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Abstract
The well-being of the animals (e.g. pigs) in livestock buildings is contingent on adequate ventilation.

Depending on the construction of the ventilation system draught may be introduced into the buildings.
Obviously this is an unwanted effect, that might lead to decreasing growth of and increasing sickness
among the livestock. Therefore it is of interest to estimate flow vector fields corresponding to the airflow
introduced by a given ventilation system. By introducing particles (e.g. smoke or soapbubles) into the
air-inlets of a model of a livestock building, the airflow in an laser-illuminated plane may be visualized.
Based of sequences of images recorded of this plane local measurements of the velocity field are obtained
by analysis of the local energy distribution, which is sampled using a set of 3-D spatio-temporal Gabor
filters. We will show how physically inspired a priori distribution of the flow field may be used to integrate
the local observations to a smooth field.

1 Introduction

Independently moving objects, rotation, dilation, shear in image sequences combine to produce complex
velocity fields. Therefore, valid velocity estimation is restricted to local computations. This ensures that
for sufficiently smooth velocity fields the estimation can be based on translational image velocity.



Coherent image translation is the basis for several computational methods. The main methods include
correlation-based methods [21], differential methods [12, 18], energy-based methods [1, 10, 14] and phase-
based methods [5, 4].

Restricting measurements to small spatio-temporal neighborhoods, however, often results in the mea-
surements being based on one-dimensional intensity structures (edges and/or lines). In this case we can
only determine the component of the velocity orthogonal to the intensity contour reliably. This is known
as the aperture problem.

In general this problem exists in neighborhoods of the image sequence that have a one dimensional
structure only, as well as neighborhoods that have no structure at all, that is in homogeneous areas. On
the other hand, for image sequence neighborhoods that exhibit two dimensional spatial structures, such as
intensity corners or various textured regions, we can reliably extract the true velocity. In order to identify
the type of neighbourhood several approaches have been reported. In a correlation-based approach [2] used
the curvature of the match surface, [18] investigated the use of second order spatial derivatives to identify
the neighbourhood. The use of quadrature type filters tuned to different spatio-temporal frequencies has
been used to identify the type of the neighbourhood in energy- as well as phase-based approaches [9, 4]

Because the aperture problem results in flow fields that are not fully constrained an assumption of
smoothness of the velocity field must be applied in order to obtain a dense velocity field. One way of doing
this is by applying a restriction that force the spatial derivatives to be small. These restictions are referred
to as smoothness constraints [12]. Methods utilizing this type of smoothness constraints include the work
of [18, 20, 16, 15]. Other approaches based on spatial filtering also have been reported. [19] for example
used a vector median filter to obtain a smooth velocity field.

It is evident that local velocity estimation algorithms that are able to distinguish between the different
natures of the neighborhood, and thus the estimated velocity - component velocity or not - should be more
successful than algorithms that are not. In Section 3.1 we will shortly describe a method to extract velocity
estimates as well as related directional certainties of the estimates based on the local energy distribution.
This technique also will allow for the detection of unreliable results due to deviations from the assumption
of coherent translational motion. This is especially important because of the distortion of features due to
physical processes that can occur in fluids (e.g. [21]).

In Section 3.2 we will describe the implementation of the smoothness constraint. This smoothness
constraint is formulated as a prior probability distribution for the velocity field that assigns high probability
to fields that have small first order spatial derivatives, and low probability to fields that have large spatial
derivatives. In particular we will concentrate on splitting the classic smothness constraint into physically
interpretable terms as suggested by [13]. We will furthermore suggest an observation model that carefully
relates the local estimates of normal velocity to a particular realization of the velocity field. Finally, we
will combine the prior distribution and the observation model into a posterior distribution using Bayes’
theorem.
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2 Data

The algorithms described in this article will be applied to a sequence of images recorded at the Airphysics
Laboratory at Statens Jordbrugstekniske Forsøg, Bygholm. The experiments are carried out in a 1:10
model of a segment of a livestock building. Using a laser sheet the airflow in a plane is illuminated. The
smoke in the illuminated plane is recorded using a light sensitive videocamera.

3 Methods

This section is divided into two subsections. In Section 3.1 we will consider the local velocity estimation
using a set of spatio-temporal directional quadrature filter pairs. After which in Section 3.2 we will
formulate an algorithm for integrating these local estimates to a dense velocity field using smoothness
constraints based on first order spatial derivatives of the velocity field.

