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The general framework of the thesis is statistics and shape analysis. It
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familiar with concepts such as deformable template models and minimum
description length, MDL.
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Abstract

This thesis presents a general approach towards automated 3D statisti-
cal shape model building through the utilization of spherical mapping
and Minimum Description Length, based on algorithms proposed by An-
genent et al. [1] and Davies et al. [14].

A thorough treatment and discussion of the theoretic foundation involved
in conformally mapping 3D surfaces to the unit sphere is given. The ba-
sic algorithm is extended through the imposing of an area-preservation
criteria.

The theoretical foundation behind Minimum Description Length shape
modelling is presented and discussed, followed by several extensions to
the basic algorithm. Extensions include employment of the spherical map
derived, robust landmark positioning and simplification of objective func-
tion, all of which have been included in a high performance C++ frame-
work.

Experimental results on both synthetical and biological training data re-
veal the potential of and difficulties in composing unique spherical maps
as well as in building a fully automated shape model, while retaining
specificity, generality and compactness.

It is concluded that automated statistical shape learning successfully can
accomplish compact and general shape models, through the use of spher-
ical maps, though this approach to automated 3D model building is still
fairly unexplored.

Keywords: Deformable Template Models, Point Distribution Models, Prin-
cipal Component Analysis, Shape Analysis, Shape Alignment, Finite Ele-
ments Models, Spherical Mapping, Conformal Mapping, Area-preserving
Mapping, Minimum Description Length, Automated Shape Learning.
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Resumé

I denne afhandling præsenteres en generel metode til automatiseret etab-
lering af statistiske formmodeller, under anvendelse af sfæriske afbild-
ninger og Minimum Description Length. Metoden er baseret på algorit-
mer præsenteret af Angenent et al. [1] samt Davies et al. [14].

Der gives en grundig introduktion til og diskussion af det teoretiske fun-
dament for konforme afbildninger af 3D former på enhedskuglen. Algo-
ritmen udvides ved tilføjelsen af et areal-bevarende kriterie.

Den teoretiske baggrund for Minimum Description Length formmodel-
lering præstenteres og diskuteres, efterfulgt af en række udvidelser til for-
muleringen. Disse udvidelser omfatter integration af den udledte areal-
bevarende afbildning, robust landmark positionering samt simplificering
af objekt funktion, alt sammen inkluderet i et højtydende C++ bibliotek.

Eksperimentielle resultater, for både syntetiske såvel som biologiske for-
mer, afslører potentialer og svagheder i konstruktionen af unikke sfæriske
afbildninger, såvel som i automatiseret konstruktion af formmodeller der
samtidig skal være både specifikke, generelle og kompakte.

Det konkluderes, at automatiseret statistisk formindlæring succesfuldt kan
opnå generelle og kompakte modeller, under anvendelsen af sfæriske af-
bildninger, på trods af at denne tilgang til automatiseret formindlæring
stadig er relativt uudforsket.

Nøgleord: Deformable Template Models, Point Distribution Models, Prin-
cipal komponent analyse, Formanalyse, Formregistrering, Finit-element
modeller, Sfærisk afbildning, Konform afbildning, Arealbevarende afbild-
ning, Minimum Description Length, Automatiseret formindlæring.

xvi
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Chapter 1

Introduction

“Theory attracts practice as the magnet attracts iron.”
– Karl Friedrich Gauss

This thesis documents a study on core problems within 3D statistical shape
modelling, namely automated building of corresponding shape represen-
tations.

Common for deformable template models is the use of prior knowledge
retrieved from statistical analysis of shape and in some cases texture pa-
rameters. Prior to such analysis, a set of corresponding common variables
must be established between all members of the data set. Generally the
acquisition of such landmarks is a cumbersome and tedious task, and will
in most cases require an educated specialist within the specific field of ap-
plication.

Throughout the last decade, a vast array of 2D shape modelling and auto-
mated model building techniques has emerged. As computational power
has increased, the application horizon is broadened thus 3D shape models
have been the next logical step in the evolution of statistical shape mod-
elling. However the concurrent increase in complexity involved in land-
marking large data sets by hand is seldom linear, thus the need for robust,
efficient and compact automated model building has become an inherent
requirement.

14 Chapter 1. Introduction

1.1 Motivation and Objectives

The Minimum Description Length shape model was proposed by Davies
et al. [12] in 2001 as a sophisticated automated model building approach,
capable of solving the ever present correspondence problem. Relying on
spherical mapping of a training set, the model constitutes a novel ap-
proach on statistical shape learning. Due to this fact, and the overall el-
egance of such combination of techniques, work in this area constituted a
suitable and challenging subject for a master thesis. Thus the main objec-
tives set forth were:

• Discuss, document and explore the spherical mapping and MDL ap-
proaches to shape modelling.

• Design extensions to the original algorithms.
• Evaluate the spherical mapping and MDL approaches through rele-

vant examples.

As an additional objective the solution aimed at providing a platform for
further development in C++.

1.2 Thesis Overview

The thesis is divided into 4 parts, each requiring knowledge from the pre-
ceding parts.

Part I: Theory. Presenting the mathematical foundation of spherical map-
ping and the MDL approach, with emphasis on adjustments and ex-
tensions.

Part II: Implementation. Walk-through of development details regarding
the resulting SM2-API.

Part III: Experimental Results. Evaluating performance of algorithms and
implementation.

Part IV: Discussion. Discussion of the achieved results and presentation
of possible new extensions.

In addition to the above listed parts, the report is supplemented by appen-
dices on programmatic issues as well as detailed results.
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1.3 Mathematical Notation

Mathematical notations conform to the following conventions.

Scalars are typeset in italic lowercase.

s = 1.0

Scalar functions are typeset in italic lowercase.

f(s) = s− s

Vectors are typeset in non-italic bold lowercase.

v = [a, b, c]T

Vector functions are typeset in non-italic bold lowercase.

f(v) = v − v

Matrices are typeset in non-italic bold capitals.

M =

[

a b
c d

]

Matrix functions are typeset using bold non-italic capitals.

f(M) = M−M

16 Chapter 1. Introduction
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Chapter 2

Spherical Mapping

“All human knowledge thus begins with intuitions, proceeds thence to concepts,
and ends with ideas.”

– Emmanual Kant

2.1 Overview

In the following chapter, an approach to transformation of complicated 3D
shapes into simpler 2D representations using conformal mapping is given.
By mapping into 2D coordinates, the parameter requirement needed to
represent each shape in a data set is reduced, since each coordinate can be
represented by latitude and longitude.

Various approaches on deriving a spherical map have been presented [1],
[5], [48]. As an example, Brechbühler et al. [5] employs a similar ap-
proach to the one described in the following chapter. By posing the prob-
lem as one of Dirichlets boundary conditions, i.e. with a known solu-
tion to the mapping function on the boundary, a Laplacian equation of
the form ∇2f = 0 is derived. The problem is solved using a finite differ-
ences method. A similar approach is known from heat conduction prob-
lems, where the temperature of some object is known at at fixed number of

20 Chapter 2. Spherical Mapping

points, and the task here being to derive a complete map of temperatures
across the object in question.

The algorithm proposed in this chapter is based primarily on the work
conducted in the field of spherical mapping by Angenent et al. For further
details on derivation of equations on conformal maps and finite elements,
please refer to [1].

An effort has been put into making treatment of key concepts rich on ex-
amples.

2.2 Conformal Maps

2.2.1 Overview

Consider the mapping function

w = f(z) , f : D → D (2.1)

of a complex variable z denoted by

z = x+ iy (2.2)

If the function is defined in the z-plane of domain D, then each point will
correspond to a point in the w-plane, denoted by

w = u+ iv (2.3)

In this sense there is a mapping between the complex z- and w-planes
of domain D. If the mapping preserves angles between oriented curves in
magnitude as well as sense, the mapping is conformal [30]. In other words
f(z) is conformal in a point z0 if

f ′(z0) 6= 0 (2.4)
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This means, that the angle between oriented tangents in f(z0) equals the
angle between corresponding curves in z0. Furthermore the mapping is
one-to-one or injective if different points in the z-plane corresponds to dif-
ferent points in the w-plane.

Definition 2.2.1. A conformal map preserves measures of angles be-
tween oriented curves at all but a finite number of points.

As stated in definition 2.2.1, a map is conformal except at critical points,
where f ′(z) = 0. Such is the case with f(z) = z2 where f ′(z) = 2z 6= 0 for
all z 6= 0.

If a map is conformal in all points, as is the case with f(z) = ez where
f ′(z) = ez 6= 0 for all z, we say the map is conformal "everywhere".

The true value of conformal mapping lies in the ability to transform com-
plicated boundary conditions into simpler boundaries when solving par-
tial differential equations [19].

2.2.2 Uniformization

Riemanns mapping theorem in complex surface geometry states, that a sur-
face of genus 0, i.e. a surface with no self-intersections or holes, can be
conformally mapped to the unit sphere [29]. This fact, though enforcing a
requirement on shapes to be topologically equivalent with a sphere, forms
the base of solving the spherical mapping problem.

Keeping the above in mind, coordinates (x, y, z) of any given 3D shape
can be represented using a complex z-coordinate as (x, y, x + iy). This
allows the shape to be interpreted as a Riemann surface, hence proving the
existence of a spherical conformal map.

Let Σ ⊂ R
3 be the surface of any given shape with topological equivalence

with a sphere, and let p be a fixed point on Σ. Let S2 denote the unit sphere
in R

3, and let N be the north pole. Using this notation, a conformal map
can be expressed as:

f : Σ\{p} → S2\{N} (2.5)

22 Chapter 2. Spherical Mapping

Furthermore the partial differential equation, PDE

∆z =

(

∂

∂u
− i

∂

∂v

)

δp (2.6)

where (u, v) are conformal coordinates on Σ and δp is Dirac’s delta, is a
solution to the mapping problem. Since the solution to (2.6) is defined ex-
plicitly on the boundary, a smooth unit sphere, of domain Σ, the equation
forms a Dirichlet problem [30].

Though (2.6) is defined on smooth manifolds, an approximation is neces-
sary to solve the discrete problem numerically.

2.2.3 Finite Element Approximation

Overview

The concept of finite element models or FEM is an approach to solve bound-
ary conditioned partial differential equations, by approximation of local
regions with piecewise linear functions, thus transforming the problem
into a system of ordinary linear equations. In the case of conformally map-
ping 3D surfaces to the unit sphere, solving the continuous mapping prob-
lem would not be feasible due to immense computational requirements.

A basic idea behind FEM is to model a given system as a physical prob-
lem [24]. This means setting up physical rules such as stiffness, forces and
restitution coefficients, a set of properties defined in the specific environ-
ment. In general a finite element system can be written as:

Kd = f (2.7)

where K is the symmetric stiffness matrix, f is the force vector and d the
displacement vector. Symmetry in K exists since the matrix expresses
element-to-element interactions, thus Ka,b = Kb,a. Assuming the inverse
K−1 exists, the obvious solution to (2.7) is just d = K−1f . However calcu-
lating the inverse is only feasible if the modelled system has a low number
of degrees of freedom. In most cases the FEM system can be solved by
employing an iterative approach, such as the conjugate gradient algorithm
[37].
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Approximation of Conformal Map

If ∆z is the set of piecewise linear functions on domain Σ, denoted by
PL(Σ), then for any function f , smooth in the neighborhood of a point p,
it is given that

∫ ∫

Σ

f

(

∂

∂u
− i

∂

∂v

)

δpdS = −
(

∂f

∂u
− i

∂f

∂v

)

|p (2.8)

Let σ = ABC be the triangle in whose interior p lies. D is the orthogonal
projection of C on AB and fx is the force contribution acting on vertex x
in σ.

