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ABSTRACT

This paper demonstrates that (near) real-time object track-
ing can be accomplished by the deformable template model;
the Active Appearance Model (AAM) using only low-cost
consumer electronics such as a PC and a web-camera. Suc-
cessful object tracking of perspective, rotational and trans-
lational transformations was carried out using a training set
of five images. The tracker was automatically initialised by
a described multi-scale initialisation method and achieved a
performance in the range of 7-10 frames per second.

Keywords: Deformable Models, Model Initialisation,
Real-time tracking, Motion, Active Appearance Models.

1. INTRODUCTION

Traditionally, object tracking required special-tailored seg-
mentation algorithms in order to meet the real-time con-
straints of a motion capture system. However, as the com-
putational performance has increased, models of increasing
complexity have been applied for tracking purposes.

In this paper we apply a generative model capable of synthe-
sizing near-photo realistic images of the object class being
tracked – i.e. faces, hands et cetera. The basis for this is
sampling of shape and texture in a training set. This is the
Active Appearance Model (AAM) [1, 2], which is generally
considered a fairly complex deformable template model and
has previously been applied to still images of faces [1, 6],
brain MRI [4], cardiac MRI [18, 16], bones [17, 16] et
cetera. However, as we shall see in the following the AAM
is also suitable for live tracking in video sequences.

The paper is organised as follows: section 2 gives a short
introduction to the theory of Active Appearance Models,
section 3 describes a developed multi-scale initialisation
scheme, section 4 shows experimental results, section 5
gives pointers for future work and section 6 discuss the re-
sults.

Project web-site: http://www.imm.dtu.dk/∼aam/

2. ACTIVE APPEARANCE MODELS

Below is presented the outline of the Active Appearance
Model approach. AAMs distinguish themselves from many
other segmentation methods in the sense that segmentation
can be carried out using the approach as a black box. The
user only needs to provide a training set of annotated shapes
and a set of corresponding images. For further details refer
to [1, 3, 16].

2.1. Shape Formulation

AAMs handle planar shapes as a finite set of landmarks –
i.e. corresponding points between and within populations.
The representation used for a singlen-point shape is:

x = [x1, x2, . . . , xn, y1, y2, . . . , yn]T (1)

For dealing with redundancy in multivariate data – such as
shapes – AAMs utilise the linear orthogonal transformation;
principal component analysis(PCA). In this setting a shape
of n points is thus considered one observation,xi, in a 2n
dimensional space.

The shape PCA is essentially an eigen-analysis of the co-
variance matrix of the shapes aligned w.r.t. position, scale
and rotation, i.e. after a Procrustes analysis. For details on
PCA shape decomposition refer to appendix A.

New shape instances can thus be synthesised by deforming
the mean shape,x, using a linear combination,bs, of the
eigenvectors of the covariance matrix,Φs:

x = x + Φsbs (2)

Essentially, the points of the shape are transformed into a
modal representationwhere modes are ordered according
to the percentage of variation that they explain. To regu-
larize our solution sapce and improve performance modes
are included until the cumulated variation explained by the
model is above a certain threshold (e.g. 95%).



2.2. Texture Formulation

Contrary to the prevalent understanding of the termtexture
in the computer vision community, this concept will be used
somewhat differently below. Here we define texture as"The
pixel intensities across the object in question (if necessary
after a suitable normalisation)". For m samples over the
object surface, the texture is represented as:

g = [g1, g2, . . . , gm]T (3)

In the shape case, the data acquisition is straightforward be-
cause the landmarks in the shape vector constitute the data
itself. In the texture-case one needs a consistent method for
collecting the texture information between the landmarks,
i.e. an image sampling function needs to be established.
This can be done in several ways. Here, a piece-wise affine
warp based on the Delaunay triangulation of the mean shape
is applied.

