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Abstract

This paper presents an approach to the estimation of 2-D motion vector fields from time varying image
sequences. We use a piecewise smooth model based on coupled vector/binary Markov random fields. We
find the maximum a posteriori solution by simulated annealing. The algorithm generate sample fields by
means of stochastic relaxation implemented via the Gibbs sampler.

1 Introduction

The computation of a displacement vector field, that links a pixel in one frame to the corresponding pixel
position in another frame, is of great importance for the interpretation of image sequences with temporal
variation. The 2-D displacement vector field can be used to infer 3-D motion or to compute structure from
motion. It can however also be used directly for interpolation and noise reduction or compression of image
sequences. There is also a analogy to the extraction of spatial information from stereo-pairs.

Existing approaches motion detections algorithms either rely on low level vision techniques such as block
matching, computation of optical flow based on spatio-temporal gradients and Fourier methods, or high
level techniques, that use image analysis to extract key object features, such as edges, boundaries or com-
plete objects, and use these to solve the correspondence problem.

This problem of motion computation is difficult due to its ill-posedness and its complexity. It is ill-posed
since many different vector fields can describe the data, and it is complex due to its high dimensionality.
In this paper we will apply the stochastic optimisation approach of simulated annealing to determine a
displacement field based on a coupled Markov random field model.

Optical flow was first defined by [1] as the apparent motion of the brightness patterns contained in two
frames. Horn and Schunk used a motion constraint obtained from an assumption of constancy of image
brightness, together with a motion smoothness constraint in an iterative scheme to obtain a solution. The
coupled vector/line Markov Random Field (MRF) framework has been used by [2, 3].

2 A Markov Random Field Description of the Displacement

The formulation involves specification of a deterministic structural model, and stochastic observation and
motion field models. We will use the proposed piecewise smooth model derived from coupled vector-
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line(binary) Markov random fields. The maximuma posteriori(MAP) estimation is performed using sim-
ulated annealing, in which sample fields are generated by means of stochastic relaxation implemented via
the Gibbs sampler.

The observed image,g, which is related to the true underlying image,I, by some random transformation is
considered to be a sample of a random field,G.

Disregarding occlusions and newly exposed areas, for every point in the preceding image,t = t1, there exist
a corresponding point in the following image,t = t2. Let the 2-D projection of the straight lines connecting
these pairs of points be referred to as the displacement field,u, associated with the underlying imageI.

The true displacement field,̃u, is a set of 2-D vectors such that for all(xi, t), the preceding point(xi, t1)
has moved to the following point(xi, t2). ũ is assumed to be a sample from a random fieldU . Let û be an
estimate of̃u andu denote any sample field fromU .

It is obvious that we will encounter motion discontinuities along boundaries of objects with different motion.
We will describe these discontinuities with a binary fieldl. Let the true field be denoted̃l. l̃ will be
represented by a discrete discontinuity field. The line elements are located midway between points and take
on the value 1 if there exists a motion boundary between the neighbouring displacement sites, and the value
0 otherwise. In analogy with the displacement field we assumel̃ to be a sample from a random fieldL, l̂ be
an estimate of̃l andl denote any sample field fromL.

2.1 Estimation Criteria

We seek to estimate the pair(ũ, l̃) of displacement and line field at a timet corresponding to an underlying
imageI on the basis of the observationg. In the maximum a posteriori sense the best displacement estimate
(û∗

t , l̂
∗
t ) of must satisfy

p(û∗
t , Lt = l̂∗t | gt1 , gt2) ≥ p(ût, Lt = l̂t | gt1 , gt2), (1)

∀ût, l̂t, wherep is the conditional probability distribution of the displacement and line field given the
observation. By using the Bayes rule for random variables, we get

p(ût, Lt = l̂t | gt1 , gt2) =
p(ut, Lt = lt | gt1)

p(gt2 | gt1)
p(gt2 | ut, lt, gt1) (2)

Note that as the denominator is not a function of(ut, Lt), it can be omitted when maximising the posterior
probability with respect to(ut, lt).

2.2 Models

We now formulate models for the probabilities in equation (2). We link displacement vectors and intensity
values by assuming constant image intensity along motion trajectories. This relationship is extrapolated to
the observed image,g. The displaced pixel differences

r(ũ(xi, t), xi) = gt2(xi) − gt1(xi + ũ(xi, ti1)) (3)

are modelled by independent Gaussian random variables. Given these assumptions, we have

p(gt2 | ut, lt, gt1) = (2πσ2)−Mu/2 · exp
(
−Hg(gt2 | ut, gt1)

2σ2

)
(4)
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where the energy functionHg is defined asHg(gt2 | ut, gt1) ≈
∑

[r(ũ(xi, t), xi)]
2.