D

σ

v

u
A B

C

Figure 2.1: Approximating ∂f

∂u
and ∂f

∂v
on triangle σ in triangulated domain Σ.

∂f
∂u

respectively ∂f
∂v

are the derivatives along the u- and v-axis. In physical
terms this could be expressed as the forces acting along a specified axis.
Let forces along u be approximated by a linear combination of forces ac-
ting on line segment AB. In the same manner forces acting along v can be
approximated by a linear combination of the line from C to a point D on
and orthogonal to AB. More specifically one has

∂f

∂u
=

fB − fA
‖B −A‖ (2.9)

∂f

∂v
=

fC − fD
‖C −D‖ (2.10)
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D can be expressed as

D = A+ θ(B −A) (2.11)

where

θ =
〈C −A,B −A〉

‖B −A‖2
(2.12)

Through the linear nature of f and relations (2.9), (2.10), (2.11) and (2.12)
inserted into (2.8) we derive

∫ ∫

Σ

f

(

∂

∂u
− i

∂

∂v

)

δpdS =
fA

‖B −A‖ − fB
‖B −A‖

+i
fC − (fA + θ(fB − fA))

‖C −D‖ (2.13)

By restricting to PL(Σ), seeking z ∈ PL(Σ), then for all f ∈ PL(Σ) we
have

∫ ∫

Σ

∇z · ∇fdS =

(

∂f

∂u
− i

∂f

∂v

)

|p (2.14)

where ∇z is the gradient with respect to the induced metric on Σ.

Let P,Q ∈ Σ be any pair of vertices on the triangulated unit sphere, and
let φP be a continuous function, linear on each triangle, conforming to

φP (P ) = 1, (2.15)
φP (Q) = 0, Q 6= P (2.16)

thus forming a basis for PL(Σ). What remains is to derive an expression
for z such that

z =
∑

P

zPφP (2.17)
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By combining (2.17) and (2.14) it is given that

∑

P

zP

∫ ∫

Σ

∇z · ∇fdS =
∂φQ
∂u

(p) − i
∂φQ
∂v

(p) (2.18)

for all Q and fixed p.

Building the Stiffness Matrix

Based on the formulation derived in the previous section, a linear system
of equations is formulated, thus forming a solution to the conformal map-
ping problem. In matrix terms (2.18) becomes

KP,Q =

∫ ∫

∇φP · ∇φP dS (2.19)

where K is the stiffness matrix and P,Q is any pair of vertices on Σ. Con-
sider two adjacent triangles, σA and σB , sharing a common edge on a
triangulated mesh Σ as illustrated in figure 2.2.

P

B

A

S

R

θ

θ

S

R
Q

Figure 2.2: Relation between angles of opposite vertices on adjacent triangles
forms base of the stiffness matrix K.

Using triangular elements when solving Laplaces equation with a finite
element model, the following relation exists between vertices vR and vS :

KP,Q = −1

2
(cot θR + cot θS), P 6= Q (2.20)
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Diagonal elements are formed by

KP,P = −
∑

P 6=Q

KP,Q (2.21)

Based on a triangle σ = ABC we compose an expression for aQ − ibQ =
∂φQ

∂u
(p) − i

∂φQ

∂v
(p) as

aQ − ibQ :=



















0 , Q /∈ {A,B,C}
−1

‖B−A‖ + i 1−θ
‖C−D‖ , Q = A

1
‖B−A‖ + i θ

‖C−D‖ , Q = B

i −1
‖C−D‖ , Q = C

(2.22)

A solution to the complex system of equations can thus be derived by solv-
ing the system for the real respectively the imaginary parts. This forms the
following two linear systems of equations

Kx = a (2.23)
Ky = −b (2.24)

Solving the system of equations produces a complex mapping plane as
illustrated in figure 2.3.
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Figure 2.3: The 2D complex plane of a conformally mapped sphere with uniformly
distributed points. The largest triangle being σ = ABC in which p resides.

Ensuring Uniqueness

Since the map is only unique up to scale and translation, we ensure unique-
ness by translation to the center of mass, v defined as

v =
1

nv

nv
∑

i=1

vi (2.25)

where nv is the number of vertices and in turn rescale to let half the ver-
tices lie within a unit circle with origo at the center of mass.

Inverse Stereographic Projection

We introduce inverse stereographic projection as a means of wrapping a com-
plex 2D surface onto the unit sphere, thus composing the conformal map.
This is achieved by employing the transformation

f(z) =

(

2x

(1 + r2)
,

2y

(1 + r2)
,

2r2

(1 + r2)
− 1

)

(2.26)

r2 = x2 + y2 (2.27)
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where z = x + iy. To clarify, the concept of stereographic projection is
presented graphically in figure 2.4.

1

P’2

P2

P1

P’

N

O

S

Figure 2.4: Stereographic projection of sphere onto plane. P ′

i denotes projected
points, Pi denotes original points on the sphere with origo at O and N/S are
north/south poles.

2.2.4 Summary of Algorithm

Based on the definitions and equations described in the preceding sec-
tions, the algorithm of conformal mapping complies to the following rules:

Algorithm 1 Conformal mapping of a shape to the unit sphere.
Require: Shape is topologically equivalent to a sphere.

1: Compute K, a and b.
2: Compute the planar complex map, C by solving Kx = a and Ky =

−b.
3: Use inverse stereographic projection, fISP : C → S to project C onto

the unit sphere, S.

In figure 2.5 this approach has been utilized to produce a conformal map
of a sphere with uniformly distributed points. In this case, the specific
choice of object, displays the area distortion problem encountered in con-
formal maps.
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Figure 2.5: Conformal map of a sphere with uniformly distributed points, seen
from opposite poles.

2.3 Area-preserving Maps

2.3.1 Overview

The area distortion introduced through conformal mapping stems from a
fundamental fact of mapping theory:

Definition 2.3.1. No mapping between two surfaces exists which is
both conformal and area-preserving.

To overcome this problem a novel optimization scheme is proposed. De-
pending on geometry of the shape being conformally mapped, some level
of area-distortion is introduced. The initial goal of mapping a shape to the
unit sphere was to reduce the total number of parameters needed to rep-
resent each shape. A requirement of such a mapping procedure must be,
that it retains information of size and shape, in other words areas and an-
gles. Though a fairly simple approach, the optimization scheme presented
in the following sections aims at optimizing each vertex position based on
a least squares error measurement of area differences between each pair
of original and conformally mapped shapes.
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2.3.2 Local Optimization

Consider a local region around vertex v of a triangulated conformal map
on the unit sphere, as shown in figure 2.6.

V

Figure 2.6: The local mesh region connected to vertex v is considered to be planar.

Assume the region around vertex v is planar. Though this is an approxi-
mation, the nature of errors introduced by this assumption is of the form

θ ≈ sin(θ) (2.28)

for θ → 0 where θ is defined as the angle between the optimal plane and
a vector drawn from the point of intersection between plane and triangle
edge to vertex v, measured orthogonally to the plane, and illustrated in
figure 2.7.

V

P θ

Figure 2.7: Assuming planar conditions around vertex v introduces an error, re-
lated to angle θ.

Optimal plane

The transformation problem is posed as one of fitting a plane to the set of
3D points connected by edges to vertex v. Residing on a sphere, points
express a higher degree of variation along the surface, rather than along
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an axis orthogonal to the surface. This fact allows the axis along which
the least variation is observed to be estimated using principal component
analysis, PCA [8].

For a more detailed description of principal component analysis and the
eigenvalue problem please refer to 3.6.

Consider the vector

x = [x, y, z]T (2.29)

as a vector of point coordinates with mean value based on N observations
calculated by

x =
1

N

N
∑

i=1

xi (2.30)

Let the covariance matrix be defined as

D =
1

N

N
∑

i=1

(xi − x)(xi − x)T (2.31)

Thus principal axes are now given by the eigenvectors, P, of the covari-
ance matrix, D, as

DP = PΛ (2.32)

where Λ is a diagonal matrix of eigenvalues, λi, corresponding to the
eigenvectors, pi, in columns of P [18].

Sorting eigenvalues in descending order and extracting the eigenvector
corresponding to the smallest eigenvalue yields the normal n of the opti-
mal plane, minimizing distances from point to plane measured orthogo-
nally to the plane.

The rotation matrix, R which rotates the optimal plane normal, n, onto the
z-axis is derived. Given R, vertex v along with points connected by edges
to v are transformed. By disregarding the z-coordinates of rotated points,
the local optimization problem can be approximated in 2D.
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Vertex Optimization

Once transformed into 2D, a set of linear equations describing the rela-
tions between areas of triangles on the original and mapped mesh can be
derived. Thus a solution to the optimal vertex placement is given by the
objective function

min
f

n
∑

σ=1

(Am,σ −Ao,σ)
2 (2.33)

whereAm,σ is the area of triangle σ on the spherical mapping, locally pro-
jected onto the plane and Ao,σ is the area of the corresponding triangle on
the original shape.

Let Aσ denote the area of a triangle, σ = ABC, defined as

Aσ = 1−2 |AB||CD| (2.34)

where D is the projection of C onto and orthogonal to AB.

Consider a triangle, σ, as illustrated in figure 2.8, with normal, n, of the
base line, b. Let l be a line through origo and parallel to n.

α

β

h

v

σ

n

l

b

Figure 2.8: Calculation of triangle area using orthogonal projection of points onto
a line through origo and parallel to normal n.
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Any point x on l can thus be expressed as

nT · x = α (2.35)

where α is the distance to origo, measured along l. Rewriting (2.35) into
homogenous coordinates one has

nT · x − α = 0 (2.36)
[

n

−α

]T [
x

1

]

= 0 (2.37)

In the same manner the distance, β, at which vertex v is projected onto l

and measured from origo, is defined as

nT · v − β = 0 (2.38)
β − α = h (2.39)

where h is the height of triangle σ measured along l. From (2.37), (2.38)
and (2.39) we derive

nT · v − α = h (2.40)
[

n

−α

]T [

v

1

]

= h (2.41)

nTw · vw = h (2.42)

where nTw denotes the normal in homogenous coordinates with w = α and
vw is vertex v also defined in homogenous coordinates with w = 1.

By inserting (2.42) into (2.34) we derive a novel expression for the area,
Am,σ of any mapped triangle σ as

Am,σ = 1−2 nTw · vw (2.43)
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For each vertex v, nve occurrences of expression (2.43), where nve is the
number of edges connected to v, form a linear system of equations to be
solved in the least squares sense.

‖Dmv −Ao‖2 (2.44)

Here Dm is defined as

Dm = 1−2











nw,1,x nw,1,y α1

nw,2,x nw,2,y α2

...
...

...
nw,nve,x nw,nve,y αnve











(2.45)

By solving equation (2.44), we derive the best position for vertex v, based
on area distortion. Since the optimal position is defined in 2D, rotation
and normalization form the final steps.

2.3.3 Global Optimization

The local optimization scheme approximates the best vertex position by a
set of linear equations. Due to the nature of the local optimization scheme,
each step decreases the local and global objective. In other words, the
most likely step for each iteration is chosen. In this manner, probabilities
are maximized, thus yielding a maximum a posteriori, MAP, estimate of the
triangulated surface, Σ. This approach constitutes a deterministic relaxation
scheme, better known as iterated conditional modes, ICM [2] as opposed to
simulated annealing which constitutes a stochastic relaxation scheme.

The global minimization approach conforms to the following simple rules.

