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Estimation of Fluid Flow Fields and Their Stagnation Points

Abstract

In a topological sense fluid flows are characterised by their stagnation points. Given a temporal
sequence of images of fluids we will consider the application of local polynomials to the estimation
of smooth fluid flow fields. The normal flow at intensity contours is estimated from the local
distribution of spatio-temporal energy, which is sampled using a set of spatio-temporal quadrature
filters. These observations of normal flows are then integrated into smooth flow fields by locally
approximating first order polynomials in the spatial coordinates to the flow vectors. This technique
furthermore allows us to give a qualitative local description of the flow field and to estimate the
position of stagnation points (e.g. nodes, saddles, and centers). We will apply the algorithm to two
data sets. The first sequence consists of infrared images from the meteorological satellite Meteosat.
Here the purpose is that of estimating cloud motion. The second sequence visualises the airflow in
a model of a livestock building by inducing smoke in the air inlets and illuminating a plane using
a laser sheet. In this case the task is to estimate the flow field in order to evaluate the ventilation
system.

Keywords: Optical flow, stagnation points, linear phase model, ventilation.

I Introduction

The estimation of flow fields is usually implemented as a two-step procedure. First, local estimates
of (normal) flow are extracted from the image sequence based on an assumption of conservation
of some image feature over time. This image feature may be the intensity of a pixel itself, or
it may be some function (e.g. the Laplacian) of the image intensities. The techniques for the
local estimation of flow usually also assume that locally the image features move with constant
velocity. The techniques for estimating the local flow field include correlation methods ([1, 2, 3]),
differential methods [4, 5], energy-based methods [6, 7, 8] and phase-based methods [9]. Some
of these techniques even include the possibility of quantifying the directional certainty with which
the flow has been estimated locally. In [2] the curvature of the match surface is used, in [5] the use
of second order spatial derivatives to identify the neighbourhood is investigated. In the second step
of the flow field estimation procedures the local estimates of (normal) flow are integrated by some
sort of smoothness constraint. One way of doing this is by applying a restriction that forces the
spatial derivatives to be small. Such methods include [4, 5, 10, 11]. Other approaches are based
on spatial filtering (e.g. [12]).

As the first step we will apply an energy-based method described in [13] that allows for the extrac-
tion of velocity estimates as well as related directional probabilities of the estimates based on the
local energy distribution. This technique is described in Section II-A.

In Section II-B we will describe a technique for integrating the locally estimated (normal) flows
that is based on approximating a first order polynomial to each of the velocity components in a
neighbourhood of every pixel. In addition to providing a regularised flow field the polynomial
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Fig. 1: Relationship between the spatio-temporal orientation vector and
the normal flow. The reader is referred to the text for a detailed expla-
nation.

parameters also allow for the classification of the flow into a number of descriptors corresponding
to the Jordan canonical forms of the matrix that describe the flow. A similar technique is used by
Rao & Jain [14] for the purpose of classifying oriented texture fields. Herlin et al. [15] use this
type of method for the detection and tracking of vortices from a series of flow fields.

In Section IV we will show how the proposed technique may be used to estimate fluid flow fields
in two cases. First we consider a temporal sequence of meteorological images from the Meteosat
satellite, and secondly, we will use the method in order to estimate the air flow in livestock build-
ings. In both cases the topological features (i.e. stagnations points) are extracted.

II Methods

A Local Velocity Estimation

Consider a neighbourhood containing a one dimensional intensity structure (e.g., a line) that trans-
lates coherently through time. In the spatio-temporal domain this corresponds to a neighbourhood
of iso-grey level planes. Let these planes be given by their unit normal vectork = (k1, k2, k3)

T . We
will refer to this vector as the spatio-temporal orientation vector. The non-zero Fourier coefficients
of this neighbourhood are concentrated to the line defined byk.

The relationship between the spatio-temporal orientation vector and the normal flow vectorµ =
(µ, ν)T is illustrated in Fig. 1. In this figure a line translating with constant velocity through space
is shown at four time instances. These lines span a plane in space-time,k is the normal vector of
this plane. In the figureµ∗ = (µ, ν, 1)T and the line orientation vectore = (−k2, k1, 0)T . Beacuse
µ∗ is perpendicular tok as well ase, its direction is given by the outer product of these vectors.
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Finally this outer product should be normed so that the temporal coordinate equals 1. This results
in the following relationship

µ = (µ, ν)T =
−k3

k2
1 + k2

2

(k1, k2)
T (1)

Now, in order to estimate the spatio-temporal orientation vector, we will sample the Fourier domain
using a set of spatio-temporal filters. Using a method developed by Knutsson [8] this can be
achieved by applying a set of directional quadrature filter pairs symmetrically distributed over the
spatio-temporal orientation space. As an approximation to such a set of filters we will employ a
set of6 Gabor filters [16] with center frequencies given by the vertices of a semi-icosahedron [8].
Finally, the energy distribution of the Fourier domain as estimated by the set of quadrature filter
pairs may be represented by the tensor (e.g. [8])

T =
6∑

p=1

qpnpn
T
p (2)

whereqp is the output from thepth quadrature filter pair, andnp is the unit normal vector defining
the direction of the filter.

