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CHAPTER 1

Introduction

Oscillating behaviour occurs on a wide range of spatial and temporal
scales, from the self-sustained pulsatile secretion of hormones to the periodic
variations of the seasons. In reality oscillating systems seldom function in-
dependently of each other. The ways in which oscillators interact, and the
analysis of the resulting dynamics are thus interdisciplinary subjects of great
interest.
One characteristic of an oscillating system is the period of the natural move-
ment. When such oscillators interact, the resulting motion may be periodic
but often has a characteristic frequency other than the one observed for
the independent systems. The coupling of oscillators may also give rise to
non-periodic or even chaotic behaviour.

Single oscillators subject to external periodic perturbations constitute an
important sub-class of coupled self-oscillating systems, often encountered in
the �elds of biology, physics, chemistry and physiology. The existence of self-
sustained oscillations usually depends on the value of one or more of the
system parameters. When an oscillator is perturbed (forced), it is most com-
monly done by a periodic variation of such a parameter, with an amplitude
and a frequency subject to external control.
In principle, such a forced oscillator can be viewed as two coupled oscilla-
tors, one of which (the external perturbation) is una�ected by the other.
Subsequently, the analysis of a forced oscillator may also lead to a better
understanding of the more general class of coupled oscillators.

Systems of forced oscillators, which have previously been examined, either
experimentally or theoretically, include the forced continuously stirred tank
reactor (CSTR) [Kevrekidis et al., 1986; Vance et al. (II), 1989], the forced

1



2 Introduction

Brusselator [Knudsen et al., 1991], predator-prey systems in periodically op-
erated chemostats [Pavlou and Kevrekidis, 1992], periodically forced Gunn
diodes [Mosekilde et al., 1990], and the forcing of self-sustained oscillations
in a glucose/insulin feedback system [Sturis et al., 1995].

The essence of the behaviour of such systems can often be represented by
means of non-linear mathematical models. Consequently, numerical and ana-
lytical analyses of these models provide not only a theoretical foundation for
the explanation of experimental observations, but also the opportunity to
analyze aspects which are di�cult or maybe even impossible to examine in
practical experiments.

In this thesis, a mathematical model of a forced oscillator is constructed
and subjected to a detailed numerical bifurcation analysis. This is done, not
only to examine a particular system, but with the added intent of elucidat-
ing features common to the non-linear dynamics of the class of periodically
perturbed oscillators.

First the terms and theory relevant for our examinations are introduced.
This includes a discussion of various bifurcation scenarios in which curves of
codimension one bifurcations connect.
After this the model is constructed. By modifying the generic normal form for
a Hopf bifurcation, we obtain a system exhibiting self-sustained oscillations.
These exist in a section of the parameter space enclosed by two distinct
regions of equilibrium solutions. This unperturbed system is analyzed and
subsequently exposed to a periodic forcing. Our choice of system parameters
determine which regions are visited during one period of the forcing.

The e�ects of the forcing are examined by means of various numerical tools,
which we have implemented and continuously modi�ed during the course of
the project. Before presenting the results, we give qualitative descriptions of
these tools and the other methods employed in the bifurcation analysis.

Our results show two dimensional bifurcation structures organized into re-
gions, so-called tongues, where the system responds in a periodic manner to
the forcing. Inside this skeletal structure we �nd a wide variety of nonlinear
phenomena, including quasiperiodic and chaotic states. The observations are
presented with respect to the tongues with which they are associated.
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In the last section we examine the e�ect of varying the initial periodic state of
the system. The extent of the various tongues is dictated by the choice of this
state. If forcing around a natural equilibrium state of the autonomous system,
the tongue structure is not observed. In these cases the system exhibits
di�erent types of response, depending on the equilibrium region in which
the initial state is located.