Algorithm 2 Minimization of area distortion.
1: repeat
2: Rescale the spherical map such that the sum of areas of all triangles

equals the sum of areas of all triangles on the original shape.
3: For all vertices, and in a randomized manner, optimize vertex posi-

tions using the local optimization scheme.
4: Calculate the residual between optimization steps.
5: until convergence
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Convergence is achieved as the residual between successive iterations is
below some specified threshold.

Although the residual may never converge towards 0, due to the errors
imposed by the assumption θ = sin(θ), a rough estimate of the global
minimum, ε, using the 2D approximation can be obtained by:

ε =
1

2ne

nv
∑

v=1

nve
∑

e=1

θve (2.46)

where ne is the total number of edges, nv is the total number of vertices,
nve is the number of edges at vertex v, and θve is the angle between the eth

edge and the optimal plane at vertex v.

Reducing Artifacts

Though the novel optimization scheme minimizes area distortion, a po-
tential hazard exist: If the initial conformal map expresses a high degree
of area distortion, particularly if the number of highly distorted triangles
is little, n < 0.1 · nv , the local vertex optimization scheme produces large
steps, extending triangle edges beyond recovery. This effect will prop-
agate to the remaining triangles, thus forcing the algorithm into a local
minima. To avoid this type of artifact, a weight, ω, has been added to the
local optimization scheme.

Consider the 2D local optimization problem. Let vo be the optimal po-
sition for a vertex v, and let T be the translation vector describing the
transformation v → vo, thus one has

vo = v + ωT (2.47)

Figure 2.9 displays the effect of weight factor ω on area distortion achieved
by the optimization scheme introduced.
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Figure 2.9: RMS Error for different values of weight ω as a function of the opti-
mization step.

Cross validation has revealed ω ∈ [0.5 : 1.0] as the best weight factor inter-
val when used in combination with the MDL model derived in succeeding
chapters.

Figure 2.10 illustrates the effect of employing the area distortion minimiza-
tion scheme suggested.

Figure 2.10: Optimized area-preserving map, based on conformal map of a sphere
with uniformly distributed points, seen from opposite poles.
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2.4 Summary

Throughout this chapter, a method for reducing the parameter space of
a set of shapes based on spherical mapping have been introduced. Key
mathematical concepts, aided by illustrative examples, explain the frame-
work for employing such a method with little loss1 of general shape char-
acteristics, through the utilization of a novel area-preservation criteria.

1Some degree of loss is inevitable due to the nature of combining conformal and area-
preserving maps, see definition 2.3.1.
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Chapter 3

Statistical Shape Models

“There are three kinds of lies: lies, damned lies, and statistics.”
– Benjamin Disraeli

3.1 Overview

The following chapter provides the fundamental concepts and techniques
for building a statistical shape model. Starting off with a definition of
shapes and landmarks, different approaches on aligning a set of land-
marked shapes, with and without landmark correspondence, are presented.
A method for modelling shape variations seen across a given data set -
based on point distribution models, PDM - concludes this chapter.

3.2 Shapes and Landmarks

To clarify the concept of statistical shape analysis, one needs to define the
term shape. In everyday language a shape is referred to as "the appear-
ance of an object". The Merrian-Webster dictionary explains the concept
of shape as
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- The visible makeup characteristic of a particular item [34].

Though it describes the meaning of shape in common terms, this does not
suffice in the mathematical understanding of the term. To clarify we adopt
the definition of D. G. Kendall [16]:

Definition 3.2.1. Shape is all the geometrical information that re-
mains when location, scale and rotational effects are filtered out from
an object.

This definition implies that a shape is invariant to Euclidean similarity trans-
formations.

In the same manner, we define a shape representation as a finite number
of points positioned along the outline of an object. These points consti-
tute landmarks, and can be divided into 3 categories, again adopting the
notation from Kendall [16].

• Anatomical landmark A point assigned by an expert that corre-
sponds between organisms in some biologically meaningful way.

• Mathematical landmark A point located on an object according to
some mathematical or geometrical property of the figure, e.g. at a
point of high curvature or at an extreme point.

• Pseudo landmark Constructed point on an object, located either around
the outline or in between anatomical or mathematical landmarks.

3.3 Point Distribution Models

Having defined the required primitives, a convenient framework for sta-
tistically analyzing and modelling variations across similar shapes, pro-
posed by Cootes and Tayler [10], is employed. This approach constitutes
point distribution models. The model utilizes knowledge acquired through
statistical analysis of shape variation, based on an aligned data set. The
model building procedure is one of three steps. These constitute:
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1. Shape capture: Establishment of a set of corresponding landmarks
across the data set.

2. Shape alignment: Alignment of the data set using the Procrustes
distance metric.

3. Shape analysis: Principal component analysis of variation seen across
the data set.

The force of this approach lies in its ability to produce a compact model.

In the following sections, the steps involved in building a PDM are ex-
plained in detail.

3.4 Obtaining Landmarks

Generally the acquisition of landmarks is a cumbersome and tedious task.
In most cases the landmarking effort requires a trained expert within the
specific field, since the problem of positioning landmarks in a manner con-
sistent with the medical or biological variation one seeks to analyze most
likely relies on forehand knowledge. Furthermore the task becomes in-
creasingly difficult as dimensionality increases.

While no "golden" automated or semi-automated approach exists, several
good attempts to construct a such has carried out.

As an example, Thirion [46] employs a method for extracting an extremal
mesh, based on crest lines1 derived using the marching lines algorithm
[47]. Extremal points are calculated as the point of intersection between
two or more crest lines, based on gradients. Though this approach sim-
plifies subsequent alignment, the matching of crest lines is not straight-
forward.

Another example authored by Wang et al. utilizes a hierarchical refine-
ment process, starting off with a sparse representation of landmarks. For
each iteration, the most likely landmark candidates are selected through
evaluation of measures on shortest path, curvature and surface normals at
local patches of a triangulated mesh [49].

1Lines of maximal curvature along an object.
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Brett and Taylor [6] suggest an approach based on a decimation scheme in
which a sparse polygonal model of the object in question is derived. For
each iteration, vertices are removed, and selection is determined through
a distance metric preserving sharp edges and thin structures. The result-
ing sparse triangulated meshes can thus be aligned using iterative closest
point, see 3.5.1.

In chapter 4 an approach to "circumvent" the landmarking process is pre-
sented. This method relies on establishment of correspondence through
automated generation of landmarks based on spherical mappings of a
given set of shapes.

3.5 Aligning a Set of Shapes

A prerequisite of statistical shape analysis is the establishment of a com-
mon shape space, a space in which variation across any given set of shapes
can be measured and evaluated. From [16] we adopt the definition

Definition 3.5.1. The shape space is the set of all possible shapes.
Formally, the shape space

∑k
m is the orbit space of the non-coincident

k point set configurations in R
m under the action of the Euclidean

similarity transformations.

In other words we wish to filter out effects of scale, translation and rota-
tion, as stated in definition 3.2.1. This is achieved through shape align-
ment.

Alignment algorithms can generally be divided into two categories:

• Correspondence based
• Non-correspondence based

The most common methods in each of the two categories are the Pro-
crustes [20] and iterative closest point or ICP [3] alignment algorithms.
Extensions to both methods exists. As an example Larsen and Eiríksson
[31] combines Procrustes alignment with different norms, the l2-norm be-
ing utilized in ordinary Procrustes alignment. As an example of extending
ICP, Zhang [51] introduced the ability to estimate 3D motion through suc-
cessive ICP alignment procedures.
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The Euclidean Distance Metric

As a common measurement of "goodness", i.e. how well a specific point is
aligned, we employ the Euclidean distance metric defined as

d(v1,v2) = ‖v1 − v2‖ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (3.1)

where vi is a vertex represented as vi = [xi, yi, zi]
T , and d is the general

distance metric. Extensions to more complicated primitives, such as lines
and planes, will not be documented further in this thesis, though it should
be noted, they can be derived using simple geometry.

3.5.1 Iterative Closest Point

The iterative closest point algorithm is especially useful when alignment
of non-corresponding data sets is required. Employing a least squares ap-
proach on inter-point distance minimization, a corresponding set of land-
marks is derived. For each set of corresponding landmarks, a transfor-
mation vector is calculated based on unit quarternions [23]. ICP was de-
veloped by Besl and McKay and has become a widely used approach on
shape alignment.

Let p be a point on shape P, and let X be the model shape, to which
P should be aligned. Then the distance metric, d, between p and X is
defined as

d(p,X) = min
x∈X

‖x− p‖ (3.2)

where x is any point on X. Furthermore, let C be the closest point operator
such that

Y = C(P,X) (3.3)

where Y is the resulting set of closest points on X. Finally let q be the
unit quarternion which minimizes distances between corresponding land-
marks in P and Y in a least squares manner, by scale, translation and ro-
tation. The least squares registration is then given by
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(q, d) = Q(P,Y) (3.4)

Having briefly defined the fundamentals of ICP, attention is focused on
algorithm structure. Given P and X, the algorithm employs the following
set of rules:

Algorithm 3 Iterative closes point alignment.
1: repeat
2: Compute the closest points Yk = C(Pk,X).
3: Compute the alignment, (qk , dk) = Q(Pk,Yk).
4: Apply the registration to produce Pk+1 = qk(Pk).
5: until convergence

It should be noted, that the algorithm only ensures convergence towards a
local minima. To illustrate this concept, examine the two alignment prob-
lems posed in figure 3.1.

(a) Before (b) After

(c) Before (d) After

Figure 3.1: (a) before and (b) after failing ICP alignment due to convergence to-
wards incorrect minimum. (c) before and (d) after successful ICP alignment.
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For further details on ICP, please refer to [3].

3.5.2 Procrustes Alignment

To align a set of shapes with corresponding landmarks the generalized
Procrustes alignment algorithm [20] is employed. Relying on the Euclidean
distance metric between two points, the algorithm aligns a set of shapes
to a mean shape estimate.

A key problem in solving the Procrustes alignment problem is to derive
the optimal rotation between two sets of N corresponding points. Exam-
ples of possible solutions to the rotation matrix problem are singular value
decomposition [26] of the correlation matrix, and unit quaternions [23].

The Procrustes algorithm employs an iterative approach, calculating a
new mean shape estimate, x, defined as

x =
1

ns

ns
∑

i=1

xi (3.5)

for each new configuration, k, only allowing rigid body transformations, i.e.
translation and rotation. Upon each new configuration, the set of shapes
are re-scaled to unit size. To give meaning to this operation, we employ a
common size metric.

Let S(x) be the centroid size metric [16, 44] defined by

S(x) =

√

√

√

√

N
∑

i=1

(xi − x)2 + (yi − y)2 + (zi − z)2 (3.6)

for which the relation S(ax) = aS(x) is satisfied.

If X is the set of shapes to be aligned, then the algorithm complies to the
following rules:
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Algorithm 4 Procrustes alignment.
1: Choose the first shape x0 as the initial mean shape estimate, x.
2: repeat
3: Align the set of shapes, X, to the mean shape estimate.
4: Re-calculate the mean shape estimate based on the new shape con-

figuration.
5: Re-scale mean shape to unit size and zero rotation.
6: until convergence.

Convergence is achieved as the residual between successive iterations is
below some specified threshold, and usually within 2 iterations [4].

(a) Before (b) After

Figure 3.2: (a) before and (b) after Procrustes alignment.

3.6 Modelling Shape Variations

A common and well defined problem in shape analysis is one of extract-
ing information regarding inter-point correlation between a set of shapes.
Suppose we have a set of ns shapes, each with N points, aligned within
a common coordinate system. From the set of shapes a model can be de-
rived, able to reproduce any instance of the shape set, as well as synthe-
sizing new shapes similar to the ones found in the shape set used in the
model building process.

