
ON COMPARISON OF ADAPTIVE

REGULARIZATION METHODS

Sigurdur Sigurdsson, Jan Larsen and Lars Kai Hansen
Department of Mathematical Modeling, Building 321

Technical University of Denmark, DK-2800 Lyngby, Denmark
Phone: +45 4525 3920,3923,3889

Email: siggi,jl,lkhansen@imm.dtu.dk, Web: eivind.imm.dtu.dk

INTRODUCTION

Modeling with exible models, such as neural networks, requires careful con-
trol of the model complexity and generalization ability of the resulting model
which �nds expression in the ubiquitous bias-variance dilemma [4].

Regularization is a tool for optimizing the model structure reducing vari-
ance at the expense of introducing extra bias. The overall objective of adap-
tive regularization is to tune the amount of regularization ensuring minimal
generalization error. Regularization is an supplement to direct model selec-
tion techniques like step-wise selection and one would prefer a hybrid scheme;
however, a very exible regularization may substitute the need for selection
procedures.

This paper investigates recently suggested adaptive regularization schemes.
Some methods focus directly on minimizing an estimate of the generalization
error (either algebraic or empirical) [1], [3], [5], [6], [7], [12], [13], whereas
others starts from di�erent criteria, e.g., the Bayesian evidence [2, Ch. 10],
[7], [15], [16]. The evidence expresses basically the probability of the model,
which is conceptually di�erent from generalization error; however, asymptot-
ically for large training data sets they will converge1 [15].

The papers is organized as follows: �rst the basic model de�nition, train-
ing and generalization is presented. Next, di�erent adaptive regulariza-
tion schemes are reviewed and extended. Finally, the experimental section
presents a comparative study concerning linear models and feed-forward neu-
ral networks models for regression/time-series problems.

TRAINING AND GENERALIZATION

Suppose that our model, M (e.g., neural network), is described by the func-
tion f (x;w) where x is the input vector and w is the vector of parameters

1Up to a scaling factor and an additive constant.



(or weights) with dimensionality m. The objective is to use the model for ap-
proximating the true conditional input-output distribution p(yjx), or some
moments thereof. For regression and signal processing problems we nor-
mally model the conditional expectation Efyjxg. De�ne the training set
T = fx(k);y(k)gNT

k=1 of NT input-output examples sampled from the un-
known but �xed joint input-output probability density p(x;y). The model is
trained by minimizing a cost function, CT (w), which is usually the sum of a
loss function (or training error), ST (w), and a regularization term R(w;�)
parameterized by a set of regularization parameters �,

CT (w) = ST (w) +R(w;�) =
1

NT

X
k2T

` (y(k); by(k;w)) +R(w;�) (1)

where `(�) measures the cost of estimating the output y(k) with the model
prediction by(k;w) = f(x(k);w), e.g., log-likelihood loss or the simple squared
error loss function ` = ky� byk2. Often we will consider linear regularization,
i.e., R(w;�) = �>r(w) =

Pq

i=1 �iri(w) where ri(w) are associated regular-
ization functions. Many suggested regularizers are linear; this includes the
popular weight decay regularization and regularizers imposing smooth func-
tions such as the Tikhonov regularizer [2]. Training provides the estimated
weight vector bw = argminw CT (w). The Generalization error is de�ned as
the expected loss on a future independent sample (x;y),

G(bw) = Ex;yf`(y; by(bw))g = Z
`(y; by) p(x;y) dxdy; (2)

and the average generalization error � is de�ned by averaging G(bw) over all
possible training sets:2 � = ET fG(bw)g = R

G(bw) p(T ) dT .
ADAPTIVE REGULARIZATION

Validation Error Approach

Adapting regularization so as to minimize an empirical estimate of the gen-
eralization error, viz. the K-fold cross-validation [18], leads to an adaptive
regularization scheme originally suggested in [12], which was further improved
in [1], [3], [5], [13]. Suppose that all available data D = fx(k);y(k)gNk=1 of N
input-output examples, split into K randomly chosen disjoint sets of approx-
imately equal size, i.e., D = [Kj=1Vj and 8 i 6= j : Vi \ Vj = ;. Training and
validation is replicated K times, and in the j'th run training is done on the
set Tj = DnVj and validation is performed on Vj . TheK-fold cross-validation
estimate is then given by the average validation error estimates,

b�cv = 1

K

KX
j=1

SVj
(bwj); SVj

(bwj) =
1

Nvj

X
k2Vj

` (y(k); by(k); bwj) (3)

2For more details on empirical generalization error, generalization error distribution
and average generalization error, see e.g., [11].



where bwj are the weights estimated from training set Tj . Nvj is number of

validation examples. b�cv is an estimate of the average generalization error
over all possible training sets of size Ntj , see [13].

