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Abstract

This paper shows that the recursive least-squares (RLS) algorithm with forgetting factor is a special case of a varying-coe$cient
model, and a model which can easily be estimated via simple local regression. This observation allows us to formulate a new method
which retains the RLS algorithm, but extends the algorithm by including polynomial approximations. Simulation results are
provided, which indicates that this new method is superior to the classical RLS method, if the parameter variations are
smooth. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The RLS algorithm with forgetting factor (Ljung
& Soderstrom, 1983) is often applied in on-line situ-
ations, where time variations are not modeled adequately
by a linear model. By sliding a time window of a speci"c
width over the observations where only the newest obser-
vations are seen, the model is able to adapt to slow
variations in the dynamics. The width, or the bandwidth
+, of the time window determines how fast the model
adapts to the variations, and the most adequate value of
+ depends on how fast the parameters actually vary in
time. If the time variations are fast, + should be small,
otherwise the estimates will be seriously biased. How-
ever, fast adaption means that only few observations are
used for the estimation, which results in a noisy estimate.
Therefore, the choice of + can be seen as a bias/variance
trade o!.

In the context of local regression (Cleveland & Devlin,
1988) the parameters of a linear model estimated by the
RLS algorithm can be interpreted as zero-order local
time polynomials, or in other words local constants.
However, it is well known that polynomials of higher
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order in many cases provide better approximations than
local constants. The objective of this paper is thus to
illustrate the similarity between the RLS algorithm and
local regression, which leads to a natural extension of the
RLS algorithm, where the parameters are approximated
by higher-order local time polynomials. This approach
does, to some degree, represent a solution to the
bias/variance trade o!. Furthermore, viewing the RLS
algorithm as local regression, could potentially lead to
development of new and re"ned RLS algorithms, as local
regression is an area of current and extensive research.
A generalisation of models with varying parameters is
presented in Hastie and Tibshirani (1993), and, as will be
shown in this paper, the RLS algorithm is an estimation
method for one of these models.

Several extensions of the RLS algorithm have been
proposed in the literature, especially to handle situations
where the parameter variations are not the same for all
the parameters. Such situations can be handled by as-
signing individual bandwidths to each parameter, e.g.
vector forgetting, or by using the Kalman Filter (Parkum,
Poulsen & Holst, 1992). These approaches all have draw-
backs, such as assumptions that the parameters are
uncorrelated and/or are described by a random walk.
Polynomial approximations and local regression can to
some degree take care of these situations, by approximat-
ing the parameters with polynomials of di!erent degrees.
Furthermore, it is obvious that the parameters can be
functions of other variables than time. In Nielsen, Niel-
sen, Madsen and Joensen (2000) a recursive algorithm is
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proposed, which can be used when the parameters
are functions of time and some other explanatory
variables.

Local regression is adequate when the parameters are
functions of the same explanatory variables. If the param-
eters depend on individual explanatory variables, estima-
tion methods for additive models should be used (Fan,
Hardle & Mammer, 1998; Hastie & Tibshirani, 1990).
Unfortunately it is not obvious how to formulate recur-
sive versions of these estimation methods, and to the
authors best knowledge no such recursive methods exists.
Early work on additive models and recursive regression
dates back to Holt (1957) and Winters (1960), which
developed recursive estimation methods for models re-
lated to the additive models, where individual forgetting
factors are assigned to each additive component, and the
trend is approximated by a polynomial in time.

2. The varying-coe7cient approach

Varying-coe$cient models are considered in Hastie
and Tibshirani (1993). These models can be considered as
linear regression models in which the parameters are
replaced by smooth functions of some explanatory vari-
ables. This section gives a short introduction to the
varying-coe$cient approach and a method of estimation,
local regression, which becomes the background for the
proposed extension of the RLS algorithm.

2.1. The model

We de"ne the varying-coe$cient model
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where y
i
is a response, x

i
and z

i
are explanatory variables,

h( ) ) is a vector of unknown but smooth functions with
values in R, and N is the number of observations. If
ordinary regression is considered e

i
should be identically

distributed (i.d.), but if i denotes at time index and
zT
i

contains lagged values of the response variable,
e
i

should be independent and identically distributed
(i.i.d.).

The de"nition of a varying-coe$cient model in Hastie
and Tibshirani (1993) is somewhat di!erent than the one
given by Eq. (1), in the way that the individual para-
meters in h( ) ) depend on individual explanatory vari-
ables. In Anderson, Fang and Olkin (1994), the model
given by Eq. (1) is denoted as a conditional parametric
model, because when x

i
is constant the model reduces to

an ordinary linear model.