Several attempts on capturing variations seen across a set of shapes, based
on statistical variation analysis, have been described. Methods include
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maximum autocorrelation factors, MAF [45], and independent component
analysis, ICA [25]. A good review of these methods, though based on 2D
shape analysis, can be found in [31].

The goal of any such analysis approach is to derive a compact model of
shape variations. In this thesis attention is focused on principal component
analysis, PCA.

3.6.1 Principal Component Analysis

Consider a 3n-dimensional vector of 3D point coordinates

x = [x1, x2, . . . , xn, y1, y2, . . . , yn, z1, z2, . . . , zn]
T (3.7)

with mean value based on ns observations calculated by

x =
1

ns

ns
∑

i=1

xi (3.8)

Let the covariance matrix be defined as

D =
1

ns

ns
∑

i=1

(xi − x)(xi − x)T (3.9)

Eigenvalues for D are given by

|D − λI| = 0 (3.10)

where | · | denotes the determinant. Principal axes are then given by the
eigenvectors of the covariance matrix as

DP = PΛ (3.11)

where Λ is a diagonal matrix of eigenvalues, λi, defined by
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Λ =







λi · · · 0
...

. . .
...

0 · · · λ3n






(3.12)

Corresponding eigenvectors, pi, are defined in columns of P as.

P =













p1 · · · p3n













(3.13)

Any given shape instance of the data set can thus be derived through the
linear combination

x = x + Pb (3.14)

where b is defined as the shape model parameters given by

b = PT (x − x) (3.15)

By sorting eigenvalues and corresponding eigenvectors in descending or-
der the t principal axes, or modes, responsible for a predefined level of
variance, i.e. 95%, can be identified. Let the specified quantile, q, be de-
fined as

t
∑

i=1

λi ≥ q

3n
∑

i=1

λi (3.16)

Recall that eigenvectors are axes along which the mean shape expresses
variations. To illustrate this fact, figure 3.3 displays the variations found
in a given data set along the largest three principal axes.



3.6 Modelling Shape Variations 49
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Figure 3.3: Deformation of a human brain mean shape along the first three princi-
pal axes.

Extending PCA

Suppose we wish to model a set of ns shape vectors, xi, each consisting of
np landmarks for which the condition ns < np holds. Since the dimension
of the covariance matrix in this case is np × np, it is desirable to deduct an
alternative method to extract eigenvectors P and corresponding eigenval-
ues λ, thus reducing the computational effort required to solve the eigen-
value problem. This can be achieved using the following approach.

Consider a ns × np matrix W defined as
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W =











x1 − x

x2 − x
...

xns
− x











(3.17)

where x is the mean shape estimate. The ns × ns covariance matrix, D, is
then given by

D =
1

nsnp
WWT (3.18)

Let a T be a matrix such that

T =
1

nsnp
WTW (3.19)

Finally, let pi be the ns eigenvectors of T with corresponding eigenvalues
λi sorted in descending order. Using the above notation, it can be shown
that the ns vectors Wpi are eigenvectors of D with corresponding eigen-
values λi. Further it can be shown, that all remaining eigenvectors of D

have zero eigenvalues [9].

3.7 Summary

Throughout this chapter the mathematical fundamentals of building and
analyzing a statistical shape model, based on Procrustes alignment and
principal component analysis, have been described. A set of definitions
form the environment, in which the model resides.
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Chapter 4

Minimum Description
Length Shape Models

“The art of doing mathematics consists in finding that special case which
contains all the germs of generality.”

– David Hilbert

4.1 Overview

In the following chapter a complete approach on building an optimal 3D
shape model is presented, partly based on the mathematical foundation
served in earlier chapters, partly on new definitions described here. Uti-
lizing the concept of minimal description length, MDL, the shape model,
derived using ordinary principal component analysis, is optimized.

By all means, constructing a fully automated shape model is the ultimate
objective in statistical shape analysis. However, this has proven to be a dif-
ficult task, primarily due to the need for consistent automated landmark
extraction. Several attempts, mainly based on combinations of known
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landmark extraction and shape analysis methods, have been made to con-
struct such models [27, 6, 7].

As an example, Kaus et al. [27] employs a method for automated model
building by constructing a triangulated template mesh. By deforming the
template mesh, corresponding landmarks are found in segmented volu-
metric images utilizing a deformation energy measurement. Based on the
corresponding set of landmarks, a standard point distribution model is
established.

The algorithm proposed in this chapter is based primarily on the work
conducted in the field of minimum description length statistical shape
modelling by Davies et al. For further details please refer to [13, 11, 15,
14, 11].

4.2 Minimum Description Length

The problem is posed as one of finding a set of optimal parameterizations,
Φi for shape Si in a set of shapes, S. Using principal component analysis,
this constitutes deriving the optimal set of landmarks for a given train-
ing set, in a sense that enforces generalization ability and compactness.
This is achieved by employing a minimum description length approach, in
which the optimization problem is treated as one of minimizing the cost
of transmitting model and model parameters [40].

The MDL principle stems from an idea of transmitting a data set as en en-
coded message, thus the transmission must contain information on both
model and model parameters in some encoded form. In shape terms this
constitutes sending a mean shape estimate, a set of parameterizations de-
scribing the deformation of the mean shape for each member of the data
set being transmitted, and in the process evaluating the cost of transmis-
sion. In this manner, a balance between model complexity and quality of
fit is expressed.
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4.2.1 Model Definition

Consider the set of ns shapes each consisting of np-dimensional shape vec-
tors, xi, conforming to a multivariate Gaussian distribution1. To transmit a
shape xi, a coordinate system is chosen which is aligned with the principal
axes of the data set. In this manner, the ns − 1 mutually orthogonal eigen-
vectors, P, sorted by descending eigenvalues, span the subspace which
contains the data set being transmitted. In other words xi is defined as

xi = x +

ns−1
∑

m=1

pmbm,i (4.1)

In addition, the linear combination allows for the position of any point to
be modelled as a one-dimensional Gaussian distribution. Each shape to
be transmitted can now be composed as

yi ≡ pTm(xi − x) (4.2)

It is assumed that transmitting the mean shape estimate, x, and eigenvec-
tors, P, requires a fixed code length.

4.2.2 Description Length

Due to the fact that eigenvectors are mutually orthogonal, the total de-
scription length, Ltotal, can be decomposed as the sum over ns− 1 dimen-
sions of shape space:

Ltotal =

ns−1
∑

m=1

Lm = Lparameters + Ldata (4.3)

This requires an expression able of calculating the description length of a
1D data set using the Gaussian distribution model

1Based on the assumption, that the position of point v on some shape xa tends to be
more probable in the same neighborhood of a corresponding point v on a similar shape xb,
thus conforming to a Gaussian type distribution.

54 Chapter 4. Minimum Description Length Shape Models

ρ(y, σ) =
1

σ
√

2π
exp

(

− y2

2σ2

)

(4.4)

Since the MDL principle is restricted to transmitting a finite data set, Y , a
quantization parameter, ∆, is imposed upon data values such that Ŷ → Y
for ∆ → 0. Thus quantized data values can be represented to an accuracy
of ∆ as

y → ŷ, ŷ = n∆, n ∈ Z (4.5)

Assuming all points, xi,v , in the original shape set, x, reside within a
strictly bounded region given by

−r
2
≤ xi,v ≤ r

2
, ∀v = 1, . . . , np, ∀i = 1, . . . , ns (4.6)

Then the corresponding set of border conditions in shape space is given
by

|ym,i| ≤ R , ∀(m, i) (4.7)

where R = r
√
np. Variance of the quantized data is calculated by

σm =

√

√

√

√

1

ns

ns
∑

i=1

ŷ2
m,i (4.8)

4.2.3 The Objective Function

By utilizing Shannon’s codeword length [42], the code length needed to code
a data value, ŷ, using a probabilistic model, P (ŷ), can be calculated as

L = − logP (ŷ) (4.9)
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Using the Gaussian model defined in (4.4), the probability, P (ŷ), for a data
value, ŷ, in the interval ŷ ± ∆

2 is given by

P (ŷ) =

∫ ŷ+∆

2

ŷ−∆

2

ρ(k, σ)dk (4.10)

This expression can be approximated by

P (ŷ) ≈ ∆

σ̂
√

2π
exp

(

− ŷ2

2σ̂2

)

(4.11)

The approximation introduces a minimum error term for all values σ̂ ≥
2∆, thus a lower bound of σmin = 2∆ is chosen. Since σ̂ can take any value
within the data range, assuming no prior knowledge, σmax = R

2 is chosen
as upper bound. Though this setup requires the definition of 2 separate
expressions, dependant upon whether the actual data value lies within or
below the boundaries. In addition, a third expression is needed to evaluate
the case where all data values are below the quantization parameter. This
yields three different cases:

• Case 1: σ > σmin
• Case 2: σ ≤ σmin ∧ Y > ∆
• Case 3: Y ≤ ∆

Thus the total description length, including parameters, for each principal
direction becomes

Lm =







L(1)(σm, ns, R,∆) , σm ≥ σmin
L(2)(σm, ns, R,∆) , σm < σmin ∧ Y > ∆
0 , Y ≤ ∆

(4.12)

where case 3 corresponds to transmitting the mean value and no addi-
tional variation. Since the mean value is always transmitted, the contribu-
tion from data in case 3 is zero. Utilizing equation (4.3) the total descrip-
tion length can be calculated as
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Ltotal =

ns−1
∑

m=1

Lm (4.13)

=

ng
∑

p=1

L(1)(σp, ns, R,∆) +

ns−1
∑

q=ng+1

L(2)(σq , ns, R,∆) (4.14)

where ng is defined as the number of principal directions for which the
first case holds. One could say that L(1) is the cost of transmitting ng sig-
nificant directions while L(2) is the penalty of disregarding the remaining
ns − ng − 1 directions.

Applying the definitions of L(1) and L(2) from [14] and replacing Ltotal
with F the full objective function becomes.

F = f(·) +

ng
∑

m=1

(ns − 2) lnσm +

ns−1
∑

m=ng+1

(

(ns − 2) lnσmin +
ns + 3

2

[

(

σm
σmin

)2

− 1

])

(4.15)

where f(·) is a function depending only on the constant terms (∆, R, ns),
thus evaluating to a constant value.

However the objective function defined in (4.15) requires a substantial
computational effort to evaluate due to the need for quantizing the com-
plete data set and re-calculating the shape to be transmitted using equa-
tion (4.2). In addition, the part of (4.15) dependant upon σm contains terms
similar to

∑

lnλm. To simplify the objective function, we can use the fol-
lowing definition as an initial MDL estimate

F ≈ f(·) +

ns−1
∑

m=1

ln(λ̂m + ε) (4.16)

where λ̂m is the quantized eigenvalues and ε is a normalizing constant
forcing the functional to have a minimum value when λm → 0. This func-
tional is derived from
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FD = ln

(

∏

m

λm

)

=
∑

m

lnλm (4.17)

which effectively measures the "volume" that the training set occupies in
shape space. A similar objective function was proposed by Kotcheff et al.
[28]. Since the minimization scheme proposed here requires an iterative
solution approach, minimizing the simple objective function and in turn
applying the full objective function, yields a much faster implementation.
However, only using the simple version and depending on the properties
of covariance matrix D this assumption will favor small eigenvalues, re-
gardless of the proportion of variance contribution, which could result in
an non-optimal model. This is primarily due to the inability to differenti-
ate between significant and less significant modes of variation.

For further details on derivation of the full objective function, please refer
to [14].

4.3 Parameterization

A shape model is built by casting the correspondence problem as one of
defining a parameterization, φi, for each shape, xi, which minimizes the
objective function, F . If each shape in the training set is topologically
equivalent with a sphere, we can employ the following approach

1. Map each shape, xi in the training set, x to the unit sphere using the
spherical mapping technique described in chapter 2.