The optimal regularization can be found by using gradient descent3,

�(n+1) = �(n) � �
@b�cv
@�

(bw(�(n))) (4)

where � > 0 is a step-size (learning rate) and �(n) is the estimate of the regu-
larization parameters in iteration n. After convergence4 it is recommended to
retrain on all available data using the optimized regularization parameters.

In case of linear regularization, the gradient of the cross-validation error
can be written as [12], [13]

@b�cv
@�

(�) =
1

K

KX
j=1

@SVj

@�
(bwj);

@SVj

@�
(bwj) = �

@r

@w>
(bwj)�J

�1
j (bwj)�

@SVj

@w
(bwj):

(5)
where Jj(w) = @2CTj (w)=@w@w

> is the Hessian of the cost function. As
an example, consider the case of weight decay regularization with separate
weight decays for two group of weights, e.g., the input-to-hidden and hidden-
to output weights of a neural network:

R(w;�) = �I � jwI j2 + �H � jwH j2 (6)

where � = [�I ; �H ], w = [wI ;wH ] with wI , wH denoting the input-to-
hidden and hidden-to output weights, respectively. The gradient of the vali-
dation error then yields,

@SVj

@�I
(bwj) = �2(bwI

j )
> � gIj ;

@SVj

@�H
(bwj) = �2(bwH

j )
> � gHj (7)

where gj is the vector gj = [gIj ; g
H
j ] = J�1j (bwj) � @SVj

(bwj)=@w:

Algebraic Generalization Error Approach

The literature suggests many algebraic estimators of the generalization er-
ror, including: FPER [10], GEN [8], GPE [14] and NIC [17]. The various
estimators di�er mainly in assumptions regarding model bias and depen-
dence among data examples. In particular, they are all o(1=NT ) estimators
where NT is the number of training examples. In many practical modeling
scenarios the large training set assumption may be violated, however, the
adaptive regularization based on this algebraic estimate might still be use-
ful, as demonstrated in the experimental section. The major advantage of
algebraic estimators is that all available data can be used to train the model,

3Optimization can be improved by using second order information [5], [3].
4E.g., small norm of gradient or small change in validation error.



i.e., T = D. This is not the case when using the empirical validation error
approach discussed above.

In [7] properties of adaptive regularization is studied in the simple case
of estimating the mean of a random variable using an algebraic estimate
of the average generalization error, and [6] proposed an adaptive regular-
ization scheme for neural networks based on an algebraic estimate. In the
following we present an extended version of this scheme where regularization
parameters are adapted by an iterative gradient descent scheme aiming at
minimizing the GEN/NIC [8], [9], [17], estimate of the generalization error.
We use GEN/NIC in this work as an representative for the family of algebraic
estimators. GEN/NIC has the advantage that model biased is not assumed
negligible. The presented procedure can in principle be invoked for any of
the mentioned estimators.

The o(1=NT ) GEN/NIC estimate of the average generalization error is

�GEN = ET fST (bw)g+ me�

NT

�
A

NT

�
@R

@w>
(w�)J�1(w�)

@R

@w
(w�) (8)

where w� are the optimal model weights, i.e., w� = argminwG(w). me� is
the e�ective number of parameters5 (weights) in the model [8], [9]

me� = tr

2
4J�1(w�)

0
@K(0) +

�MX
n=1

NT � n

NT

(K(n) +K>(n))

1
A
3
5

= tr
�
J�1(w�)L

�
(9)

where �M = min(M;NT � 1), M is the time dependence length (for i.i.d.
examples M = 0), A = �M +1� �M( �M +1)=2NT , and K(n) = Ef@`(k)=@w �
@`(k + n)=@w>g with `(k) � `(y(k); by(k;w�)), as Ef�g denotes expectation
w.r.t. joint input-output distribution. J(w) is the Hessian matrix of the
expected cost function ET fCT (w)g, i.e., J(w) = H(w) + @2R=@w@w>. If
data are independentK(n) � 0 for n > 0, and if the cost is the log-likelihood
loss then K(0) becomes the Hessian matrix of the unregularized cost, i.e.,
K(0) =H(w�) = @2G(w�)=@w@w>.