Following the warp from an actual shape to the mean shape,
a normalisation of theg-vector set is performed to avoid
the influence from global linear changes in pixel intensi-
ties. Hereafter, the analysis is identical to that of the shapes.
Hence, a compact representation is derived to deform the
texture in a manner similar to what is observed in the train-
ing set:

g = g + Φgbg (4)

Whereg is the mean texture;Φg denotes the eigenvectors
of the covariance matrix and finallybg is the set of texture
deformation parameters.

2.3. Combined Model Formulation

To remove correlation between shape and texture model pa-
rameters – and to make the model representation even more
compact – a third PCA is performed on the shape and tex-
ture PCA scores of the training set,b to obtain the combined
model parameters,c:

b = Qc (5)

The PCA scores are directly obtained due to the linear na-
ture of the model:

b =
[

Wsbs

bg

]
=

[
WsΦT

s (x− x)
ΦT

g (g − g)

]
(6)

A suitable weighting between pixel distances and pixel in-
tensities is obtained through the diagonal matrixWs. For
details on choosingWs refer to [3].

Now, a complete model instance including shape,x and tex-
ture,g, is generated using the combined model parameters,
c.

x = x + ΦsW−1
s Qsc (7)

g = g + ΦgQgc (8)

Regarding the compression of the model parameters, one
should notice that the rank ofQ will never exceed the num-
ber of examples in the training set.

2.4. Optimisation

In AAMs, the search is treated as an optimisation problem
in which the difference between the synthesized object de-
livered by the AAM and an actual image is to be minimised.
By adjusting the AAM-parameters (c and pose) the model
texture,gmodel, can be deformed to fit the image,gimage, in
the best possible way. In this case the quadratic error norm
is applied as optimisation criterion [3]:

E =
m∑

i=1

(gmodel − gimage)2 =
m∑

i=1

(δgi)2 = ||δg||2 (9)

Though the parameterisation of the object class in question
can be compressed markedly by the principal component
analysis it is far from an easy task to optimise the system.
This is not only computationally cumbersome but also the-
oretically challenging since it is most likely non-convex.
AAMs handle these potential problems by assuming a lin-
ear relationship between parameter changes,δc, and pixel
differences,δg.

δc = Rδg (10)

Since the matrixR is estimated once at model building
time, this is very run-time efficient. In practiceR is es-
timated by a set of experiments on the training set, which
are fed into a multivariate principal component regres-
sion framework. In the AAM optimisation, this prediction
scheme is applied iteratively to both model- and pose- pa-
rameters. For details refer to [3, 1, 16].

Recently [2, 4] the above method have been superseded by
a weighted estimation of a fixed∂(δg)

∂c done from e.g. the
training set using numeric differentiation. In practice – ac-
cording to Cootes – this works as well as the principal com-
ponent regression, but with a far smaller computational bur-
den. However, this has not been utilised in the current work.



2.5. Model Complexity

As pointed out by [2, 4] the complexity of an AAM is
O(m · p) at each iteration of the optimisation. Herem de-
notes the number of pixels in the model andp the number of
modes included into the combined appearance model – i.e.
the length ofc. Usually the model would converge in 10-20
iterations, where the first few iterations would account for
far the most of the decrease in our optimisation criterion.

So – in summary – to reduce the computational burden in
the AAM optimisation one could limit the amount of 1)
maximum iterations, 2) number pixels in the texture model
and 3) number of modes.

3. MULTI-SCALE INITIALISATION

The basic AAM optimisation scheme is inherently depen-
dent on good initialisation. To accommodate this, we de-
vise the following search-based scheme thus rendering the
use of AAMs fully automated. The technique is inspired
by the work of Cootes et al. [5] who use a pixel difference
evaluation criteria and a threshold estimation for detecting
multiple object instances.

The fact that AAMs are self-contained is exploited in the
initialisation – i.e. they can fully synthesize (near) photo-
realistic objects of the class that they represent concerning
shape and textural appearance. Hence, we use the model
without any additional data to perform the initialisation.