2. Uniformly distribute a fixed number of landmarks, nl, across each
spherical map, using a common north pole.

3. Use barycentric coordinates to wrap the uniform set of landmarks
back to the original shapes, creating ns corresponding sets of nl land-
marks.

Once corresponding landmarks are established, these can be aligned and
analyzed using techniques described in the previous chapter.
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4.3.1 Initial Registration

Due to the nature of mapping a shape from one domain to another, and
utilizing the new domain to compose corresponding landmarks, a initial
registration of spherical mappings must be obtained. In the method de-
scribed in chapter 2 this constitutes registering and aligning the original
set of shapes using the ICP alignment algorithm. To obtain a good align-
ment result, the set of original shapes are roughly aligned by hand, us-
ing a sparse registration2. Once roughly aligned, the registration obtained
in this step is disregarded, since the minimization scheme employed will
seek to achieve better correspondence based on manipulation of each set
of landmarks.

A suggestion on how to avoid this initial registration step is proposed in
chapter 9. For further discussion the initial registration explanation given
here will suffice.

4.3.2 Barycentric Coordinates

By mapping points to the spherical surface, a reverse coordinate transform
using barycentric coordinates will allow a point positioned in an arbitrary
triangle τ ′ on the spherical to mapped in the same relative position in
triangle τ on the original triangulated mesh S. This is achieved through a
barycentric coordinate transformation [50].

An example of such reverse mapping using a barycentric coordinate trans-
formation is illustrated in figure 4.1 where a set of isolines on the spherical
map has been projected back onto the original shape.

2This initial registration is a requirement regardless of the mapping algorithm used, since
orientation and pose of the spherical map is dependant upon the choice of north pole.
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Figure 4.1: Barycentric coordinate transformation of isolines on the spherical map
onto the original shape. Left: Spherical map with isolines. Right: Isolines mapped
onto original shape.

The triangulated mesh of a shape can be expressed as

Si = Si(θ, ψ) (4.18)

where (θ, ψ) are the polar spherical coordinates for all vertices on Si. Mov-
ing vertex, v, on the original mesh corresponds moving v on the spherical
map. Thus we have a mapping between vertices given by

Si → S′
i , θ → θ′ , ψ → ψ′ (4.19)

where Si(θ, ψ) = S′
i(θ

′, ψ′) and θ′ = φi,θ(θ, ψ), ψ′ = φi,ψ(θ, ψ). Here
φi(φi,θ, φi,ψ) is a parameterization describing only the ith shape in the
training set.

4.3.3 Equidistant Points on the Unit Sphere

With no assumptions on surface geometry, i.e. curvature and point densi-
ties, the general shape model should have a number of evenly distributed
landmarks. Based on the spherical map, this is achieved by placing a num-
ber of equidistant points on the spherical surface, and projecting these
onto the original shape, using the approach described in the preceding
section.
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Distributing a fixed number of points across a sphere is a complete field
of research, and no "golden" method exists capable of achieving this goal,
though several good mesh subdivision techniques come close [17, 22, 32,
52].

Linear Subdivision

The simplest approach on achieving approximated uniformly distributed
points on a sphere is to employ the linear subdivision method. As most
other subdivision methods, this approach is an iterative refinement pro-
cess.

For each iteration, triangles are divided into four new triangles, by placing
a vertex halfway along each edge and forming connections between new
vertices. If the initial triangular mesh is a octahedron with eight equivalent
equilateral triangles, the number of vertices added by each iteration is 2 +
4(k+1), where k is the recursive level. Assuming the center of mass to be
origo, hence normalizing vectors from origo to each new vertex, done for
each iteration, will project points onto the unit sphere, thus producing an
approximated uniform distribution of points on the unit sphere surface.

Figure 4.2: Linear subdivision of triangles. Circle = existing vertices, solid = new
vertices.

Though a simple approach to the distribution problem, the algorithm fails
to incorporate geometric information from surrounding triangles, hence
the resulting subdivided mesh is very much dependant upon the starting
conditions. Due to this fact, attention is focused on a different approach.

Modified Butterfly Subdivision

The modified butterfly subdivision [52] scheme, based in the original butter-
fly subdivision method by Dun et al. [17], is a somewhat different ap-
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proach than linear subdivision, most importantly by incorporating local
geometry measures such as smoothness.

a dd

c c

cc b

b

a

Figure 4.3: 10-point stencil used in modified butterfly subdivision of triangles.
Circle = existing vertices, solid = new vertex.

The modified butterfly subdivision scheme employs a 10 point neighbor-
hood stencil to determine the position of new vertices. In this manner, new
vertices are positioned along existing edges. Using the notation from fig-
ure 4.3 a set of vertex weights are defined and the position of new vertices
is calculated as the sum of weighted neighboring vertex positions. Special
rules exist for vertices of valence other than six3. A constant term, w, de-
termines "curvedness" of the resulting mesh. Using the modified butterfly
subdivision scheme ensures C1 continuity of the resulting subdivided sur-
face.

As with the linear subdivision scheme, the modified butterfly method is
an iterative approach, for each iteration producing 2 + 4k+1 new vertices,
and in the same manner points are projected onto the unit sphere.

A good description of subdivision schemes is given in [43].

Subdivision Comparison

Using the methods described in preceding sections, two spheres of ap-
proximately uniform point distribution, each consisting of 2 + 46 = 4098
points, have been created from a octahedron with eight equivalent equi-
lateral triangles. In figure 4.4 the obvious differences between the two
schemes can be examined. Note the linear subdivisions tendency to clus-
ter points in a blossom-like pattern. This form of artifact is due to the fact,
that the projection of linear subdivision onto the sphere will force newly

3Valence defines the number of edges connected to a given vertex.
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created vertices to slide away from each other, since it does not ensure a C1

continuous surface, thus expanding the new triangle. Though this artifact
is also present in the modified butterfly scheme, the ability to incorporate
curvature minimizes this type of distortion.

Figure 4.4: Approximating uniform distribution of points on a sphere. Left: Linear
subdivision. Right: Butterfly subdivision.

In subsequent referral to uniformly distributed points on the sphere, the
modified butterfly subdivision scheme has been employed.

4.3.4 Manipulating Parameterizations

In order to manipulate the uniformly distributed set of landmarks so as
to minimize the objective function, a symmetric landmark transformation
is introduced on the spherical polar coordinates. For ease of explanation,
consider the arbitrary point P as the point where θ = 0.

Let a rotationally symmetric mapping f be defined as f : θ → θ′ of θ onto
θ′ and let f be defined such that f(π) = π and f(0) = 0 for 0 < θ < π.
Such mapping can be composed as the cumulative distribution function
of some density function defined over the range 0 ≤ θ ≤ π.

A wrapped Cauchy kernel [33] on the circle centered at θ = 0 has the closed-
form indefinite integral:
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ρ(θ) =
1

π(1 +A)

[

1 +A

(

1 − α2

1 + α2 − 2α cos θ

)]

(4.20)

where the width parameter, α, is defined as

α ≡ exp(−a) , a ∈ R (4.21)

Let A be the kernel amplitude, thus the mapping becomes

f(θ) = π

∫ θ

0

ρ(s)ds

=
1

1 +A

(

θ +A arccos

(

(1 + α2) cos θ − 2α

1 + α2 − 2α cos θ

))

(4.22)

where the constant term 1
1+A ensures f(θ) = θ when A = 0 yielding an

unchanged parameterization.

The result of a symmetric θ transformation performed on a sphere with
4098 uniformly distributed points is illustrated in figure 4.5.

Figure 4.5: Points on the sphere after symmetric θ transformation.
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4.3.5 Optimizing Parameterization

As a means of minimizing the objective function, F , we allow the param-
eterization defined in the previous section to manipulate the set of land-
marks. This process forms the basis of an iterative optimization approach.

The idea is to place a number of uniformly distributed kernels across the
surface of each set of landmarks, and for each landmark optimize the am-
plitude, A, while keeping width, a, and reference point, P , fixed. Re-
call, the landmarks are wrapped back onto the original surfaces using a
barycentric coordinate transform, thus for each minimization step, points
are realigned, principal component analysis is performed, coordinates are
quantized and the objective function is evaluated.

Ideally a minimization scheme would optimize the amplitude of all ker-
nels simultaneously, albeit this is seldom robust nor feasible. Instead a
recursive scheme, employing the Nelder-Mead simplex algorithm [36], opti-
mizing a single kernel amplitude in turn on each shape is adopted. For
each recursive step the kernels added in the corresponding recursive step
of subdividing the sphere are optimized. The optimal kernel width is cal-
culated as a = (1−2 )k+2, thus the width is halved for each recursive level.

The Nelder-Mead approach described in this section has been employed
in achieving the results presented in subsequent chapters, based on the
implementation suggestion given in [38].

4.4 Automated Model Building

In the preceding sections a library of utilities for constructing an optimal
shape model based on spherical mapping, barycentric coordinate trans-
form and minimum description length has been presented. To sum up
the construction of such a model, the complete algorithmical approach is
presented here in pseudo code statements.
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Algorithm 5 Minimum description length optimization of statistical shape
model.
Ensure: ∆ > 0

1: Register and align the set of ns shapes, X using ICP∗.
2: Calculate and apply the spherical mapping f : X → M.
3: Compose a set of ns spheres, S, with nl uniformly distributed land-

marks.
4: Compose a sphere, k, with nl uniformly distributed kernels.
5: Calculate and apply the barycentric transformation t : S → L to pro-

duce ns shapes of nl corresponding landmarks.
6: Align L using Procrustes alignment.
7: Perform principal component analysis.
8: Evaluate the objective function based on quantized shape data.
9: repeat

10: for all si, where i > 0, and in random order∗∗ do
11: for all ki and in random order do
12: Calculate width parameters, ar and α, based on the recursive

level r
13: Calculate optimal kernel amplitude, A.
14: Apply symmetric theta transformation, f(θ)
15: end for
16: end for
17: until convergence

4.4.1 Supplemental Notes

∗ICP in this case is an example suggestion. The registration method may
as such be any method which will produce a set of aligned shapes in some
derivation of a least squares measurement, only removing scale, transla-
tion and rotation between shapes.
∗∗Randomization is performed only between kernels added in each recur-
sive step of the subdivision algorithm, continuing to the next level once
all kernels in the previous level have been optimized, see section 4.3.3.

To prevent landmarks from converging towards a single point, one shape
in the set of landmarked shapes is kept fixed throughout the optimiza-
tion process. Assuming no prior knowledge of shape, this method offers
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a "best guess" on landmarks, however it does not guarantee optimal land-
mark positions in terms of ability to describe a given shape.

4.5 Summary

Throughout this chapter, a method for constructing an optimal 3D shape
model, based on spherical mapping, landmark parametrization, princi-
pal component analysis and minimum description length, has been pre-
sented. In the model building process a set of corresponding landmarks
is obtained, utilizing a novel area-preserving spherical mapping method,
and manipulated to minimize the evaluation of an objective functional.
Improvements in landmark distribution enforces generality due to a bet-
ter shape representation. A simple estimate has been employed to mini-
mize the computational burden while preserving the characteristics of the
full objective function.
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Chapter 5

Implementation

“I do not fear computers. I fear the lack of them.”
– Isaac Asimov

5.1 Overview

Implementation of the previously described techniques and algorithms,
resulting in the Spherical Mapping/Shape Modelling Application Pro-
grammers Interface, or SM2-API, has been carried out using Visual C++
6.0 and targeted at, though not restricted to, the Windows 2000/XP/NT
platform. The choice of platform and development environment is partly
due the computational requirements involved in implementing algorithms
of large scale iterations. In addition, developing in C/C++ offers reuse-
ability for subsequent development along with ease of integration to other
software projects.