2.2. Local constant estimates

As only models where the parameters are functions of
time are considered, only x

i
"i is considered in the

following. Estimation in Eq. (1) aims at estimating the
functions h( ) ), which in this case are the one-dimensional
functions h(i). The functions are estimated only for dis-
tinct values of the argument t. Let t denote such a point
and hK (t) the estimated coe$cient functions, when the
coe$cients are evaluated at t.

One solution to the estimation problem is to replace
h(i) in Eq. (1) with a constant vector h(i)"h and "t the
resulting model locally to t, using weighted least squares,
i.e.
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Generally, using a nowhere increasing weight function
= : R

0
PR

0
and a spherical kernel the actual weight

w
i
(t) allocated to the ith observation is determined by the

Euclidean distance, in this case Di!tD, as

w
i
(t)"=A

Di!tD
+(t) B. (3)

The scalar +(t) is called the bandwidth, and determines
the size of the neighbourhood that is spanned by the
weight function. If, e.g., +(t) is constant for all values of t it
is denoted as a "xed bandwidth. In practice, however,
also the nearest-neighbour bandwidth, which depends on
the distribution of the explanatory variable, is used
(Cleveland & Devlin, 1988). Although, in this case where
x
i
"i, i.e. the distribution of the explanatory variable is

rectangular, a "xed bandwidth and a nearest-neighbour
bandwidth are equivalent.

2.3. Local polynomial estimation

If the bandwidth +(t) is su$ciently small the approxi-
mation of h(t) as a constant vector near t is good. This
implies, however, that a relatively low number of obser-
vations is used to estimate h(t), resulting in a noisy
estimate. On the contrary a large bias may appear if the
bandwidth is large.

It is, however, obvious that locally to t the elements of
h(t) may be better approximated by polynomials, and in
many cases polynomials will provide good approxima-
tions for larger bandwidths than local constants. Local
polynomial approximations are easily included in the
method described. Let h

j
(t) be the jth element of h(t) and

let p
d
(t) be a column vector of terms in a d-order poly-

nomial evaluated at t, i.e. p
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where /K
j
(t) is a column vector of local constant estimates

at t, i.e.
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corresponding to z
ji

pT
dj
(t!i). Now weighted least-

squares estimation is applied as described in Section 2.2,
but "tting the linear model

y
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i,t
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i
; i"1,2, t, (7)

locally to t, i.e. the estimate /K (t) of the parameters / in
Eq. (7) becomes a function of t as a consequence of the
weighting. Estimates of the elements of h(t) can now be
obtained as

hK
j
(t)"pT

dj
(0)/K

j
(t)"[0 2 0 1]/K

j
(t)"/K
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(t);

hgigj
dj`1
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3. Recursive least squares with forgetting factor

In this section the well-known RLS algorithm with
forgetting factor is compared to the proposed method of
estimation for the varying-coe$cient approach. Further-
more, it is shown how to include local polynomial ap-
proximations in the RLS algorithm.

3.1. The weight function

The RLS algorithm with forgetting factor aims at
estimating the parameters in the linear model

y
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(9)

which corresponds to Eq. (1) when h(x
i
) is replaced by

a constant vector h. The parameter estimate hK (t), using
the RLS algorithm with constant forgetting factor j, is
given by

hK (t)"arg min
h

t
+
i/1

jt~i(y
i
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h)2. (10)

In this case the weight which is assigned to the ith
observation in Eq. (10) can be written as

w
i
(t)"jt~i"CexpA

i!t

(ln j)~1BD
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, (11)

where the fact that i4t in Eq. (10) is used. Now it is
easily seen that Eq. (11) corresponds to Eq. (3) with
a "xed bandwidth +(t)"+"!(ln j)~1, which further-
more shows how the bandwidth and the forgetting factor
are related. By also comparing Eqs. (9) and (1) it is thus
veri"ed that the RLS algorithm with forgetting factor
corresponds to local constant estimates in the varying-
coe$cient approach, with the speci"c choice Eq. (11) of
the weight function.

3.2. Recursive local polynomial approximation

The RLS algorithm is given by Ljung and Soderstrom
(1983)
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with initial values

R~1(0)"aI, h(0)"0,

where a is large (Ljung & Soderstrom, 1983). Hence, the
recursive algorithm is only asymptotically equivalent to
solving the least-squares criteria, Eq. (10), which on the
other hand does not give a unique solution for small
values of t.