As the motion in most scenes is the result of change of position of rigid or near rigid bodies, the motion field
of such images will consist of patches of similar vectors with possible discontinuities at motion boundaries.
Therefore we will assume that motion fields are smooth functions of spatial position. We will model this by
a pair(U t, Lt) of coupled vector and binary Markov random fields. Remember that a MRF with respect to
a neighbourhood is uniquely characterised by a Gibbs distribution with respect to the same neighbourhood
system. The properties of the motion model are described byp(ut, Lt = lt | gt1) from equation (2), which
can be factored using the Bayes rule

p(ut, Lt = lt | gt1) = p(ut | lt, gt1) · P (Lt = lt | gt1) (5)

If these two factors are Gibbsian, so is he product. Assuming that a single image field contribute little to
the motion vector field, we omit conditioning ongt1 in p(ut, Lt = lt | gt1) as an approximation. We will,
however, keep the conditioning ongt1 in P (Lt = lt | gt1), as motion discontinuities are likely to coincide
with positions of intensity discontinuities at object boundaries. Under the assumed Markov properties, that
every configuration can be attained with a non-zero probability and that the probability of a site having
a specific value is dependent only on the values of the sites in a pre-defined neighbourhood,U t can be
expressed by the Gibbs distribution

p(ut | lt) =
1

Zu
exp

(
−Hu(ut | lt)

βu

)
, (6)

whereZu is a partition function,βu is a constant controlling characteristic properties ofU t, and the energy
function is defined as

Hu(ut | lt) =
∑

cu={xi,xj}∈Cu

Vu(ut, cu) [1 − l(〈xi, xj〉, t)] (7)

wherecu is a clique of vectors, andCu is a set containing all such cliques derived from a neighbourhood
system.(〈xi, xj〉, t) is the site of the line element located betweenxi andxj . Vu is a potential characteris-
ing the displacement processU t. This potential is the cost associated with each vector clique. The second
term makes sure that there is no penalty for introducing a abrupt changes in displacement. Later we will
penalise the insertion of a line element. In order to model the above mentioned smoothness assumption we
define the potential function to be

Vu(ut, cu) = ‖u(xi, t) − u(xj , t)‖2 (8)

We will use the first order neighbourhood system depicted in Figure 1(a), which consists of two-element
horizontal and vertical cliques, cf. Figures 1(c) and 1(b).

As for the line field model, this is described by the Gibbs probability distribution

P (Lt = lt | gt1) =
1
Zl

exp
(
−Hl(lt|gt1)

βl

)
, (9)

where the energy function is defined like thisHl(lt|gt1) =
∑

cl∈Cl
Vl(lt, gt1 , cl, wherecl is a line clique

andCl is the set of all line cliques derived from the neighbourhood systemNl defined overSl. The potential
functionVl penalises introduction of line elements. The second-order neighbourhood systemN2

l for the
latticeSl is shown in Figure 2. Note that we, due to having both horizontal and vertical line elements, have
two neighbourhood systems, see Figures 2(a) and 2(b). There are two types of four element line cliques.
The cross-shaped cliques from Figure 2(c) are used to model the shape of motion boundaries, whereas the
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(a) (b) (c)

Figure 1. (a) First-order neighbourhood systemN1
u for vector fieldut defined overSu with discontinuities

lt defined overSl; (b) vertical cliques; (c) horizontal cliques (•–vector site,×–line site).

(a) (b) (c) (d) (e) (f)

Figure 2. Second-order neighbourhoodsystemN2
l for line field defined overSl. (a) Horizontal line element;

(b) Vertical line element; (c),(d) Four-element cliques; (e),(f) Two-element cliques; (•–vector site,×–line
site).

square-shaped cliques from Figure 2(d) are used to inhibit isolated vectors. The two-element horizontal and
vertical cliques in Figures 2(e) and 2(f) are used to prevent double edges.

For the one-element cliques the following potential function is used.

Vl1(lt, gt1 , cl) =




α

(
∂gt1
∂x )2

lh(〈xi, xj〉, t) for horizontalcl

α

(
∂gt1
∂y )2

lv(〈xi, xj〉, t) for verticalcl,
(10)

wherelh andlv are horizontal and vertical line elements andα is a constant.Vl1 represents a penalty only if
the line element is on and the appropriate gradient is small. The total potential function for the line field can
be expressed asVl(lt, gt1 , cl) = Vl1(lt, gt1 , cl)+Vl2(lt, cl)+Vl4(lt, cl), where the potentials for the various
two- and four-element clique configurations are tabulated in Figure 3. Note from Figures 3(a)–3(f), that
we apply small penalties for straight lines and high penalties for intersections. The square shaped clique
configuration potential in Figure 3(g) prohibit isolated points. Figures 3(h)–3(k) show potentials to penalise
double edges.

