms 25 principal components are used.

In the experiments the hard assignment GGM model [4] is used, i.e., the pa-
rameters of the clusters p;, and X are estimated from the set of samples assigned
to each of the clusters. In order to achieve a more detailed cluster structure one
could use soft GGM [7, 9].

[ #. ] Key-Feature | Probability | Description |
1. 11000000,10000000-10010000, 0.08,0.07, holiday
10010000,11000000-11000000 0.06,0.04
2. 10011000,10110000, 0.07,0,04, | holiday,sun bathing, naked
10111000,< 05.75 >prp, 0.03,0.02 shoulders,high sun exposure
3. 10001000,< 0.19 >prp, 0.11,0.08 holiday on the beach,
10010000,10111000 0.07,0.06 low sun radiation
4. 10010000,< 0.19 >prp, 0.09,0.08 holiday and working, naked
00010000, 10000000-10010000 0.04,0.04 shoulders, low sun radiation
5. 10000000-10010000,10010000 0.12,0.11, holiday, naked shoulders,
10010000-10000000,< 6.8 >p7p, | 0.08,0.04 high sun radiation
6. 00000000-00000000, 0.21, working, no sun
00000000,< 0 >prpD, 0.21,0.13

Table 1: Key-features. In the first column the cluster number is displayed. Second
column contains the most probable patterns for the cluster. The presented feature
numbers are equivalent to the set of questions given in the section Sun Ezposure
Study. For example: feature 10111000 gives the following set of answers: holi-
day - yes, abroad - no, sun bathing - yes, naked shoulders - yes, on the beach -
yes, remaining questions 6,7,and 8 - no. Patterns corresponding to the PID his-
tograms are marked with the subscript ” PID”. The average value corresponding
to the quantized number is given here. The lowest observed value is 0 and the
highest 7.5. The co-occurring features are shown with the dash between them e.g.,
”00000000-10000000” means that a feature - working is followed by feature - hol-
iday. Third column gives the probabilities for the key-features and fourth column
presents general description of cluster based on the key-features.

The optimal model has 6 clusters described by key-features given in the tale
1. The key-features, associated probabilities and description of the clusters are
provided. In the first column the cluster number is displayed. Second column
contains the most probable features for the cluster. The presented feature numbers
are equivalent to the set of questions given in the section Sun Ezposure Study. For
example: feature 10111000 gives the following set of answers: 1. holiday - "yes”, 2.



abroad - "no”, 3. sun bathing - "yes”, 4. naked shoulders - "yes”, 5. on the beach
- ”yes”, remaining questions 6,7,and 8 - no. Patterns corresponding to the PID
histograms are marked with the subscript ” PID”. The quantized number is given
here. The lowest observed value is 0 and the highest 7.5%. The co-occurring features
are shown with the dash between them e.g., ”00000000-10000000” means that a
feature - working is followed by feature - holiday. The third gives the probabilities
for the key-patterns and the fourth column presents a general description of the
cluster based on the key-patterns.
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Figure 4: Cluster probabilities calculated for the 10 test persons Eq. (3). Person
index is shown on the x-axes and different grey level colors corresponds to six
clusters. Associated key-patterns are given in table 1.

Figure 4 presents the cluster probabilities calculated according to the Eq. 3 for
the 10 test subjects. The data (consisting of 5 consecutive days of diaries returned
by particular subjects) from each person is assigned to the one of the 6 clusters
based on the posterior probability p(k|Per), Eq. (3). Together with key-features
presented in table 1 it gives a good description of the behavior of the particular
persons during the whole period of the experiment. For all test persons there is a
large probability for the cluster no. 6, i.e., the person is at work and do not get sun
exposure. Also others behaviours are identified. For example, person no. 160 has
a high probability component for cluster no. 3 which is holidays on the beach but
with low sun radiation. Persons no. 34 has high content of cluster no. 2 that means
holiday abroad and high sun radiation, and cluster no. 3 and 4 - holidays with low
sun radiation.

3The highest observed quantized PID value in the data is equal to 30, however, due to
the low occurrence, values higher than 7.5 were removed.



CONCLUSION

This paper discusses using the Latent Semantic Indexing framework combined with
the Gaussian Mixture Model for processing and clustering categorical data. More-
over, it provides the possibility for combining multiple data types into a common
vector space framework. We successfully applied the method to analyze a combina-
tion of categorical diary data and real valued sun radiation measurements. All the
used sources of information contribute to the final quality of the clustering. Using
the analogy to textmining, we proposed methods for interpretation of the identified
clusters. This framework also allows interpretation of the behaviour of the new
subjects in the experiment.
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