In Section 2.3 it was shown how to include local
polynomial approximation of the parameters in the vary-
ing-coe$cient approach, and that this could be done
by "tting the linear model, Eq. (7), and calculating the
parameters from Eq. (8). It is thus obvious to use the
same approach in an extension of the RLS algorithm,
replacing z

t
by u

i,t
. However, the explanatory variable

u
i,t

is a function of t, which means that as we step forward
in time,
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cannot be used in the updating formula for R(t), as R(t)
depends on u
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. To solve this problem a linear operator
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tion
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Fig. 1. Estimated parameter trajectories. The "rst row shows the trajectories from the RLS algorithm, the second row shows the result from the
POLRLS algorithm where a has been approximated by a zero-order polynomial, and b by a second-order polynomial.

Since L
j
is a linear operator it can be applied directly to

u
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which when applied to the recursive calculation Eq. (12)
of R(t), yields

R(t)"jLR(t!1)LT#u
t
uT
t

(17)

and the updating formula for the parameters, Eq. (13), is
left unchanged. The proposed algorithm will be denoted
Polynomial RLS (POLRLS) in the following.

Note that if the polynomials in Eq. (4) were calculated
for the argument i instead of t!i, then u

i,t
"u

i,t~1
, and

it is seen that the recursive calculation in Eq. (12) could
be used without modi"cation, but now there would be
a numerical problem for tPR.

4. Simulation study

Simulation is used to compare the RLS and POLRLS
algorithms. For this purpose we have generated N"11
samples of n"1000 observations from the time-varying

ARX-model
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where

a"0.7, b(i)"5#4 sinA
2p

1000
iB, z

i
3N(0,1).

The estimation results are compared using the sample
mean of the mean square error (MSE) of the deviation
between the true and the estimated parameters:
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Only observations for which i5s"350'max(+
015

),
where +

015
is the optimal bandwidth, are used in the

calculation of the MSE, to make sure that the e!ect of the
initialisation has almost vanished. The observations used
for the prediction in Eq. (18), has not been used for the
estimation of the parameters, therefore the optimal
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Table 1
MSE results using the RLS and POLRLS algorithms

Method Pol. order +
015

MSE
p

MSE
a

MSE
b

POLRLS d
1
"2, d

2
"2 62 1.0847 0.0024 0.0605

POLRLS d
1
"0, d

2
"2 57 1.0600 0.0005 0.0580

RLS d
1
"0, d

2
"0 11 1.1548 0.0044 0.0871

bandwidth, +
015

, can be found by minimising Eq. (18) with
respect to the bandwidth +, i.e. forward validation. The
optimal bandwidth is found using the "rst sample, j"1,
the 10 following are used for the calculation of the sample
means.

The POLRLS method was applied with two di!erent
sets of polynomial orders. The results are shown in Fig. 1
and Table 1. Obviously, knowing the true model, a zero-
order polynomial approximation of a and a second-order
polynomial approximation of b, should be the most
adequate choice. In a true application such knowledge
might not be available, i.e. if no preliminary analysis of
data is performed. Therefore, a second-order polynomial
approximation is used for both parameters, as this could
be the default or standard choice. In both cases the
POLRLS algorithm performs signi"cantly better than
the RLS algorithm, and, as expected, using a second-
order approximation of a increases the MSE because in
this case the estimation is disturbed by non-signi"cant
explanatory variables. In the "gure it is seen, that it is
especially when the value of b(i) is small, that the variance
of a( is large. In this case the signal-to-noise ratio is low,
and the fact that a larger bandwidth can be used in the
new algorithm, means that the variance can be signi"-
cantly reduced. Furthermore, it is seen that the reduction
of the parameter estimation variance is greater for the
"xed parameter than the time-varying parameter. The
reason for this is that the optimal bandwidth is found by
minimising the MSE of the predictions, and bias in the
estimate of b contributes relatively more to the MSE than
variance in the estimate of a, i.e. the optimal value of
+ balances bias in the estimate of b and variance in the
estimate of a. When a second-order polynomial is used
instead of a zero-order polynomial, for the estimation of
b, it is possible to avoid bias even when a signi"cantly
larger bandwidth is used.

5. Summary

In this paper the similarity between the varying-
coe$cient approach and the RLS algorithm with for-
getting factor has been demonstrated. Furthermore, an
extension of the RLS algorithm, along the lines of the
varying-coe$cient approach is suggested. Using an
example it is shown that the new algorithm leads to an
signi"cant improvement of the estimation performance,
if the variation of the true parameters is smooth.
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