2.3 A Posteriori Probability

When we combine the observation model (4), the a priori probability of the displacement (6) and the a priori
probability of the line field (9), using (2), we get the following Gibbs form of the a posteriori probability

P (U t = ût, Lt = l̂t | gt1 , gt2) =
1
Z

exp
(
−Hu(ut, l̂t, gt1 , gt2)

)
, (11)
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(a) 0.0 (b) 1.2 (c) 0.4 (d) 0.8 (e) 1.2 (f) 2.0

(g) ∞

(h)
0.0

(i)
0.0

(j)
0.0

(k)
3.2

Figure 3. Potentials associated with various configurations (up to a rotation): (a)-(f) four-element cross
shaped cliques; (g) four element square shaped clique; (h)-(k) two-element cliques (•–vector site, — –line
element ”on”).

whereZ is a new normalising constant and the new energy function is defined as

Hu(ut, l̂t, gt1 , gt2) = λgHg(g̃t2 | ût, gt1) + λuHu(ût | l̂t) + λlHl(l̂t|gt1) (12)

We have introduced the new parametersλg = 1
2σ2 , λu = 1

βu
andλl = 1

βl
. The neighbourhood system of

this Gibbs distribution is a combination ofNu andNl. As the posterior distribution is Gibbsian, the MAP
estimate can be found by the following minimisation

min
{ût,l̂t}

λgHg(g̃t2 | ût, gt1) + λuHu(ût | l̂t) + λlHl(l̂t|gt1) (13)

3 Simulated Annealing Formulation

To solve this minimisation problem (13) we will employ simulated annealing. Introducing a control param-
eter, the temperatureT , in the Gibbs distribution yields

p(ût, Lt = l̂t | gt1 , gt2) =
1
Z

exp
(
−Hu(ut, l̂t, gt1 , gt2/T )

)
(14)

We generate sample configurations from the Gibbs distribution using stochastic relaxation. The Gibbs
sampler will be incorporated with the annealing scheme specified by the initial temperatureT0, the final
temperatureTs and the temperature changing ruleTk = φ(T0, k).
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In the case of a discrete displacement processut, the Gibbs sampler generates a new vector at every position
(xi, t) ∈ Su according to the marginal conditional probability distribution

p(û(xi, t) | û(xj , t), j 6= i, l̂t, gt1 , gt2) =
exp

(−Hi
u(ût,l̂t,gt1 ,gt2 )

T

)
∑

z∈Su
exp

(−Hi
u(ûz

t ,l̂t,gt1 ,gt2 )

T

) (15)

with the local displacement energy functionHi
u defined as

H i
u(ûz

t , l̂t, gt1 , gt2) = λg r̂(z, xi, t)2 + λu

∑
xj∈ℵu(xi)

‖z − û(xj , t)‖2(1 − l̂(〈xi, xj〉, t)), (16)

whereℵu(xi) is a spatial neighbourhood of the displacement vector atxi, andûz
t is a displacement field

identical to the field̂ut, except for the vector at the spatial locationxi, which isz. Similarly we express
the conditional probability for the Gibbs sampler for the displacement discontinuities at the spatio-temporal
location(yi, t) as

P (L(yi, t) = l̂(yi, t) | l̂(yj , t), j 6= i, ût, gt1) =
exp

(−Hi
l (l̂t,ût,gt1 )

T

)
∑

z∈Sl
exp

(−Hi
l (l̂

z
t ,ût,gt1 )

T

) (17)

where the local line energy functionH i
l is defined as

H i
l (l̂

z
t , ût, gt1) = λl

∑
cl|yi∈cl

Vl(l̂zt , gt1 , cl) + λu

∑
cu={xm,xn}|
〈xm,xn〉=yi

‖û(xm, t) − û(xn, t)‖2(1 − z) (18)

andl̂zt is a line field identical to the field̂lt, except for the line element at the spatial locationyi = 〈xm, xn〉,
where the line element isz.

The first term in the local energy of the displacement field is quadratic inr̂, whereas the second term is
quadratic inût. If the first term could be approximated with a quadratic form inût, the density function
would be Gaussian, and generation of samples thus very efficient.

If we in the local displacement energy function (16) replace the displaced pixel differencer̂(z, xi, t) with
the Taylor expansion to the first order

r̃(û(xi, t), xi, t) ≈ û(xi, t)T∇g + ∂g
∂t (19)

the energy function becomes quadratic inût, and thus Gaussian. If we fit the conditional probability
functionp(û(xi, t) | û(xj , t), j 6= i, l̂t, gt1 , gt2) with the local energy function resulting from the above
approximation into a 2-D Gaussian distribution with mean,m, and covariance matrix,M .

We find, that

M = T
2λuξiµi

(
µiI −∇g∇T g

)
m = ui − 1

µi
∇g

(
∂g
∂t + uT

i ∇g
)

,

which is very similar to the update equation of Horn and Schunks method. ForT = 0 they are identical.
Horn and Schunks algorithm thus corresponds to an instantaneously frozen simulated annealing.
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