For practical implementation the quantities in Eq. (8) are estimated from
data, as shown by,

b�GEN = ST (bw) + bme�

NT

�
A

NT

�
@R

@w>
(bw)J�1T (bw) @R

@w
(bw) (10)

where bme� is calculated via Eq. (9) by substituting J�1T (bw) for J�1(w�),

JT (w) =HT (w) + @2R(w;�)=@w@w>; HT (w) =
@2ST

@w@w>
(w): (11)

Further,

KT (n) =
1

NT

NT�nX
k=1

@`(y(k); by(k; bw))
@w

�
@`(y(k + n); by(k + n; bw))

@w>
(12)

5For some cost functions, e.g., mean square error, me� is scaled by noise variance.



is substituted for K(n). To proceed as in [6], a simple gradient descent

optimization as in Eq. (4) can be used6. The gradient of b�GEN, noting that
all quantities are evaluated at bw = bw(�), is according to Eq. (10) and (5) in
case of linear regularization, given by

@b�GEN
@�

=
@ST
@�

+
1

NT

@ bme�

@�
�

A

NT

�
@

@�

�
�>

@r

@w>
J�1T

@r>

@w
�

�
: (13)

Eq. (13) can be written as

@b�GEN
@�i

=

�
1�

2A

NT

��
@r

@w>
J�1T

@r>

@w
�

�
i

�
1

NT

tr

�
LT J

�1
T

@2ri
@w@w>

J�1T

�

+
A

NT

�>
@r

@w>
J�1T

@2ri
@w@w>

J�1T
@r>

@w
�: (14)

Evidence Approximation Approach

The Bayesian evidence approach adapts regularization parameters so as to
minimize the evidence [2, Ch. 10], [15], [16]. The evidence is the probabil-
ity of data7 given the model, p(T jM) =

R
p(T jw;M) � p(wjM) dw, where

p(T jw;M) is the likelihood and p(wjM) is the prior. In terms of the cost
function components in Eq. (1) the likelihood and prior are expressed by:

p(T jw;M) = Z�1S exp(��NT ST (w)); p(wjM) = Z�1R exp(�R(w;�)) (15)

where � plays the role of the precision (inverse noise variance), and ZS , ZR
are normalization constants. The evidence approximation framework consists
in expanding the evidence to second order around the maximum aposteriori
solution bw. According to [15] the negative log-evidence is

� log p(T jM) � �NT ST (bw) +R(bw;�) + logZS + logZR

+
log jJT (bw)j

2
+
m

2
(log� + logNT � log 2�): (16)

If the likelihood and the weight prior are assumed to be Gaussian distributed8,
which corresponds to using mean square loss and weight decay regularization
as in Eq. (6), then the negative log-evidence is approximated by

� log p(T jM) � �NT ST (bw) + �I jbwI j2 + �H jbwH j2 �
(NT �m) log�

2
(17)

�
mI log�I +mH log�H

2
+

log jJT (bw)j
2

+
NT log� +m(logNT � log 2)

2
6[6] proceeds by �nding the gradient of Eq. (8) and then use plug in estimates of un-

known quantities. Here we proceed from the computable estimate Eq. (10). The di�erence
between these approaches turn out to be minor.

7Also for this approach no validation data is required, i.e., T = D.
8If these assumptions are not ful�lled, the evidence framework becomes much more

complicated and closed form solution can generally not be obtained. In such cases Monte
Carlo techniques are required.



where �i = �i=(�NT ) are the normalized weight decays, mI ;mH are the
number of hidden-to-input and hidden-to-output weights, respectively.

Minimizing the negative log-evidence by solving the equation, the deriva-
tive of Eq. (18) w.r.t. �; �I ; �H equal to zero9 results in optimal updated
choices for �; �I ; �H based on current values (bw = bw(�(n);�(n))),

�(n+1) =
N � bme�

NT ST (bw) ; �I(n+1) =
bmI
e�

2jbwI j2
; �H(n+1) =

bmH
e�

2jbwH j2
(18)

where bme� = bmI
e�+ bmH

e� and bmI
e� =

P
i2I �i=(�i+�

I), bmH
e� =

P
i2H �i=(�i+

�H) with I;H de�ning the indices for input-to-hidden and hidden-to-output
weights, respectively, and �i is the i'th eigenvalue of HT (bw). Thus, the
evidence based scheme consists in alternating between weight optimization
and update of weight decay and precision parameters, like the generalization
based schemes.