3.1 Local Velocity Estimation

Because motion estimation in image sequences can be viewed as identification of patterns repeating them-
selves over time, it is natural to try to describe the motion analysis in the Fourier domain. Let us consider
a neighbourhood containing a one dimensional intensity structure (e.g., a line) that translates coherently
through time. In the spatio-temporal domain this corresponds to a neighbourhood of iso-grey level planes.
Let these planes be given by their unit normal vector k̂ = (k1, k2, k3)T . We will refer to this vector as
the spatio-temporal orientation vector. The non-zero Fourier coefficents of this neighbourhood are con-
centrated to the line defined by k. Furthermore the correspondence between this vector and the normal
flow of the intensity structure is illustrated in Figure 1. The normal flow is given by

µ = (µ, ν)T =
−k3

k2
1 + k2

2

(k1, k2)T (1)

Now, in order to estimate this line, we will sample the Fourier domain using a set of spatio-temporal
filters. Using a method developed by [14] this can be achieved by applying a set of directional quadrature
filter pairs symmetrically distributed over the spatio-temporal orientation space. The directional quadra-
ture filter pairs consist of a real even part and an odd imaginary part. The phase of the transfer function for
the real part is shifted 90◦ relative to the imaginary part. By squaring and adding the two filter responses
we obtain a phase independent estimate of the spectral density of the corresponding image structure.

In order to sample the Fourier domain we will employ a set of Gabor filters [7] tuned to frequencies
distributed evenly across all spatio-temporal orientations, i.e. the center frequencies of the filters are the
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Figure 1: k is the unit normal
vector of the iso-grey level planes
generated by a translating line.
k1 is the unit direction vector
of the translating lines, and is
therefore perpendicular to k. k2

is a vector perpendicular to k
as well as k1. The normal flow
is found as the projection onto
the (z1, z2) of k2 multiplied so its
temporal coordinate equals 1.

Figure 2: The true flow, u, is
constrained by the linear con-
straints given by the two normal
flows, µ1, and µ2.
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vertices of a diametrical symmetric regular polyhedron [14]. The pth Gabor filter consists of a Gaussian
function shifted to the point kp = (kp1, kp2, kp3)T in frequency space. By dividing the filter into an odd
and an even part we get the two transfer functions

Qe
p(k) =

1
(2π)3

[
exp

(
(k − kp)2σ2

2

)
+ exp

(
(k + kp)2σ2

2

)]
(2)

Qo
p(k) =

1
(2π)3

[
exp

(
(k − kp)2σ2

2

)
− exp

(
(k + kp)2σ2

2

)]
(3)

The corresponding convolution masks are easily computed by taking the Fourier transforms

qe
p(z) =

1
(2π)3/2σ3

cos(kT
p z) exp

(
− z2

2σ2

)
qo
p(z) =

1
(2π)3/2σ3

sin(kT
p z) exp

(
− z2

2σ2

)
(4)

Although Gabor filters are not quadrature pairs, they provide a reasonably good approximation for
sufficiently small bandwidths [6]. If the bandwidth in octaves is measured at one standard deviation of
the Gaussian envelope it is given by B = log2[(‖k‖ + σ)/(‖k‖ − σ)].

Finally, the energy distribution of the Fourier domain as estimated by the set of quadrature filter pairs
may be represented by the tensor T =

∑
p qpnpn

T
p where qp is the output from the pth quadrature filter

pair, and np is the unit normal vector defining the direction of the filter.
In order to find the direction of maximum spectral density we must find the unit vector k that maximizes

kT Tk. This vector is the eigenvector corresponding to the largest eigenvalue of T . So for the coherently
translating one-dimensional intensity structure, which has an effectively one dimensional Fourier domain,
the spatio-temporal orientation vector is found by an eigen analysis of T . Because the Fourier domain is
one dimensional T has only one non-zero eigenvalue.

Now, if the translating structure has a two-dimensional intensity structure (e.g., a grey level corner)
the spatio-temporal domain is described by two spatio-temporal orientations, giving rise to two non-zero
eigenvalues of T . The eigenvectors corresponding to these non-zero eigenvalues each translates into a
normal flow by using Equation (1). These two normal flows each constrain the true flow in one direction
as can be seen in Figure 2.