Finally, we briey summarize our results.
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CHAPTER 2

General Theory

In order to create a basis for further discussions some of the
main notions and de�nitions are introduced. Hence, part of the
motivation for this chapter is to provide a vocabulary for the
later presentation of our nonlinear analysis. Discussion of topics
in nonlinear dynamics can be found in, for example, [Ott, 1994]
[Guckenheimer and Holmes, 1986], and
[Nayfeh and Balachandran, 1995].
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6 General Theory

2.1 Periodically Forced Oscillators

A nonlinear oscillator subjected to periodic forcing may be entrained to
oscillate with a period that is a multiple of the forcing period. Let !0 be
the natural frequency of the oscillations in the system without the forcing
and !F the forcing frequency. For small values of the forcing amplitude,
A, entrainment occurs in wedge-shaped regions in the (!F =!0,A) parameter
plane. Outside the entrainment regions the oscillatory system responds in a
quasiperiodic manner. Increasing the amplitude of the forcing causes many
di�erent phenomena to occur including overlap and closing of entrainment
regions, and various routes to chaos. When the amplitude of the forcing is
su�ciently large, the entrainment will be the simplest possible: a one-to-one
synchronization with the forcing frequency.

The later study shall be dealing with a subclass of forced oscillators, in
which the system is forced across a �rst-order Hopf bifurcation. Consider
an autonomous system described by an N -dimensional system of coupled,
nonlinear, ordinary di�erential equations:

dx

dt
= _x = F(x(t);M); x 2 IRN ; t 2 IR; M 2 IRP : (2.1)

x is a vector of N state variables of the system, t is time, and M is a vector
of P system parameters. F represents the model equations describing the
system rates, i.e. the nonlinear vector �eld.
Let xeq be an equilibrium solution, to Eq. (2.1), that experiences a bifurca-
tion in which it changes stability and gives rise to a periodic solution. Let
the bifurcation occur under variation of a critical parameter � at a critical
value �c. At the bifurcation point the eigenvalues, ��, of the equilibrium
point cross the imaginary axis transversally as a complex conjugate pair.
The conditions for �c to be the point at which the system experiences a
generic Hopf bifurcation can be expressed by:
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F(xeq)j�c = 0; (2.2)

��j�c = �̂� i!H �̂ = 0; !H 6= 0; and (2.3)

d �̂

d�
j�c 6= 0: (2.4)

The �rst of these equations implies that xeq is an equilibrium point, the
second that the point is non-hyperbolic, and the third condition that the
eigenvalues cross the imaginary axis transversally (a nonzero speed cross-
ing). When all the conditions are satis�ed, a periodic solution of period
2�=!H is born at (xeq; �c). Depending on whether the periodic solution
is unstable or stable, the bifurcation is classi�ed as sub- or supercritical.
This bifurcation is also called a Poincar�e-Andronov-Hopf bifurcation, giv-
ing credit to the analysis done on the bifurcation preceding the work of
Hopf.[Nayfeh and Balachandran, 1995]

To force the system the critical parameter is varied sinusoidally. This pa-
rameter will also be referred to as the forcing parameter. In introducing the
forcing, the system becomes nonautonomous, (F ! F(x(t); t;M)), and the
resulting dynamical behavior not only depend on the amplitude and the fre-
quency of the forcing, but also on the location of the so-called workpoint - the
point around which the forcing parameter is varied. Examinations of these
systems include studies in which the workpoint is located on either side of
the Hopf bifurcation point �c. Whether or not we actually force across the
bifurcation depends on the choice of workpoint as well as the amplitude of
the forcing.

2.2 The Entrainment Regions

The dynamic of a forced oscillator will typically be studied by means of
a stroboscopic map. This is obtained by sampling the solution at regular
time intervals corresponding to the period of the forcing. A period-p �xed
point in the stroboscopic map is thus a solution with a period of p times
the forcing period TF = 2�=!F . For a two-dimensional forced system the
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periodic solutions are characterized by two frequencies - i.e. the natural, !N ,
and the forcing frequency, !F . When the ratio !N=!F = q=p is a rational
number, with q and p integers, the system exhibits a periodic solution that
oscillates in p : q synchronization with the forcing.