The main purpose of this chapter is to provide with an overview of the
classes and methods in the SM2-API. Details on usage of the command
console interface and XML configuration file are left to the readers own
exploration in Appendix B.
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5.2 Requirements

Additional functionality was provided by integrating the following 3rd
party libraries:

• Matrix Template Library (MTL): Sparse/dense Matrix and vector
definitions and operations.

• Iterative Template Library (ITL): Iterative methods for solving lin-
ear system, used in coexistence with MTL.

• GNU Scientific Library (GSL): Collection of routines and methods
for numerical computing.

• Visualization Toolkit (VTK): Collection of methods for 3D graphics,
image processing and visualization.

Note, all of the above listed libraries are open source and subjected to
public license agreements for personal and non-commercial use.

5.3 Class Overview

This section includes an overview of the different classes contained in the
SM2-API. Each class is commented with a short description of class con-
tents.

C2DVector: 2D vector/constant, vector/vector and vector/matrix op-
erations.

C3DVector: 3D vector/constant, vector/vector and vector/matrix op-
erations.

C3DPlane: 3D plane definition.

C3DShape: 3D shape class. Shape/shape operations and spherical map-
ping.
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C3DShapeCollection: 3D shape vector. Multiple shape operations,
alignment and PCA procedures.

C3DAnnotation: Core annotation and shape analysis class. Calculation
and optimization of MDL model.

C3DNMOptimizer: Nelder-Mead optimization class. Calculation of op-
timal amplitude of Cauchy kernels.

C3DViewer: Visualization class. OpenGL result viewer.

C3DViewerCallback: Viewer call back class. Handles fixation of back
face culling plane in 3D viewer.

C3DUtility: General file I/O utility.

C3DConsole: Console interface. Example wise use of the SM2-API.

5.4 Console Interface

A console interface has been developed to demonstrate use of the SM2-
API. Most examples and all experiments in the report, were done using
this interface, and in addition, the console interface class C3DConsole is
added to the final distribution.

5.5 Supported File Formats

The current version of the SM2-API only supports the VTK Polygonal Data
file format described in [41].
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Chapter 6

Experimental design

“Errors using inadequate data are much less than those using no data at all.”
– Charles Babbage

6.1 Overview

To assess the performance of the spherical mapping and MDL algorithms,
data sets expressing reasonable amount of variability was collected. The
training data consists of:

• Human brains: 10 triangulated surfaces of human brains, each sur-
face supported by approximately 900 vertices.

• Synthetic boxes: 12 triangulated surfaces of synthetically constructed
boxes, varying in height, width, depth, bending and extrusion of
specific corner, each surface supported by approximately 1200 ver-
tices.

Evaluation of spherical mapping as a stand-alone algorithm was conducted
based on Euclidean distances between corresponding points in combina-
tion with area-distortion measurement between corresponding triangles.
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A higher degree of visual evaluation has been employed in the evaluation
process, due to the graphical nature of spherical mappings.

To obtain quantitative results on MDL model performance a set of leave-
one-out tests on the standard and combined models were conducted on
both training sets. This methodology allows for most shape variation to
be captured, composing a good evaluation criteria.

Note, that all computations are performed using relative coordinates, rather
than actual pixel values. This ensures consistency across different mea-
sures. Data ranges from 0.0 to 1.0.

6.2 Validation Techniques

6.3 Common Definitions

The following error measurement is used throughout the evaluation of
both spherical mapping, standard as well as combined MDL model. For
this reason, a common definition is given here:

• RMS Error: Deviations between two corresponding elements is de-
fined as the root-mean-square error, based on differences between
ground truth and the test object.

Example wise calculation of Euclidian distance between two corre-
sponding landmarks, is done by

di(xi,xgt,i) =
√

(xi − xgt,i)2 + (yi − ygt,i)2 + (zi − zgt,i)2 (6.1)

Thus calculating the RMS point-to-point error is accomplished by

d(x,xgt) =
1

n

n
∑

i=1

di(xi,xgt,i) (6.2)

A similar set of expressions can be formed for other types of devia-
tion.

Since we are interested in the actual deviation from ground truth, we can
use this relatively simple measurement as a valid scale.
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6.3.1 Spherical Mapping

The spherical mapping algorithm aims at minimizing area-distortion be-
tween original and mapped shapes in addition to the enforcement of unique-
ness. Therefore a quantitative assessment of performance is based on the
following measures.

• RMS Point-to-Point Error: Error measurement based on inter-point
distances between corresponding landmarks, using a mean shape
estimate as ground truth.

• RMS Triangle-to-Triangle Error: Error measurement based on inter-
triangle area differences between corresponding triangles, using the
original shape as ground truth.

Point-to-Point error measurements are performed on a set of spherical
maps constructed by mapping each shape in the training set a predefined
number of times using randomly selected reference triangles, σ = ABC,
and calculating the mean error, while Triangle-to-Triangle error measure-
ments are calculated using the original training set as ground truth.

6.3.2 Minimum Description Length Shape Model

Using a model composed by uniformly distributing a number of land-
marks across each shape in the training set, performance of the MDL
model can easily be assessed. The reference model is composed using
the same approach as in building the MDL shape model, though with-
out the MDL optimization step. This enables the performance gain in the
MDL optimization approach to be measured quantitatively as simple dif-
ferences.

Recall, we wish to construct an optimal shape model, in the sense that
it is both variance minimizing and general, i.e. expresses greater ability
to describe unseen shapes. To evaluate these properties, the following
measurements are employed

• RMS Error: Error measurement based on inter-point distances be-
tween corresponding landmarks, using a mean shape estimate as
ground truth.
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• Cumulative Variance: Measurement of model compactness, using
both a standard MDL model as reference as well as the standard
PCA model as ground truth.

6.3.3 Summary

Evaluation of performance has been divided into two categories, one con-
cerning spherical mapping, one concerning the MDL shape model. As
a common measurement of "goodness", the RMS error definition is em-
ployed in variations depending on the actual objective being measured.
For the latter category, the addition of a cumulated variance analysis scheme,
composes a compactness measurement.
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Chapter 7

Spherical Mapping

“Computers are useless. They can only give you answers.”
– Pablo Picasso

7.1 Overview

This section treats the tests conducted on both training sets as a whole.

For each shape in the training set, 100 consecutive maps were constructed,
and a mean estimate was calculated from each set of maps. The deviations
listed in this section are mean values based on RMS errors calculated be-
tween each group of shape and mappings, for each training set. Three
different weight factors, ω, were used.

7.2 Results

The basic conformal mapping of a shape of genus 0 to the unit sphere
imposes some degree of area-distortion. Furthermore, since the mapping
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is conformal, the resulting spherical map is very much dependant upon
the choice of north pole, and reference triangle.

From tables 7.1 and 7.2 it can be seen that the minimization scheme in-
troduced, yields a map which displays a significant decrease in overall
area distortion while improving on consistency, thus minimizing average
point-to-point distances regardless of choice of north pole, p.

Mean Point-to-Point RMS Errors
No. Data Set ω RMS Error

1 Brains 1.0 3.47e−5

2 Brains 0.5 4.20e−5

3 Brains [0.5 : 1.0] 3.75e−5

4 Brains - 8.68e−5

5 Boxes 1.0 2.03e−5

6 Boxes 0.5 2.94e−5

7 Boxes [0.5 : 1.0] 2.39e−5

8 Boxes - 5.70e−5

Table 7.1: Mean Point-to-Point RMS errors between the set of mappings and their
common mean estimate.

Mean Area RMS Errors
No. Data Set ω RMS

1 Brains 1.0 1.25e−7

2 Brains 0.5 2.86e−7

3 Brains [0.5 : 1.0] 2.29e−7

4 Brains - 17.9e−7

5 Boxes 1.0 1.02e−7

6 Boxes 0.5 2.63e−7

7 Boxes [0.5 : 1.0] 1.72e−7

8 Boxes - 6.97e−7

Table 7.2: Mean Area RMS errors between the set of mappings and their respective
original shapes.

Behavior of the optimization scheme and the visual effect of area-distortion
minimization is best displayed graphically using the illustration in figure
7.1. In this example, a conformal map of a single human brain surface
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is subjected to area-distortion minimization. The coloration expresses the
degree of distortion, with red being more and green less distortion1.

(a) Initial (b) 1 iteration (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 7.1: Area distortion minimization per iteration. Red triangles display a
high degree of area distortion as opposed to green triangles.

Though an improvement compared to the original algorithm, some issues
still remain. First of all since the optimization approach uses a 2D approxi-
mation important area-information is lost, thus resulting in a non-optimal
minimization of area-distortion. Secondly, since both area-preservation
and conformality cannot be realized in the same map, either angle or area
information is disregarded, forcing the resulting shape description to be
an approximation rather than a complete description. These factors con-
tribute to the non-zero RMS error values.

The algorithm tends to produce large artifacts, if the initial conformal
mapping displays large area-distortion. Again, this failure tendency is ac-
credited to the 2D approximation. This could be eliminated by imposing
an edge constraint on the minimization scheme.

Differences in weight factor ω allows for non- or semi-optimal steps to be
taken in the minimization process. In figure 7.2 a comparison between the

1In gray scale terms one seeks a homogenous distribution of "colors".
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effect of different types of weights is illustrated.
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Figure 7.2: RMS Error for different values of weight ω as a function of the opti-
mization step.

Tables 7.1 and 7.2 should also be noted here, where examples of ω param-
eter usage and corresponding results are listed. An examination of the ω
parameters effect on the combined MDL shape model is presented in the
succeeding chapter.

7.3 Summary

The spherical mapping algorithm has been successfully used to map both
biological as well as synthetical shapes to the unit sphere, an minimize
area-distortion on these maps. Albeit issues still remain: The neglecting
of 3D information in minimization of area-distortion forcing an error term
upon the resulting map.

For additional pictorial documentation of the experiments conducted, re-
fer to appendix A.1.
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Chapter 8

Minimum Description
Length Model

“Perfect numbers like perfect men are very rare.”
– René Descartes

8.1 Overview

The MDL model was quantitatively evaluated using a leave-one-out scheme
against a uniformly sampled shape model. The algorithm was run for
three levels of recursion, yielding a total of 66 landmarks for each shape. In
addition a cumulative variance analysis was performed to evaluate com-
pactness of the resulting model. In all tests, the effect of using weights and
area-distortion minimization scheme were examined.
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8.2 A Note on Objective Functions

A choice was made early in the implementation process to incorporate the
simple version of the objective function (4.16), primarily due to its sim-
plicity and effectiveness. This choice would however prove to have sig-
nificant effect on the MDL optimization scheme, since it favorizes a regu-
lar logarithmic distribution of the principal components as opposed to a
distribution composed using the full objective function. This is due to the
fact that by applying the same weight to all eigenvalues, less significant
principal components may have high influence on evaluation of the objec-
tive function. The simple objective function will however prove the effect
of using area-distortion minimization of spherical mapping on the actual
MDL model.

8.3 Results

For reasons of limiting this chapter to a confined space, only images from
the human brain data set are presented here. Wherever dissimilarities are
present between the two sets of training data, relevant graphs and images
from both data sets will be displayed. For further pictorial documentation
of both cases, refer to appendix A.2.