The idea is to exploit an inherent property of the AAM-
optimisation – i.e. convergence within some range from the
optimum. This is utilised to narrow down an exhaustive
search from a dense to a sparse population of the hyperspace
spanned by pose- andc-parameters. In other words, normal
AAM-optimisations are performed sparsely over the image
using perturbations of the pose and model parameters.

This has proven to be feasible, fast and robust. A set of rele-
vant search configuration ranges is established and the sam-
pling within this set is done as sparsely as possible. Further,
this is done in scale-pyramid to increase speed. Any avail-
able prior knowledge about pose is utilised when determin-
ing search ranges.

The crucial part of this algorithm is somewhat inspired from
the class of Genetic Algorithms.1 The total set of search
configurations constitutes the initial population of candi-
dates. From this we let then fittest survive. These are then
reproduced into more evolved guesses. From these the best
is drawn and deemed the initial configuration. In pseudo-
code, the initialisation scheme for detecting one object per
image is:

1Notice however, while GAs are probabilistic, our technique is deter-
ministic. Further, the aspects of mutation and crossover in GAs are not
utilised here.

Algorithm 1 Multi-scale AAM Initialisation
Require: m: max number of transient iterations
Require: k: max number of final iterations(k > m)
Require: n: number of initialisation candidates
Require: {Ω}: An empty candidate set with room forn

result entries,{ωi}n
i=1 = {θθi, Ei}n

i=1

Require: {Ψ}: A set of application specific search ranges
for each model parameter (e.g.−σ1 ≤ c1 ≤ σ1,
xmin ≤ x ≤ xmax et cetera)

1: Populate the space spanned by{Ψ} – as sparsely as the
linear regression allows – by a set of search configura-
tionsΘ = {θθ1, . . . , θθn}.

2: for each vector inΘ do
3: Run AAM optimisation atθθi (maxm iterations)
4: Calculate the fit,E ← ||δg||2
5: ωmax ← max

E
{Ω}

6: if E < Emax then
7: if the number of elements in{Ω} == n then
8: then removemax

E
{Ω}

9: end if
10: add(θθi, E) to {Ω}
11: end if
12: end for
13: for each element in{Ω} do
14: Run AAM optimisation atθθi (maxk iterations)
15: Calculate and update the fit,Ei ← ||δg||2
16: end for
17: ωinitial ← min

E
{Ω}

18: for each scale leveldo
19: Run AAM optimisation atθθinitial (maxk iterations)
20: end for
21: return θθinitial

We stress that the application specific search ranges men-
tioned in the fifth requirement are merely a help to increase
initialisation speed and robustness rather than a require-
ment. If no prior is known, an exhaustive search is per-
formed.

This scheme is readily extended into more than one object
per image by a clustering of the candidate set using overlap
tests. For a detailed treatment of initialisation of deformable
template models refer to [8].

4. EXPERIMENTAL RESULTS

To test the real-time capabilities of Active Appearance
Models a very simple model was built from the five colour
training images in the CIF format (352×288). As seen in
fig. 1 the training set consists of five perspective views of
a planar object – namely a DAT cassette – where the object
has undergone a rotation around the vertical axis. The im-
ages were sub sampled to QCIF (174×144) and converted



Fig. 1. Training set.

Fig. 2. Annotated image (left). Delaunay triangulation (right).

to greyscale prior to any processing by the AAM, though the
extension to colour AAMs is fairly simple [5]. Each train-
ing image was subsequently annotated using 12 landmark
points as shown in fig. 2. To capture the object we let the
convex hull of the landmarks denote the model surface.