Fig. 2.1 illustrates examples of di�erent p : q periodic solutions of a two-
dimensional nonautonomous system that has synchronized with its forcing.
Time-series of 2:1 and 2:3 resonance solutions are portrayed. The motion of
the solutions in the state space is presented in Fig. 2.2.

When the frequencies are incommensurate the ratio !N=!F is irrational,
indicating a quasiperiodic solution. Such a motion can be visualized as a
motion on the surface of a two-torus. The quasiperiodic orbit never closes
on itself and the surface of the torus is densely covered with the trajectory
as time goes to in�nity. The rotation number is determined by � = !N=!F .
It corresponds to the number of times a periodic or a quasiperiodic motion
winds around the meridian of the torus per period of the forcing. Note that
the value of � is equivalent to q/p.

forcing

x and y

0 π 2 π 3 π 4 π 5 π 6 π 7 π 8 π 9 π 10 π 11 π 12 π
t

x(t)

y(t)

sin(t)
forcing

x and y

0 π 2 π 3 π 4 π 5 π 6 π 7 π 8 π 9 π 10 π 11 π 12 π
t

x(t)

y(t)

sin(t)

Figure 2.1 The left and the right sub�gures illustrate the 2:1, and the 2:3
solutions respectively. Notice that the solutions have q peaks over
p periods of the forcing.

As an example of a quasiperiodic solution Fig. 2.3 is included. The �gure
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illustrates both the time evolution of the state variables and a phase diagram
of a quasiperiodic solution. � is determined to be 1:5248 ' 3=2 rotations per
period of the forcing so the quasiperiodic solution is close to a 3:2 periodic
solution. Notice how the quasiperiodic motion on a two-torus is reduced to
discrete points in the state space, and how, as time passes, an in�nite set of
points will form an invariant circle.
Note: It is not possible to discriminate numerically between a quasi-periodic
attractor and a periodic attractor of very high period.

Entrainment regions will be referred to as p : q resonance horns or Arnol'd
tongues. The tongues are often presented in an excitation diagram, thus indi-
cating the loci of transitions between qualitatively di�erent types of dynamic
behavior in (!F =!0; A) parameter space. The transitions are generic local bi-
furcation curves of codimension one (CD1), coming together in codimension
two (CD2) bifurcation points.

At zero amplitude of the forcing !N = !0. Thus, the tongues will emanate
from points where A = 0 and !F=!N = !F =!0 is rational and broaden as

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1.5 -1 -0.5 0 0.5 1 1.5

y

x

2:1 periodic solution

-1.5

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

2:3 periodic solution

Figure 2.2 The left and the right sub�gures illustrate the 2:1 and the 2:3
solutions respectively. The points on the solution are the points
located as �xed points in the stroboscopic mapping.
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forcing

x and y

0 π 2 π 3 π 4 π 5 π 6 π 7 π 8 π 9 π 10 π 11 π
t

x(t)

y(t)

sin(t)

-1.5

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

Quasiperiodic solution

Figure 2.3 To the left is portrayed the time-series of a quasiperiodic solution.
The evolution of the solution in the state space is illustrated to
the right. The points on the solution trajectory result from the
stroboscopic mapping and as time passes they will constitute an
invariant circle.

the amplitude is increased. The rotation number has been calculated as a
function of the forcing frequency and illustrated in Fig. 2.4. The �gure cor-
responds to a scenario where the workpoint is within a region in which the
autonomous system exhibits oscillations. The forcing amplitude is constant
while low enough not to bring the forcing parameter across the Hopf bifur-
cation. The horizontal steps correspond to regions containing periodically
entrained solutions, and between these steps the motion may be of a higher
order resonance or quasiperiodic. Because there are an in�nite number of
rational numbers distributed between any two rational numbers, a similar
structure is observed at all scales. This is, however, impossible to prove nu-
merically as the digital computers cannot represent irrational numbers. This
structure is known as the Devil's staircase. The �gure corresponds to an am-
plitude of the forcing at which the entrainment regions do not yet overlap.