A qualitative assessment of the model ability to capture shape variations
is shown in figure 8.1, where the three most significant principal compo-
nents are visualized in shape variations. Variations for the ith component
is displayed within the eigenvalue interval of

−3
√

λi ≤ bi ≤ 3
√

λi (8.1)

Differences in model deformations due to different choices of weight, ω,
result in little visible variation across the model, hence no visualization of
this effect will be given here, though all four ω values used in the experi-
ments succeeded in capturing variations seen across the training data.
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(a) b1 = −3
√

λ1 (b) b1 = 0 (c) b1 = +3
√

λ1

(d) b2 = −3
√

λ2 (e) b2 = 0 (f) b2 = +3
√

λ2

(g) b3 = −3
√

λ3 (h) b3 = 0 (i) b3 = +3
√

λ3

Figure 8.1: Human Brains: Deformations of the mean shape along the first three
principal axes.

For a quantitative assessment of model compactness, attention is turned to
tables 8.1 and 8.2 in which variances are listed sorted by their contribution
to the total variance. A graphical display of tables 8.1 and 8.2 is presented
in figure 8.2.
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Human Brains
Automatic

Mode ω = 1.0 ω = 1.0 ω ∈ [0.5 : 1.0] −
1 186e−7 152e−7 150e−7 163e−7

2 65.8e−7 72.4e−7 78.3e−7 68.4e−7

3 63.9e−7 70.1e−7 62.9e−7 48.0e−7

4 22.1e−7 21.4e−7 18.5e−7 13.2e−7

5 13.0e−7 11.7e−7 14.9e−7 9.90e−7

6 10.5e−7 10.2e−7 7.86e−7 5.91e−7

σT 375e−7 351e−7 345e−7 317e−7

F 84 84 84 81
Uniform

Mode ω = 1.0 ω = 0.5 ω ∈ [0.5 : 1.0] −
1 206e−7 189e−7 167e−7 137e−7

2 96.1e−7 96.3e−7 89.6e−7 81.0e−7

3 65.2e−7 64.4e−7 63.5e−7 50.3e−7

4 28.6e−7 27.9e−7 32.4e−7 48.9e−7

5 17.4e−7 16.5e−7 17.5e−7 17.2e−7

6 12.9e−7 12.4e−7 12.4e−7 10.0e−7

σT 443e−7 420e−7 396e−7 357e−7

F 86 85 85 84

Table 8.1: Human Brains: Variance explained by each mode of variation. F is the
value of the objective function and σT is the total variance.

The addition of an area-distortion minimization scheme has introduced
an additional component to the shape model, namely that of noise con-
tributed by points sliding across the surface. Since the standard MDL
model in this case uses a conformal mapping, each with very similar ref-
erence triangles due to a good initial registration using ICP, the addition
of noise to the shape model is causing the total variance to climb, resulting
in a less compact model. This effect is best displayed graphically in figure
8.2. In this illustration, the black dotted line represents the best value from
the counter example, Automatic vs Uniform.
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Synthetic Boxes
Automatic

Mode ω = 1.0 ω = 1.0 ω ∈ [0.5 : 1.0] −
1 1638e−7 1592e−7 1536e−7 1339e−7

2 438e−7 485e−7 507e−7 581e−7

3 186e−7 197e−7 208e−7 209e−7

4 86.6e−7 86.1e−7 72.3e−7 56.8e−7

5 16.7e−7 16.8e−7 17.3e−7 27.5e−7

6 12.5e−7 13.2e−7 15.3e−7 22.6e−7

σT 2396e−7 2411e−7 2381e−7 2271e−7

F 69 68 70 73
Uniform

Mode ω = 1.0 ω = 0.5 ω ∈ [0.5 : 1.0] −
1 1634e−7 1590e−7 1535e−7 1324e−7

2 456e−7 506e−7 554e−7 624e−7

3 185e−7 202e−7 214e−7 213e−7

4 103e−7 101e−7 91.4e−7 70.7e−7

5 17.0e−7 17.5e−7 19.9e−7 38.9e−7

6 14.7e−7 14.0e−7 14.9e−7 17.1e−7

σT 2432e−7 2451e−7 2455e−7 2328e−7

F 70 69 71 74

Table 8.2: Synthetic Boxes: Variance explained by each mode of variation. F is the
value of the objective function and σT is the total variance.

Note that in some cases, the uniformly distributed and un-optimized model
displays less variance in important principal components, than the opti-
mized model. This is due to the usage of a objective function which favors
a logarithmic distribution of eigenvalues. In this manner, small eigenval-
ues are emphasized since they contribute more to the objective function.
Had the objective function imposed a different weight on different types
of eigenvalues, a model with less variance across the entire range of prin-
cipal components could be extracted.

88 Chapter 8. Minimum Description Length Model

1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4
x 10

−5 Human brains − 66 Landmarks − Automatic

C
um

ul
at

iv
e 

V
ar

ia
nc

e

Number of Modes

ω = 1.0          
ω = 0.5          
ω ∈ [0.5:1.0]
No optimization       
Uniform                    

(a) Brains, Automatic

1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

4.5
x 10

−5 Human Brains − 66 Landmarks − Uniform

C
um

ul
at

iv
e 

V
ar

ia
nc

e

Number of Modes

ω = 1.0          
ω = 0.5          
ω ∈ [0.5:1.0]
No optimization       
Automatic                  

(b) Brains, Uniform

0 2 4 6 8 10 12
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

−4 Synthetic Boxes − 66 Landmarks − Automatic

C
um

ul
at

iv
e 

V
ar

ia
nc

e

Number of Modes

ω = 1.0          
ω = 0.5          
ω ∈ [0.5:1.0]
No optimization       
Uniform                    

(c) Boxes, Automatic

0 2 4 6 8 10 12
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

−4 Synthetic Boxes − 66 Landmarks − Uniform

C
um

ul
at

iv
e 

V
ar

ia
nc

e

Number of Modes

ω = 1.0          
ω = 0.5          
ω ∈ [0.5:1.0]
No optimization       
Automatic                  

(d) Boxes, Uniform

Figure 8.2: Cumulative variance described by each principal component using
different weight parameters ω. Left: MDL optimized model. Right: Uniformly
sampled model.

The leave-one-out test yielded an assessment of the MDL shape models
ability to model unseen examples, based on prior knowledge. This type
of assessment is also referred to as self-contained validation.
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Figure 8.3: Mean RMS errors between an unseen example and a synthetical regen-
eration of the example using mean shape and a deformation vector derived from
principal component analysis of the model. Left: MDL optimized model. Right:
Uniformly sampled model.

An apparent difference between the human brain and synthetic box train-
ing sets is the result of employing the area-distortion minimization scheme.
Again this fact is partly due to the disregard of variation orthogonal to the
optimization plane used in the local minimization method. Since the syn-
thetic box training set displays little or no local variation orthogonal to
the large surface segments, the amount of information disregarded by the
minimization scheme is roughly the same. This on the other hand has
more fatal consequences for the human brain training set, which, as must
be expected, displays a higher degree of local variations.

Added to this factor, is the ability to distribute landmarks more evenly
across each surface, which especially in the box case, enforces a more de-
scriptive model, since corners are better represented with a homogenous
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point density. It should even be possible to extract a more compact model
by hand from the synthetic box training set, just by selecting corner and
edge points.

8.3.1 The ω Parameter

All tests were conducted using four different values of ω, the weight by
which each minimization step in the area-distortion minimization scheme
is affected. Again this value produces a different outcome depending on
the type of shapes being spherically mapped. In general it must be said,
that this parameter is best set to a random value within a fixed interval
with non-zero minimum, if the data set expresses variations orthogonal to
the surface, i.e. "points jumping up and down". The random value mim-
ics this effect better than a fixed value, since the fixed value will tend to
smoothen out these orthogonal variations. In contrast a fixed value should
be used, if the data set being mapped displays little or no variation of the
mentioned type. This will force the map to disregard an even amount of
information for all points on the same surface segment.

The effects of varying the ω parameter depending on type of training set
is best illustrated using the cumulative variance plots in figure 8.2.

8.4 Summary

A series of tests have been conducted using a combination of area-distortion
minimized spherical maps and the standard MDL model. The usage of
area-distortion removal on maps constructed using the conformal map-
ping scheme described in chapter 2 have shown to have a significant ef-
fect on the resulting model, though dependant on the actual data set being
modelled. This is primarily due to errors imposed by area-distortion min-
imization scheme. In particular the increased uniformization of landmark
distribution due to area-distortion removal has proved to yield positive
results in synthetic data sets.

For additional pictorial documentation of the experiments conducted, re-
fer to appendix A.2.



Part IV

Discussion

91



93

Chapter 9

Propositions for Further
Work

“God made the integers, all else is the work of man.”
– Leopold Kronecker

9.1 Overview

The following section introduces improvements and suggestions to the
original algorithms as well as to the enhancements contributed during the
8 month thesis work, which were either out of scope or out of reach within
the given time span.

9.2 Edge Constraints on Area-preserving map

The optimization of a conformal mapping may in some cases fail due to
the following facts:
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• Transformation of the problem into 2 dimension, thus disregarding
the z-component.

• Optimization of the map is based solely on an area measurement,
thus disregarding edge length distortion

The argument for transforming the area optimization problem into one of
2D is to simplify the deriviation of a feasible optimization scheme. Re-
call the 2D transformation scheme from section 2.3.2. If the shape being
mapped displays large variation across triangle areas, one could easily
imagine a vertex v and its apparent neighborhood which on the mapped
unit sphere will represent large variations orthogonal to the surface, thus
deferring from the assumption that

θ ≈ sin(θ) (9.1)

A novel optimization scheme should introduce calculation of areas based
on 3D coordinates, deriving a vertex transformation along the surface of
a unit sphere. However this would increase complexity since a linear sys-
tem of equations would no longer suffice, due to the geometrical nature of
a sphere.

The latter argument involves introducing a new objective function to mea-
sure edge length distortion on triangles in domain Σ. Based on work in
the field of conformal maps conducted by Quicken and Brechbühler et al.
[39], [5], a new objective function, f , to be minimized is suggested

min
f

∑

σ∈Σ

(

Amap,σ
4π

− Aorig,σ
∑

σ∈ΣAorig,σ

)2

+α

(

(

aσ · bσ
‖aσ‖ · ‖bσ‖

)2

+ β

∣

∣

∣

∣

‖aσ‖ · ‖aσ‖ − ‖bσ‖ · ‖bσ‖
‖aσ‖ · ‖aσ‖ + ‖bσ‖ · ‖bσ‖

∣

∣

∣

∣

)

(9.2)

where aσ and bσ are orthogonal legs on triangle σ, Amap,σ and Aorig,σ are
areas on original and mapped triangle, α and β are arbitrary constants.
The first term punishes area distortion, while the second term punishes
deviations from right angle and unequal orthogonal edge lengths. Since
(9.2) is defined for right angle triangles, a deriviation hereof would be
necessary.
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9.3 Robust MDL Model

Though the general MDL approach is sensible to initial starting condi-
tions, the algorithm could be extended to allow non-minimizing steps in
order to avoid falling into local minima. One could imagine an approach
as follows:

Allow the MDL model to propagate from an unaligned starting point by
employing a hierarchical Metropolis type minimization scheme [35].

Start off with a small number of landmarks and employ the MDL algo-
rithm.

1. Perform MDL minimization step
2. Calculate the probability for choosing minimization step based on

the residual between object function evaluations.
3. If the probability is below 1.0, choose a random number from the

interval [0, 1[.
4. If the random number generated is higher than the calculated prob-

ability, the step is rejected, otherwise accepted.
5. Repeat steps 1-4 until convergence.

Calculating the probability of taking a specific step can be expressed as

P (X = xn) =
1

z
exp(−F (xn)) (9.3)

Thus the relative probability of taking a specific step, xn, given the previ-
ous step, xn−1 can be defined as

P = min

(

1,
P (X = xn)

P (X = xn−1)

)

(9.4)

where the latter expression is the relation between two successive evalua-
tions of the objective function, F .