We can furthermore determine the perpendicular distance of the true flow to either of the constraint
lines, this is given by

dk(xi, yi) = ‖(u(xi, yi) − µk(xi, yi))T · µk(xi, yi)
‖µk(xi, yi)‖‖, k = 1, 2 (5)
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where u(xi, yi), µk(xi, yi) are the true flow and the normal flows taken at the position (xi, yi).
It is the (weighted) sum of squares of these distances that should be minimized across the image in

order to obtain the velocity field.
Deviation from the assumption of coherent translation, imperfectly designed filters and noise will result

in non-zero Fourier coefficients not being contained in one single line or plane. In this case all three of the
tensor eigenvalues will be non-zero. This allows us to extract information of the quality of the estimates
of constraint lines we get from the eigenvectors corresponding to the two largest eigenvalues. Because
imperfect conditions result in a non-zero third eigenvalue we suggest using a confidence measure for each
of the linear constraints based on the difference of the corresponding eigenvalue and the least eigenvalue.
Furthermore, a normalization of this difference should be made. This is evident as a noise free high step
edge measures the motion just as well as a lower step does. We propose the following confidence measure
for each of the linear constraints given by the eigenvectors corresponding to the two largest eigenvalues.

wk(xi, yi) =
λk(xi, yi) − λ3(xi, yi)

λk(xi, yi)
, k = 1, 2 (6)

Where λ1(xi, yi) ≥ λ2(xi, yi) ≥ λ3(xi, yi) ≥ 0 denote the eigenvalues of the tensor at position (xi, yi).
This confidence measure approaches zero when the difference of the corresponding eigenvalue and the least
eigenvalue approaches zero, and it attains its maximum value of one, when the least eigenvalue is zero,
and the corresponding eigenvalue is the largest, or is equal to the largest eigenvalue, respectively.

3.2 Integration of local measurements

As mentioned in the Introduction we will apply an assumption of smoothness with the purpose of fully
constraining the velocity field by forcing the spatial derivatives of the velocity field to be small. Since
[12]’s original paper this has been investigated by several authors (e.g. [11, 17]). One way of formulating
such a smoothness constraint is by use of Markovian random fields [8, 15]. We do this using the Bayesian
paradigm. First we will formulate a prior distribution for the velocity field based on the spatial derivatives
of the field.

Letting the flow at position (xi, yi), i ∈ {0, 1, . . . , N − 1}, be given by u(xi, yi) = (u(xi, yi), v(xi, yi))T

and the corresponding spatial derivatives be denoted by ux(xi, yi) = (ux(xi, yi), vx(xi, yi))T and uy(xi, yi) =
(uy(xi, yi), vy(xi, yi))T , the prior distribution of the flow field corresponding to the classical smoothness
constraint of [12] may be described by a Gibbs distribution p({u}) = 1

Z exp(−βU), where Z is a normal-
ization constant and the energy term is given by

U ′ =
N−1∑
i=0

[‖ux(xi, yi)‖2 + ‖uy(xi, yi)‖2
]
. (7)
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where ‖ · ‖ is the Euclidean norm. This probability distribution assigns high probability to fields that
exhibit small derivatives and low probability to field with high spatial derivatives. As shown by [13] by
rearranging terms this energy function may be written

U ′ =
1
2

N−1∑
i=0

(ux(xi, yi) + vy(xi, yi))2(divergence)

+
1
2

N−1∑
i=0

(ux(xi, yi) − vy(xi, yi))2 + (uy(xi, yi) + vx(xi, yi))2(shear) (8)

+
1
2

N−1∑
i=0

(uy(xi, yi) − vx(xi, yi))2(rotation)

Thus allowing us physically to interpret the smoothness constraint. Furthermore physical knowledge
of the process in question may be built into the a priori model by weighting these three termes differently,
i.e

U = γ1 ∗ (divergence) + γ2 ∗ (shear) + γ3 ∗ (rotation) (9)

If for instance the two dimensional motion in question was due to solid body motion, we should choose
an a priori distribution with a high γ2, because shear should not occur in the field. Or if we were observing
the two-dimensional flow of an incompressible fluid, we should choose a high γ1, because the field would
be divergence free.

Now if the spatial derivatives are implemented using these finite differences: ux(xi, yi) = u(xi+1, yi)−
u(xi, yi) and uy(xi, yi) = u(xi, yi+1)−u(xi, yi). then the the energy function above can be implemeted
using a second order neighbourhood.

Having constructed this prior distribution for the flow field we will now concern ourselves with an
observation model. The observation relates the local observations or measurements of velocity to any
particular realization of the prior distribution. This is done by a conditional Gibbs distribution

P (y|u) =
1
Z

exp(−αU0) =
1
Z

exp(−α
N−1∑
i=0

2∑
k=1

wk(xi, yi)dk(xi, yi)2) (10)

where dk(xi, yi) is the difference between the projection of the true flow onto the normal flow given
by the kth eigenvector and the normal flow itself at pixel (xi, yi) as described by Equation (5). wk(xi, yi)
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is the certainty measure corresponding to this normal flow given by Equation (6). Z is a normalization
constant. By using a Gibbs energy function that punishes larger deviation in the projection of the true flow
onto the observed normal flows we allow smoothing in the direction not constrained by the normal flows
while smoothing in the direction of the normal flow is punished. Furthermore the use of the confidence
measures wk derived in the previous section as weights allow us to take into consideration the quality of
our measurements.