In order to find the direction of maximum spectral density we must find the unit vectork that
maximiseskT Tk. This vector is the eigenvector corresponding to the largest eigenvalue ofT
(e.g. [17]). So for the coherently translating one-dimensional intensity structure, which has an
effectively one dimensional Fourier domain, the spatio-temporal orientation vector is found by an
eigen analysis ofT . Because the Fourier domain is one dimensional,T has only one non-zero
eigenvalue.

Now, if the translating structure has a two-dimensional intensity structure (e.g., a grey level corner)
the spatio-temporal domain is described by two spatio-temporal orientations, each of which give
rise to a non-zero eigenvalue ofT . The eigenvectors corresponding to these non-zero eigenvalues
each corresponds to a normal flow by using Equation (1).

Given the true flow we may determine the difference between the projection of the true flow on to
either of these estimated normal flows and the normal flows themselves

dk(xi) = |(u(xi) − µk(xi))
T · µk(xi)

‖µk(xi)‖|, k = 1, 2 (3)

whereu(xi), µk(xi) are the true flow and the estimated normal flows taken at the positionxi. It
is the (weighted) sum of squares of these distances that should be minimised in order to obtain an
estimate of the velocity field.

Deviation from the assumption of coherent translation, imperfectly designed filters and noise will
result in non-zero Fourier coefficients not being contained in one single line or plane. In this case
all three of the tensor eigenvalues will be non-zero. This allows us to extract information about
the quality of the estimates of normal flows we get from the eigenvectors corresponding to the
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two largest eigenvalues. Because imperfect conditions result in a non-zero third eigenvalue we
suggest using a confidence measure for each of the linear constraints based on the difference of the
corresponding eigenvalue and the least eigenvalue. Furthermore, a normalisation of this difference
should be made. This is evident as a noise free high step edge measures the motion just as well as
a lower step does. We propose the following confidence measure for each of the linear constraints
given by the eigenvectors corresponding to the two largest eigenvalues.

wk(xi) =
κ(xi) − κ(xi)

κ(xi)
, k = 1, 2 (4)

Whereκ(xi) ≥ κ(xi) ≥ κ(xi) ≥ 0 denote the eigenvalues of the tensor at positionxi. This
confidence measure approaches zero when the difference of the corresponding eigenvalue and the
least eigenvalue approaches zero, and it attains its maximum value of one, when the least eigen-
value is zero, and the corresponding eigenvalue is the largest, or is equal to the largest eigenvalue,
respectively.

B Integration of Local Measurements

As mentioned in the Introduction we will approximate our flow field by local first order polynomi-
als in the spatial coordinates, i.e. in the vicinity of the positionxi = (xi, yi)

T the flow field may
be parametrised like this

u(x) = Ai(x − xi) + bi, x ∈ Ni, (5)

whereNi denote the set of pixels in the neighbourhood of pixeli. We will estimate the parameters
of this model for every pixel by minimising the sum of the squared differences within a neighbour-
hood between the model and the observations of normal flows given by Equation (3), i.e.

(Âi, b̂i) = arg min
Ai,bi

OBJ(Ai, bi) (6)

= arg min
Ai,bi

∑
j∈Ni

2∑
k=1

wk(xj)

[
((Ai(xj − xi) + bi) − µk(xj))

T · µk(xj)

‖µk(xj)‖
]2

, (7)

By differentiating with respect to the parameters and setting the partial derivatives equal to zero
we find that the estimate of the flow field is obtained by solving a six dimensional linear system
for every pixel in our image.

It is evident from Equation (5) that the estimate of the flow field at pixeli is given by

û(xi) = b̂i. (8)

Furthermore, we may characterise the type of the flow field in the vicinity ofxi depending on the
nature of the matrixAi. Following [14], if Ai is non-singular, the local model of the flow field has
exactly one stagnation point (i.e. a pointc satisfyingu(c) = 0), and this point is given by

ci = −Â
−1

i b̂i. (9)

4



Moreover, based on the eigenvalues,λ1 andλ2 of Ai we may classify the type of neighbourhoods
into a finite number of classes [14, 15]

1. λ1 andλ2 are real, andλ1, λ2 > 0: ci is a node

2. λ1 andλ2 are real, andλ1 > 0, λ2 < 0: ci is a saddle point

3. λ1 andλ2 are complex:ci is a center or a spiral.

If, on the other hand,Ai is singular, it has either rank 1 or 0. In the first case, there is a line of
stagnation points, in the second case, the flow field is constant.

III Data

A Case 1: Cloud flow fields.

The image sequence used here was recorded by the Meteosat 5 satellite. The images are from the
infrared channel (10.5 - 12.5µm). Preliminary processing performed by the Danish Meteorological
Institute consist of mapping to a polar stereographic projection, interpolation to a equirectangular
7 km grid, and subsection to384 × 512 images. The center of the grid is at48.4◦ N latitude and
8.2◦ E longitude. The images are recorded with a time interval of 30 minutes. Furthermore, the
image sequence has been down sampled by a factor 4.