The universal manner in which the tongues close at larger amplitudes has
been given great attention by e.g. [Kevrekidis et al., 1986], [Norris, 1993],
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Figure 2.4 A Devil's staircase calculated for the forced oscillator presented
in Eq. (3.6) - the parameters are indicated in the vector M found
in the title of this �gure. 1=� = p=q is plotted as a function of
! � !F=!0. Notice that the dominant entrainment regions are
the 1:1 and the 2:1 synchronization. The workpoint is located
in a region in which the autonomous system oscillates, there is
no forcing across the Hopf bifurcation, and no overlap of the
entrainment regions.

and [Taylor and Kevrekidis, 1991]. Their examinations are mainly concerned
with so-called strong resonances, i.e., the tongues with p � 4.

The basis of our investigations is a two-dimensional nonautonomous system
in which the �xed points of the stroboscopic map possess two Floquet mul-
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Periodic Solution Curves

Type Description

-Np Unstable node of period p. �1;2 are real
and j�1;2j > 1.

+Np Stable node of period p. �1;2 are real
and j�1;2j < 1.

-Fp Unstable focus of period p. �1;2 are
complex conjugates and j�1;2j > 1.

+Fp Stable focus of period p. �1;2 are com-
plex conjugates and j�1;2j < 1.

Sp Saddle of period p. �1;2 are real and
�1 < �1; �2 > 1.

Table 2.1 Five distinct classes of periodic solutions. The type indicates the
nature of the associated �xed point as determined by the Floquet
multipliers.

tipliers �1 and �2. These eigenvalues may be real or complex conjugates,
and their nature and magnitude classify the periodic solutions into the cate-
gories presented in Table 2.1.When referring to the eigenvalues of a periodic
solution they are the Floquet multipliers of a corresponding �xed point in
the stroboscopic map. The periodic solutions are classi�ed corresponding to
the type of the associated �xed points and can, therefore, be either stable or
unstable node (�N), focus (�F), or saddle (S) solutions.
Where a solution changes from a node to a focus or vice versa so-called
equal-eigenvalues (EE) points are founds. It is possible to trace these points
and construct curves in the parameter space at which the eigenvalues of a
solution changes from real to complex conjugates. In Table 2.2 the curves
are classi�ed into two groups corresponding to whether a stable or unstable
node/focus is involved.

The boundaries of the entrainment regions in an excitation diagram are local
bifurcations of the periodic solutions (�xed points of the associated map).
All these bifurcations are structurally unstable but may be of di�erent codi-
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Equal-Eigenvalues Curves

Type Description

EEp+ Transition point for a stable period-p solution
changing between +Np and +Fp. �1;2 are real
and �1 = �2; j�1;2j < 1.

EEp- Transition point for an unstable period-p so-
lution changing between -Np and -Fp. �1;2 are
real and �1 = �2; j�1;2j > 1.

Table 2.2 There are two types of equal-eigenvalues curves. They are associ-
ated with the transitions, in which a �xed point changes its nature
as its Floquet multipliers change from being real to complex con-
jugates or vice versa.

mension. When a vector �eld is structurally unstable to a single bifurcation
parameter, the bifurcation is of codimension one. Similarly, if two parame-
ters need to have unique values the bifurcation is of codimension two and so
forth. The local bifurcation curves can be considered a result of the interfer-
ence of the forcing with the Hopf bifurcation of the underlying autonomous
system [Kevrekidis et al., 1986].

2.3 Local Bifurcations of Periodic Solutions

The possible local generic bifurcations found in our system are: 1) the saddle-
node bifurcation (SN) also referred to as cyclic fold, tangent bifurcation, or
turning point. 2) second-order Hopf bifurcation also called Neimark-Sacker
bifurcation or torus bifurcation (T), and 3) the ip/period-doubling bifur-
cation (PD). The bifurcation curves will be referred to by the abbreviation.
Where relevant it will also be indicated whether the bifurcations are sub-
or supercritical along with the period of the solutions involved. Thus, the
one-parameter local bifurcation curves are classi�ed into �ve distinct groups
as represented in Table 2.3.