The prior distribution and the observation model are combined into a posterior distribution using
Bayes’ theorem. The energy function of the posterior distribution thus becomes

U = α

N−1∑
i=0

2∑
k=1

wk(xi, yi)dk(xi, yi)2 (11)

+β

N−1∑
i=0

[
γ1(ux(xi, yi) + vy(xi, yi))2 + γ3(uy(xi, yi) − vx(xi, yi))2

γ2((ux(xi, yi) − vy(xi, yi))2 + (uy(xi, yi) + vx(xi, yi))2)
]

In this energy function we can control the properties of estimated motion field. The faith in the
observed or measured normal flows is controlled by α, the smoothness is controlled by β, and the modes
of deformation of the field are controlled by γ1, γ2, and γ3.

We can now apply a maximization scheme to the posterior distribution in order to obtain the maximum
a posteriori estimate of the velocity field. This has been implemented using the Iterated Conditional Modes
scheme by [3].

4 Results

As described in Section 3.1 we will represent the local Fourier domain by the energy tensor. We will use
a set of ten Gabor filter pairs to sample the Fourier domain. The spatio-temporal directions of the Gabor
filters are shown in Table 1 [9].

By setting the standard deviation of the Gaussian envelope equal to 1.5 and truncating the envelope at
three standard deviations we arrive at the filter size, 11× 11× 11. We set the bandwidth measured at one
standard deviation to 1 octave. This results in a spatio-temporal frequency of the filters of 2. Since the
Gabor filter kernels are separable [10] the 20 3-D convolutions may be performed by 140 1-D convolutions.
Thus reducing the computational load by a factor 17.
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Filter no. 1 2 3 4 6 7 8 9 10
x a -a b b 0 0 -c -c -c c
y 0 0 a -a b b c c -c c
t b b 0 0 a -a c -c -c c

Table 1: The spatio-temporal directions of the Gabor filters are given by these
coefficients, where a = 2/(10 + 2

√
5), b = (1 +

√
5)/(10 + 2

√
5), and c = 1

√
3.

Local estimates of normal flow are obtained by Gabor filtering and computation using Equation (1)
on the smoke sequence. The computations are carried out on a spatially subsampled version of the image
sequence. In order to remove unreliable measurements we have applied two threshholds. First, neighbour-
hoods of non-translational velocity are removed by only considering normal flows whose corresponding
eigenvalue is at least twice as large as the smallest eigenvalues, i.e. wk > 0.5, secondly by demanding that
the local energy, i.e. the sum of the eigenvalues, exceeds 10 % of the maximum energy taking over the
entire image we remove measurements of problematic signal-to-noise ratio.

To get a proper estimate of the velocity field, we will use the integration technique described in Sec-
tion 3.2. Without loss of generality we may assume that the parameters of Equation (12) satisfies α+β = 1,
and γ1 + 2γ2 + γ3 = 1.

In order to illustrate how weighting the three modes differently, we have estimated a series of flow
fields corresponding to the image sequence shown in Figure 3(a) using different parameter settings. In
Figure 3(b) equal weights has been used, whereas in Figures 3(c) and 3(d) rotation and divergence are
punished five times as hard as the other modes of deformation, respectively.

Assuming that the air is approximately incompressible and the flow is two-dimensional, we would expect
a model punishing divergence the hardest to yield the best fit to the data. This seems to be confirmed by
the experiments. The field in Figure 3(d) is the most physically appealing.

5 Conclusion

By splitting the classical smoothness constraint into three physically interpretable terms, namely rotation,
shear, and divergence, we have formulated a method for integrating local measurements of normal flow
into a smooth flow field. Furthermore we have illustrated how physical reasoning may result in a more
suitable model for the phenomenon at hand.
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(a) (b)

(c) (d)

Figure 3: Sequence of images and estimated flow fields. (a) A subset of an
image sequence, shown by row, recorded from a 1:10 scale model of a segment
of a livestock building. The estimated flow field corresponding to the center
image for (b) γ1 = 0.25, γ2 = 0.25, γ3 = 0.25, i.e equal weights, (c) γ1 = 0.625,
γ2 = 0.125, γ3 = 0.125, i.e penalizing divergence five times as hard as rotation
and shear, (d) γ1 = 0.125, γ2 = 0.125, γ3 = 0.625, i.e penalizing rotation five
times as hard as divergence and shear.
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