B Case 2: Livestock Building Airflow.

The data have been recorded at the Department of Agricultural Engineering and Production Sys-
tems at the Danish Institute of Animal Science using a light sensitive consumer video camera
(frame rate: 25 Hz). All measurements are carried out under iso-thermic conditions. The experi-
mental setup is shown in Figure 2. The plexiglas model of the segment of a pigs sty is 1 m broad
and 0.5 m deep. The air velocity in the inlet is measured to 3 m/s. Smoke is induced in the airflow
at the inlet. The laser illuminated plane is placed in the center of the model

IV Results

For both sequence we have used a set of Gabor filters with the bandwidth in octaves measured at
one standard deviation of the Gaussian envelope set to 1, and the standard deviation of the Gaussian
envelope set to 2 pixels. The Gaussian envelope was truncated at±2.5 standard deviations. Using
Equation (1) we obtain the estimates of normal flow. These are then integrated by fitting the first
order polynomial model to the flow locally. For this procedure a circular window with a radius of
20 pixels has been used. In Figures 4 and 8 the estimated flow field for the cases are shown.
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Laser

Plexiglas model of pigs sty 1:10

Inlet

Outlet

Fig. 2: Experimental setup. The 1:10 plexiglas model of a segment of a
pigs sty is illuminated by a laser sheet. The video camera is placed with
its optical axis perpendicular to the laser plane. The air is drawn into
the model by putting suction on the outlet.

Fig. 3: An image from the Meteosat sequence.

Fig. 4: The flow field corresponding to the cloud image in Figure 3.

Fig. 5: The three accumulator arrays corresponding to nodes, saddles,
and centers/spirals, respectively for the cloud image in Figure 3.
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Fig. 6: By applying a thresholding operation in the likelihood measures
we have identified the two centers in the flow field corresponding to he
cloud image in Figure 3.

Fig. 7: An image from the livestock airflow sequence.

Fig. 8: The flow field corresponding to the livestock airflow image in
Figure 7.

Fig. 9: The three accumulator arrays corresponding to nodes, saddles,
and centers/spirals, respectively for the livestock building airflow image
in Figure 7.

Fig. 10: By applying a thresholding operation in the likelihood mea-
sures we have identified the centers in the flow field corresponding to
the livestock building airflow image in Figure 7.
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Finally, again following [14], we may estimate the stagnation points of the global flow field. Be-
cause parts of a given pattern (e.g. a spiral) is observed in several neighbourhoods, we may gather
”votes” for the candidates for the stagnation point from each of these neighbourhoods. Suppose we
find estimateŝAi andb̂i in a given neighbourhoodNi. From these estimates we determine thatNi

is part of a particular patternPl (wherel indexes the different types of patterns) having a stagnation

point atci = −Â
−1

i b̂i. We may then increment a measure for the likelihood of a stagnation point
of typePl being atci. Consequently, two neighbourhoods in two different sections of the same
(spiral) pattern will update the likelihood measure at the same stagnation point. In our case we
have three of these likelihood measures (which in a sense corresponds to Hough-like accumulator
arrays), one for each of the patterns (e.g. node, saddle, center/spiral) listed in Section II-B. We will
increment the likelihood measure by the inverse of the value of the object function OBJ in Equa-
tion (6). The reason for this is that the ”vote” for a particular stagnation point should be weighted
by the closeness of fit of the model at the neighbourhood that casts this vote.

In Figures 5 and 9 these likelihood measures for both cases are shown. In each case the three
likelihood measures have been normalised over all types of patterns. Thus the greyscale values may
be compared across the measures. Brighter intensity corresponds to higher likelihood of a point
being a stagnation point. In Figure 5 we see two clusters of points of high intensity corresponding
to the two centers that are easily found in the flow field in Figure 4. In the livestock building case,
in Figure 9, the single center seen in Figure 8 is also identified in the center likelihood measure.
These global stagnation points are easily found by applying a common threshold for all types of
measures, as shown in Figures 6 and 10.

V Conclusion

This paper has presented a method to integrate estimates of normal flows into smooth flow fields
using a local first order polynomial model for the flow vectors. This model furthermore allows
for an interpretation of the type of pattern (i.e. vortex, spiral, node, saddle) that the area under
consideration is part of, and enables us to estimates the position of the stagnation (i.e. fixed)
point for that particular pattern. The position and type of stagnation points gives a topological
description of the flow field.

Furthermore, results on applying this technique have been demonstrated for two cases. The first
case is a sequence of infrared images from the European meteorological satellite Meteosat, the
second sequence visualises the airflow in livestock buildings by means of inserting smoke in the air
inlets and recording the moving smoke patterns that are illuminated by a laser sheet. In both cases
the global flow field has been successfully estimated and stagnation points found and identified.
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