EXPERIMENTS
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Figure 1: Results for Hessian with low eigenvalue spread. The GEN method is the
most e�ective method for determining the regularization parameter. At a low NSR
the e�ectiveness of all the methods is similar. The evidence method and leave-one-
out (LOO) validation based method have similar performance. Optimal � is found
by exhaustive search.

Consider modeling a simple linear system y(n) = x>(n)w� + �(n). The
input x(n) = [x1(n); � � � ; xm(n)]> is am = 10 dimensional i.i.d. Gaussian dis-
tributed vector x(n) � N (0;H), whereH is the covariance matrix. The true
weight vector is w� = [1; 1; 1; 0; 0; 0; 0; 0; 0; 0]>. The noise �(n) � N (0; �2� )
is i.i.d. and independent of x(n). The noise variance is determined by
�2� = NSR � (w�)>Hw�, where NSR is the noise-to-signal ratio of the output.
The weights are estimated using mean square error augmented by a simple
weight decay, i.e., bw = J�1

T
X>y=NT , where y = [y(1); � � � ; y(NT )]

> and

9Some negligible terms are omitted, see [16].
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Figure 2: Results for Hessian with high eigenvalue spread. The GEN method
has still the highest Pimp, but the MRGI is similar to the LOO validation based
method. The evidence method has clearly the worst performance. This is caused
by extremely low bme� , which seems to inuence more the evidence method then
the GEN. Notice that all methods have negative MRGI at NSR=0.1.
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Figure 3: Cumulative probability distribution for the di�erence between the opti-
mal � and the �'s suggested by the di�erent regularization schemes. Left panels
NSR = 0:1 and right panels NSR = 2:0. Top and bottom rows are low and high
eigenvalue spread for the Hessian matrix, respectively. Top row: When the NSR is
low the distributions are similar, while at high NSR the evidence and LOO valida-
tion method have a larger tail then the GEN, indicating that the they are estimating
� too large. Bottom row: When the NSR is low the evidence method suggests �'s
that are too large, even though it does not have a large tail. When the NSR is large
the evidence method has a very large tail, again estimating � too large. The LOO
validation method and the GEN show similar distributions.



JT is the Hessian of the regularized cost function given by JT = HT + �I
where HT = XX>=NT and X = [x(1); � � � ;x(NT )]

>. The true general-
ization error of the estimated linear system is easily computed as G(bw) =
�2� + (ŵ �w�)>H(bw �w�).

In order to evaluate the performance of the regularization methods, Q =
5000 independent data sets of size N = 40 are generated. Two measures
are then used to evaluate the performance. The probability of improvement

measures the fraction of the Q estimated models, using some regulariza-
tion scheme, which generalize better than using no regularization, and is

de�ned by Pimp = Q�1
PQ

i=1 �(G(bw(i)
unreg) � G(bw(i))), where �(x) = 1 for

x > 0, and zero otherwise. G(bw(i)
unreg) is the generalization error of the model

trained on the ith data set using no regularization. The second performance
measure is the mean relative generalization error improvement de�ned as

MRGI = Q�1
PQ

i=1 100%
h
G(bw(i)

unreg)�G(bw(i))
i
=G(bw(i)

unreg): Two di�erent

conditions for the Hessian are considered: small and large eigenvalue spread.
Small eigenvalue spread is around 10, while more common large eigenvalue
spread around 104 is obtained by multiplying a Vandermonde matrix A to
the original input X using eX = AX as the input. The methods are also
compared at di�erent NSR's. The performance is demonstrated through
Fig. 1{3.

The computational complexity of the adaptive regularization schemes is
very di�erent. The leave-one-out (LOO) validation based method has the
most computational overhead. Reestimating the weights NT times is ob-
viously very time consuming. Both the LOO validation based and GEN
methods use gradient descent for estimating the regularization parameters.
The convergence is very dependent on the step-size � Eq. (4). In particular,
when the eigenvalue spread is high a small value has to be used, thus slowing
down the convergence. The evidence method is much faster as Eq. (18) are
analytical equations for regularization parameter updates.

CONCLUSION

This paper compared generalization error and evidence based schemes for
adaptive regularization. We suggested various algorithm extensions and per-
formed numerical experiments with linear models. The generalization error
based methods generally performs good, while the evidence method yields
comparable performance at low Hessian eigenvalue spread. However, at high
eigenvalue spread, which is the common case in neural net applications, the
evidence method has very low generalization error improvement.
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