The codimension one bifurcation curves connect in codimension two sin-
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Codimension One Bifurcations

Type Description

SNp+ Saddle to stable node bifurcation of a period-p solu-
tion. �1;2 are real and �1 = 1 _ �2 = 1.

SNp- Saddle to unstable node bifurcation of a period-p so-
lution. �1;2 are real and �1 = 1 _ �2 = 1.

Tp Supercritical torus bifurcation of a period-p solution.
�1;2 are complex conjugate and j�1;2j = 1.

PDi,j+ Supercritical period-doubling bifurcation. A period-
i solution loses stability while doubling to a period-
j solution. The period-i solution has the eigenvalues
�1;2 that are real and �1 = �1_�2 = �1. The period-
j solution has the eigenvalues ~�1;2 that are real and
~�1 = 1 _ ~�2 = 1.

PDi,j- Subcritical period-doubling bifurcation. A period-i
solution gains stability while doubling to a solution
of period-j. The period-i solution has the eigenvalues
�1;2 that are real and �1 = �1_�2 = �1. The period-
j solution has the eigenvalues ~�1;2 that are real and
~�1 = 1 _ ~�2 = 1.

Table 2.3 Local bifurcations of the periodic solutions. The type indicates the
nature of the bifurcation. The system exhibits all generic codimen-
sion one bifurcations.
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Codimension Two Bifurcations

Type Description

SN-SN A cusp or wedge point where two SNi curves con-
nect. At the point, the period-i solution has two real
eigenvalues �1;2 and �1 = 1 _ �2 = 1.

SN-PD A degenerate period-doubling point (DPD) in which
an SNj bifurcation curve connects to a PDi,j curve.
The point marks a change of the PD curve from
sub- to supercritical. The period-i solution has two
real eigenvalues �1;2 and �1 = �1 _ �2 = �1. The
period-j solution also has two eigenvalues ~�1;2 that
are real and ~�1 = 1 _ ~�2 = 1.

T-SN A Takens-Bogdanov point (TB) where a Ti and an
SNi connect. A period-i solution has two real eigen-
values �1;2 = 1.

T-PD A Ti and/or a Tj connect to the PDi,j curve at a
point in which the PD curve changes from sub- to
supercritical. In the point the period-i solution has
two real eigenvalues �1;2 = �1, the period-j solution
has two real eigenvalues ~�1;2 = 1.

Table 2.4 Di�erent classes of codimension two bifurcations where local codi-
mension one bifurcations connect.

gularities of which di�erent types are presented in Table 2.4. In the table,
points are found corresponding to where saddle-node curves connect (SN-
SN). Also, points where a saddle-node connects on a period-doubling (SN-
PD) or on a torus bifurcation curve (T-SN) are represented. Finally, are
represented points (T-PD) in which torus bifurcation curves connect to a
period-doubling curve.

The SN-SN codimension two bifurcation occurs in so-called cusp or

wedge points depending on whether the connecting SN bifurcation curves
are tangent to each other or not. The bifurcation SN-SN is depicted in a
three-dimensional representation of a two-dimensional bifurcation diagram
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Figure 2.5 The SN-SN bifurcation scenario for a period-one solution. The
codimension two point is located at (�2; �2). Any small pertur-
bation of the control parameters will destroy it. For � = �1 > �2
the cusp is replaced by two SN1+ bifurcations. The cusp scenario
looks like a folded sheet where the folds are the SN1+ bifurca-
tions.

in Fig. 2.5
Only when the two bifurcation parameters � and � are exactly at the point
(�2; �2) is the CD2 bifurcation found. A scan through the bifurcation dia-
gram in Fig. 2.5 at constant � = �2, varying � through the SN-SN point, is
presented in Fig. 2.6. As seen from this one-dimensional bifurcation diagram,
a node changes stability in the bifurcation point and in the process two new
nodes emerge.