Upon the training set a two-level multi-scale AAM was built
using the AAM-API2. The texture model consisted of 9100
pixel at scale level 0 and 2261 pixels at level 1. The vari-
ance explained by the first three eigenvalues in the com-
bined shape and texture model were approximately 69%,
22% and 7%. In fig. 3 the three most significant modes of
variation in the shape model is shown. Due to rather con-
trolled lightning conditions, the texture model is fairly con-
stant. Major contribution herein was instead the remaining
variation stemming from the piece-wise affine warps inabil-

2The AAM-API is an open source AAM implementation done in C++
by the author. The AAM-API is further described in [17, 16] and can be
acquired from the web-site http://www.imm.dtu.dk/∼aam/

Fig. 3. The first shape mode of the AAM.

Fig. 4. The first three shape modes of the AAM.

ity to represent the inherently perspective transformation the
object has undergone in the training set.

Initial position of the object was found by the multi-scale
initialisation described previously. No temporal filtering
was applied to produce the results. The result from the cur-
rent frame was simply propagated directly to the next frame
in the video stream. To increase the frame rate the AAM
search was fixed to a maximum of three iterations. We anti-
cipate that even simple temporal filtering would increase the
robustness of the tracking markedly in a real-life situation.
In that case, robustness to occlusions and dramatic lightning
effects (such as shadows, specular highlights etc.) should
also be addressed. This is a critical issue since the AAM
search is based on strong prior assumptions and when these
don’t hold the prediction gets highly erroneous. Cootes
et al. [5] addresses the problem by applying a pre-learnt
threshold on the texture vectors sampled from the image.
Sclaroff and Isidoro [15] handles the problem by means of
the robust Lorentzian norm in a prediction scheme similar
to that of AAMs.

The tracker performed successful tracking in the range of
7-10 frames/sec at QCIF resolution (174x144). Examples
are given in fig. 5.

4.1. Implementation and Hardware

The AAM-API was embedded in a C++ Win32 application
framework providing real-time video input. Parts of this
was provided by the Microsoft Vision SDK [13].

In order to speed up matrix computations in the AAM-
API, matrix classes was augmented with processor opti-
mised BLAS support by the Intel Math Kernel Library –
MKL [9]. All tests were performed on an 1100 MHz Athlon
PC.



Fig. 5. Tracking results computed at 7-10 frames/sec.

4.2. Tracking of Deformable Objects

In conjunction with the above experiment – and in resem-
blance to the Active Voodoo Dolls [11] – Nielsen, Lehn-
Schiøler & Wrobel [14] have shown that a simple linear
model parameter prediction markedly improved tracking
quality when applied on a deformable object (a sponge).
This was accomplished using the AAM-API in an off-line
setting on basis of a training set of 11 images each anno-
tated with 21 points. The texture model consisted of 5851
pixels and the combined model used four parameters. In
each frame, a maximum of 20 iterations was allowed in the
optimisation procedure. Examples are given in fig. 6. No-
tice the change of lightning conditions in each of the frames.

5. FUTURE WORK

A continuation of this work would naturally fall into one of
the following categories (in no particular order):

• Temporal filtering to increase robustness by using the
much celebrated linear predictor by Rudolf Kalman
[12] (used on ASMs [7]) or the more recent CONDEN-
SATION algorithm by Isard and Blake [10].

• Robustness to occlusions and lightning changes in-
spired by [5, 15, 11].

• Inclusion of colour into the model, either directly as
RGB [5] or under some mapping, e.g. HSV etc.

• Speeding up the current implementation by intensive
usage of dynamic programming and hardware accel-
erated libraries such as an OpenGL and Intel Image
Processing Library. Further, explicit usage of MMX /

Fig. 6. AAM tracking of a deformable object by Nielsen, Lehn-
Schiøler & Wrobel [14].

SSE / 3DNow! optimised code for parallel operations
would presumably also give a substantial speed up.

We anticipate that a continuation following the lines of the
above would enable us to perform real-time (>25Hz) track-
ing of facial features. Applications would be assisted speech
recognition, virtual characters, perceptual user interfaces
etc.