P (X = xn)

P (X = xn−1)
=

exp(−F (xn))

exp(−F (xn−1))

= exp(F (xn−1) − F (xn))

= exp(−∂F ) (9.5)
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From (9.4) and (9.5) we construct

P = min(1, exp(−c ∂F )) (9.6)

Where c is an arbitrary positive constant weight. Once a certain level of
convergence is achieved, the rotation and translation between each set
of fixed and modelled landmarks could be determined from the result
reached with the sparse landmark representation. The final steps include
applying the derived transformation to each mapping, and performing
the MDL steps in the common sense, now using a dense landmark repre-
sentation.

The approach suggested in this section was implemented and put through
initial tests. Although some adjustments may be required, the results seen
so far seem promising.

9.4 Extended Shape Representation

This section is merely a reminder to the fact, that although the method
presented derives an optimal shape model, the use of spherical maps re-
stricts to shapes of genus 0, in other words shapes which have topological
equivalence with a sphere. A novel mapping scheme, based on cylindri-
cal maps employing a latitude and longitude coordinate representation,
could be employed to extend capabilities of the MDL method. Such con-
formal cylindrical mapping forms the base of a visualization technique
used in non-evasive endoscopy [21].

The general MDL approach does not restrict to the spherical case.
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Chapter 10

Discussion

“A proof tells us where to concentrate our doubts.”
– Morris Kline

10.1 Summary

Throughout the first parts of this thesis, spherical mapping and MDL al-
gorithms have been described and documented in detail, aided by illus-
trative examples, discussions on each subject and references for further
investigation, thus fulfilling the first objective set forth in this thesis.

The original algorithms have been extended and further suggestions on
extensions have been presented.

10.1.1 Extensions to Spherical Mapping

An area-preserving optimization scheme, based on deterministic relax-
ation, has been proposed. The approach employs a local vertex optimiza-
tion method, simplifying the problem by transformation into 2D and solv-
ing a set of linear equations, thus deriving vertex coordinates minimizing
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area distortion between mapped and original shapes. The approach has
been put through vigorous tests using both biological and synthetical data
displaying positive results. Though the algorithm minimizes distortion
between corresponding triangles, a certain level of error is imposed on
the original shape, due to the transformation into 2D and thereby disre-
garding important shape information.

10.1.2 Extensions to MDL

Landmark extraction based on uniformly sampled spheres form the base
for the set of landmarks derived in the MDL model building process. The
landmark sampling method proposed by Davies et al., has the disadvan-
tage of placing points on the sphere in specific grouped patterns, becom-
ing increasingly apparent for each level of recursion. To counter this fact,
a new subdivision scheme has been employed, enforcing a smooth distri-
bution across the sphere.

A combination of area-preserving spherical maps and the standard MDL
shape model has been introduced and tested. For shapes of certain char-
acter, this mapping technique shows promising results due to its ability
to distribute landmarks smoothly across a synthetic surface. The com-
bined model was also tested on a training set showing biological varia-
tions, which it failed to represent sufficiently precise, primarily due to the
disregard of variations seen orthogonal to the surface. This type of varia-
tion should be expected on biological objects, and was present at a higher
degree than was the case with the synthetic training set.

The use of a simplified objective function has been tested and evaluated.
Though the function does not succeed to fully minimize the resulting shape
model, due its inability to favor significant rather than less significant
components, it provides a good estimate on final optimization using the
full objective function as proposed by Davies et al [14].

A scheme for unregistered MDL modelling using a hierarchical Metropo-
lis type sampling scheme has been suggested, although further work in
this field is still required.

This concludes the fulfillment of the second and third objectives set forth.
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10.2 Conclusion

In the field of shape analysis, consistency and compactness are key fig-
ures, in particular as dimensionality of data being processed increases. In
this thesis a combination of methods leading to a compact and in an infor-
mation theoretic sense optimal model has been explored and extended.

The work conducted in the duration of this project has been naturally
divided into two separate parts, one regarding spherical mapping tech-
niques, the other shape model optimization. A natural link between these
parts exist, due to the utilization of spherical maps in minimum descrip-
tion length shape model building.

In this thesis, a general approach on automated model building has been
presented. The theoretical foundation involved in building such model,
based on spherical maps, has been thoroughly studied, documented and
subsequently extended.

By imposing an area-preservation criteria on the initial conformal spheri-
cal map, area-distortion has been significantly minimized, while retaining
characteristics of the original shape.

In addition to the incorporation of area-preserving spherical maps, the
minimum description length model has been extended by the inclusion
of initial registration using iterative closest point, uniformly distributed
landmark configuration and simplification of objective functional.

Though results using biological data sets did not yield the sought results,
the reasons of failure have been identified for further exploration. In the
synthetic case the ability to distribute landmarks uniformly, through im-
proved subdivision and area-preservation, yielded a model capable of bet-
ter reproduction of unseen shape examples.

Implementation of theoretical algorithms resulted in a high performance
C++ class collection, bound together by a console application, and by the
introduction of several open source class libraries.

The general conclusion is that automated model building can be achieved
using the minimum description length approach, in collaboration with
spherical maps as a means of solving the correspondence problem. Of
particular importance is the choice of spherical mapping technique, due
to a uniqueness requirement.
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Appendix A

Additional Results

The following pages contain additional pictorial documentation related to
the experiments conducted. For ease of explanation, the material has been
divided into two sections, one for each related algorithm.

A.1 Spherical Mapping

In the following pages spherical mapping is documented based on one
example shape from each data set by illustrations of:

• Original shape.
• Conformal map.
• Area-preserving map, ω = 1.0.
• Area-distortion removal per iteration.
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A.1.1 Human Brains

Figure A.1: Human Brain: Original shape.

Figure A.2: Human Brain: Conformal map.
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Figure A.3: Human Brain: Area-preserving map.
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Figure A.4: Human Brain: Area-distortion removal per iteration.
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A.1.2 Synthetic Boxes

Figure A.5: Synthetic Box: Original shape.

Figure A.6: Synthetic Box: Conformal map.
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Figure A.7: Synthetic Box: Area-preserving map.
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Figure A.8: Synthetic Box: Area-distortion removal per iteration.

112 Appendix A. Additional Results

A.2 Minimum Description Length Shape Model

In the following pages MDL shape modelling is documented for each data
set by illustrations of:

• Mean shape deformation along 1st, 2nd and 3rd principal axis.
• Cumulative variance in uniformly sampled model.
• Cumulative variance in MDL model.
• Mean RMS errors in uniformly sampled model.
• Mean RMS errors in MDL model.
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A.2.1 Human Brains
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Figure A.9: Human Brains: Deformations of the mean shape along the first three
principal axes.
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Figure A.10: Human Brains: Cumulative variance described by each principal
component in the uniformly sampled model, using different ω-values.
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Figure A.11: Human Brains: Cumulative variance described by each principal
component in the MDL model, using different ω-values.
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Figure A.12: Mean RMS errors between an example and synthetical regeneration
in the uniformly sampled model.
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Figure A.13: Mean RMS errors between an example and synthetical regeneration
in the MDL model.
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A.2.2 Synthetic Boxes
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Figure A.14: Synthetic Boxes: Deformations of the mean shape along the first three
principal axes.
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Figure A.15: Synthetic Boxes: Cumulative variance described by each principal
component in the uniformly sampled model, using different ω-values.
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Figure A.16: Synthetic Boxes: Cumulative variance described by each principal
component in the MDL model, using different ω-values.
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Figure A.17: Synthetic Boxes: Mean RMS errors between an example and synthet-
ical regeneration in the uniformly sampled model.
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Figure A.18: Synthetic Boxes: Mean RMS errors between an example and synthet-
ical regeneration in the MDL model.
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Appendix B

SM2-API Console Interface
Usage

3DSMC - 3D Sherical Mapping/Shape Modelling Console Interface - version 1.0
Copyright (c) Allan Reinhold Kildeby 2002 - All rights reserved.

USAGE:
3dsmc <configuration file>

DESCRIPTION:
3D shape model building using spherical mapping and minimum description
length. Input data is mapped to the unit sphere and a number of landmarks
is placed across each sphere. Based upon evaluation of an objective
function, landmarks are optimized until an optimal shape model is derived.

OUTPUT:
Output is written to mapping<n>.vtk, landmarksphere<n>.vtk and
landmarks<n>.vtk in the output directory specified in the XML
configuration file.

XML PARAMETERS:
prg_extension : Extension used by polygonal data files.

Ex: "VTK"
prg_directory : Data directory to read polygonal data from.

Ex: "D:\Data\"
icp_landmarks : Number of landmarks used by ICP algorithm.

Ex: "100"
icp_iterations : Maximum number of iterations used by ICP

algorithm.
Ex: "100"

icp_tolerance : ICP algorithm in aborted when the residual
between two iterations is below this tolerance.
Ex: "1e-6"

mts_method : Spherical mapping method.
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"0" = Simple, "1" = Area-preserving.
mts_cgiterations : Maximum number of iterations used by conjugate

gradient method in spherical mapping.
Ex: "1000"

mts_cgtolerance : Conjugate gradient is aborted when the residual
between two iterations is below this tolerance.
Ex: "1e-15"

mts_bcoord_xdim : Number of cuts along x-axis when creating cut
shapes.
Ex: "5"

mts_bcoord_ydim : Number of cuts along y-axis when creating cut
shapes.
Ex: "5"

mts_bcoord_zdim : Number of cuts along z-axis when creating cut
shapes.
Ex: "5"

mts_opt_tolerance : Area-preserving optimization of spherical
mapping is aborted when the residual between
two iterations is below this threshold.
Ex: "1e-7"

mts_opt_fileprefix : File prefix used when writing area-preserving
minimization steps to image files.
Ex: "optimization_step"

mts_opt_iterations : Maximum number of iterations used by area-
preserving minimization of spherical mapping.
Ex: "100"

mts_opt_enablenoise : Enable weighted area-preserving minization of
spherical mapping.
"0" = disabled, "1" = enabled.

mts_opt_noise : Noise type used in weighted area-preserving
minization of spherical mapping.
"0" = uniform weight, "1" = random weight.

mts_opt_weight : Maximum weight used in weighted area-preserving
minization of spherical mapping.
Ex: "0.5"

mts_opt_enableoutput : Enable stepwise images generation in area-
preserving minization of spherical mapping.
"0" = disabled, "1" = enabled.

ann_pca_quantile : Percentage of variations to be included in the
resulting shape model.
Ex: "0.95"

ann_mdl_landmarks : Number of landmarks used in the MDL shape model.
Ex: "50"

ann_mdl_delta : Delta value used in evaluation of MDL objective
function to avoid infinitely large
contributions.
Ex: "1e-8"

ann_mdl_quantization : Delta value used in evaluation of MDL objective
function to avoid infinitely large
contributions.
Ex: "1e-8"

ann_mdl_iterations : Maximum number of iterations used by MDL
algorithm.
Ex: "100"

ann_mdl_tolerance : MDL optimization algorithm is aborted when the
residual between two iterations is below this
tolerance.
Ex: "0.001"
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ann_mdl_enableoutput : Enable stepwise images generation in MDL
minimization algorithm.
"0" = disabled, "1" = enabled.

ann_mdl_fileprefix : File prefix used when writing MDL minimization
steps to image files.
Ex: "mdl_optimization_step"

ui_output_dir : Directory to write output data to.
Ex: "D:\Output\"

ui_window_dimension_x: X-dimension of output window.
Ex: "512"

ui_window_dimension_y: Y-dimension of output window.
Ex: "512"