Fig. 2.7 depicts a bifurcation diagram corresponding to scans in the control
parameter � at constant values of �. In Sub�gure 1 is presented a scan
performed at � = �1, passing near the cusp point, and in Sub�gure 2 a scan
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Figure 2.6

A scan through the
SN-SN bifurcation point.
Note how a stable node
loses stability in passing
the point and becomes a
saddle solution. The
saddle is the separator of
the basin of attractions
for the two new stable
nodes that arise through
the CD2 bifurcation.
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+N1

+N1

+N1

SN-SN

α

x

at � = �2 that passes through the codimension two point. Both Fig. 2.6 and
Fig. 2.7 can be compared with Fig. 2.5.

In order to ease the understanding of how the solution curves behave near
the SN-PD (Degenerate Period-Doubling - DPD) codimension two

bifurcation, representative bifurcation diagrams are presented. Fig. 2.8 il-
lustrates a possible connection between an SN2- and a PD1,2 curve in the
(�; �) parameter plane. Notice that the PD curve changes from sub- to su-
percritical at the SN-PD point (�2; �2).
A scan is illustrated in Sub�gure 1 of Fig. 2.9. It passes to the right of the
SN-PD point at constant � = �1 for varying �,. In Sub�gure 2 a scan through
the degenerate period-doubling point is presented.
A period-one solution doubles in a supercritical period-doubling creating a
period-two saddle solution that loses stability through a saddle-unstable-
node bifurcation. The two bifurcations move closer to each other as the
CD2 point is approached, to �nally merge and create the degenerate period-
doubling point. The scan that passes through the DPD point illustrates how
the period-one solution loses stability changing from a saddle to an unstable
node for decreasing �. The period-two solution that arises through the de-
generate period-doubling point is an unstable node, causing the bifurcation
to appear as a subcritical period-doubling of codimension one.
Studies of the bifurcation structure with � < �2, and � as the control pa-
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Figure 2.7 Sub�gure 1 illustrates a scan through the bifurcation structure
for � = �1 near the SN-SN bifurcation. A stable node of period
one passes through an SN1+ bifurcation becoming a saddle that
bifurcates back to a stable node through another SN1+. The
arrows indicate how the local bifurcation points will move relative
to each other when � is varied towards �2, for which the solution
passes through the SN-SN bifurcation as depicted in Sub�gure 2.

rameter, would result in diagrams similar to Sub�gure 2 in Fig. 2.9. The only
di�erence is that the local bifurcation PD1,2- of codimension one replaces
the SN-PD codimension two point.
The CD2 bifurcation can be viewed as a destruction or, if you will, a creation
point of a saddle-node bifurcation along a period-doubling curve.

Interesting observations can be made concerning the scenario near the DPD
points. Let the period-doubling curve be a PDi,j and the saddle-node bifur-
cation curve an SNj. Consider the case where no other bifurcation curves
are involved in a given neighbourhood of the DPD point. Emanating from
the SNj curve towards the PD curve are two branches of period-j solutions.
One of the period-j solutions is destroyed at the PDi,j bifurcation curve and
the other continues past the bifurcation line. Let the period-j solution that
crosses the PD curve be a node of the same sign (�) as indicated on the
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Figure 2.8

Example of a scenario
near an SN-PD/DPD
codimension two point. A
SN2- connects to a PD1,2
bifurcation curve.

β

α

β_2

α_2 α_1

SN-PD
SN2-

PD1,2+

PD1,2-

SNj� bifurcation curve. Then the PDi,j curve, that is crossed by the period-
j solution, must be of opposite sign to the SNj curve. Hence, in these cases,
when the saddle-node bifurcation curve is either an SNj+ or an SNj-, the
period-doubling curve \above" it must be sub- or supercritical respectively.
The above can be realized by scanning in a closed loop around the DPD
point and tracking the di�erent solutions.