6. DISCUSSION

Though Active Appearance Models is considered as one the
more complex deformable template models, this paper has
emphasised the fact that it is the off-line model building
phase, which is computationally expensive. AAM optimi-
sation on contrary is well suited for real-time implementa-
tions. In this context, we have achieved online tracking at
7-10 Hz with a non-optimised software implementation.

The model-specific data was minimised by using only five
training images. This enabled us to set up a complete model
(annotation, model building etc.) within fifteen minutes.
From this training set robustness to three-dimensional ro-
tation around one axis was obtained. Robustness to planar
similarity transforms (Euclidian transformations) was ob-
tained automatically as a part of model building phase.

Further, though the presented problem – tracking of a pla-
nar object in a perspective projection – is far form optimally
represented in the AAM framework (due to the 2D PCA
decomposition and 2D piece-wise affine warp) this experi-
ment has shown that the crude approximations holds "well
enough" to enable an acceptable tracking quality. This un-
derlines the general nature of AAMs even in cases of ex-
tremely small training sets.
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8. APPENDIX

A – PCA SHAPE DECOMPOSITION

This appendix contains a self-contained presentation of how
the Principal Component Analysis (PCA) can be derived by
means of simple linear algebra.

Consider the case of havingN planar shapes3 consisting of
n points, where each shape is represented as:

x = [x1, x2, . . . , xn, y1, y2, . . . , yn]T (11)

Looking at the covariance matrix of these shapes we typi-
cally observe a pattern similar to the one shown below:

Shape covariance matrix
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This suggest that there might exist a shape representation
accounting for the obvious correlation between points. If
some point movements were to be (numerically) much cor-
related, this could be exploited to reduce dimensionality. In
this case, we will seek a linear transformation of our data:

y = Mx (12)

First, consider the mean shapex = 1
N

∑N
i=1 xi and the

estimate of the shape covariance matrix:

Σx =
1
N

N∑

i=1

(xi − x)(xi − x)T (13)

The mean of they-variables can then be expressed as:

y =
1
N

N∑

i=1

yi =
1
N

N∑

i=1

Mxi = Mx (14)

3Due to the context the data vectors represent shapes, but we emphasise
that the PCA can be applied to any type of data as long as a the data forms
hyper ellipsoid in the original space.

And consequently the estimate of the covariance of they’s:

Σy =
1
N

N∑

i=1

(yi − y)(yi − y)T

=
1
N

N∑

i=1

(Mxi −Mx)(Mxi −Mx)T

=
1
N

N∑

i=1

M(xi − x)(M(xi − x))T

=
1
N

N∑

i=1

M(xi − x)(xi − x)TMT

= M

(
1
N

N∑

i=1

(xi − x)(xi − x)T
)

MT

= MΣxMT (15)

Then, if we limit ourselves to orthogonal transformations
(i.e. M−1 = MT) left-multiplication byMT in (15) yields:

MTΣy = ΣxMT (16)

Substitution ofMT by Φ yields:

ΣxΦ = ΦΣy (17)

From (17) it is seen that ifΦ is chosen as the (column)
eigenvectors of the symmetric matrixΣx, then the covari-
ance of the transformed shapes,Σy, becomes a diagonal
matrix of eigenvalues. In the case of correlated points the
smallest eigenvalues will be (close to) zero and the corre-
sponding eigenvectors could be omitted fromΦ, thus re-
ducing the length ofy.

In conclusion, to establish an orthogonal linear transform
that de-correlate data vectors, the transformation matrix
must be the eigenvectors of the covariance matrix of the
original data. In order to back transform from the new set
of variables,y, we invert (12), remembering thatM is or-
thogonal:

x = M−1y = MTy = Φy (18)

As a final comment; one would typically (as in the AAM
case) apply PCA on variables with zero mean:

y = M(x− x) , x = x + Φy (19)

This method of dealing with redundancy in multivariate data
is known asPrincipal Component Analysis(PCA) or the
Karhunen-Loéve Transform(KLT).
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