The T-SN bifurcation is also known as the Takens-Bogdanov (TB)

codimension two bifurcation point. It can be interpreted as a collision of
a saddle-node and a torus bifurcation, which destroys the torus bifurcation
but leaves the saddle-node behind. On the other hand, the Takens-Bogdanov
bifurcation can also be viewed as the birth of a Torus bifurcation from a
saddle-node bifurcation. Fig. 2.10 illustrates how a T1 connects to an SN1
bifurcation curve in the (�; �) parameter space. We refer to the similar case
in which a connection of an SN2 on a PD1,2 curve caused the PD curve to
change from sub- to supercritical. A T1 connects to an SN1 curve at (�2; �2)
causing it to change from an SN1+ to an SN1-.
The destruction (birth) of a supercritical torus bifurcation T1 of a period-one
solution through a Takens-Bogdanov bifurcation is illustrated in Fig. 2.11.
The �gure corresponds to two scans performed at �1 and �2 and can be
compared with Fig. 2.10. If no other bifurcations are involved, and when
a quasiperiodic attractor exists below the T1 curve, the SN curve above it
must be an SN+ curve in the neighbourhood of the TB point.
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Figure 2.9 Sub�gure 1 illustrates the scenario for a scan through the bifur-
cation structure in Fig. 2.8 for � = �1. Following the S1 solution
through a supercritical period-doubling for decreasing �, it dou-
bles to an S2 solution through loss of stability and continues as
a -N1. The S2 solution experiences an SN2- bifurcation and be-
comes a -N2. The arrows indicate how the SN2- and the PD1,2+
bifurcations move relative to each other as � is decreased to-
wards �2. The scenario for which the solutions pass through the
SN-PD/DPD point is illustrated in Sub�gure 2. The local CD1
bifurcation points have collided creating the CD2 bifurcation.

The last codimension two point presented is the T-PD bifurcation. Look-
ing at an example in which both a T1 and a T2 connect at the same point on a
PD1,2 curve, the scenario in (�; �) parameter space is illustrated in Fig. 2.12.
The T-PD point is located at the parameter values (�2; �2). The connection
point is of codimension two as the bifurcations do not occur for the same
solution, and marks a change from sub- to supercritical bifurcations on the
PD curve. Again, two bifurcation diagrams are presented corresponding to
� equal �1 or �2 with � as the control parameter.

From Fig. 2.13 it is seen that the T-PD CD2 bifurcation can be perceived as
the destruction or birth of torus bifurcations on a period-doubling curve. In
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Figure 2.10

Example of a scenario
near a T-SN (TB)
codimension two point. A
T1 connects to an SN1
bifurcation curve.
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Figure 2.11 Sub�gure 1 illustrates a -F1 that passes through a T1 becoming
a +F1. It then changes to a +N1 and turns in an SN1+ becom-
ing an S1. The arrows illustrate how the T1 and the SN1+ bifur-
cations will move closer to each other if � is increased towards
�2. Sub�gure 2 illustrates the scenario in which the period-one
solution passes through a T-SN / Takens-Bogdanov codimen-
sion two point.

Sub�gure 1 is shown how a stable focus passes through the torus bifurcation
becoming unstable. Thereafter it regains stability to a saddle in a subcritical
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Figure 2.12

The T-PD bifurcation
scenario. A T1 and a T2
connects on the PD1,2
curve in the codimension
two point T-PD.

β
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β_2

T1
T2

PD1,2+

β_1

PD1,2-

T-PD

period-doubling. This scenario corresponds to a scan near the CD2 point at
� = �1. The solution that emerges through the period-doubling bifurcation is
an unstable node which, after changing to an unstable focus, passes through
a torus bifurcation and gains stability. On the �gure, arrows indicate how
the local bifurcation points will move towards each other if � is increased
from �1 to �2 at which the CD2 point exists.

Scans for � > �2 result in diagrams similar in structure to Fig. 2.13 - Sub�g-
ure 2 but the local bifurcation is now a simple supercritical period-doubling
of codimension one instead of the T-PD bifurcation. Consequently, above
the codimension two point, a stable node of period-one doubles to a period-
two stable node while losing stability. The period-one solution continues as
a saddle after the bifurcation.

2.4 Resonant Hopf Bifurcation Points

At certain points in the (!F =!0; A) parameter plane so-called resonant Hopf

bifurcation points (or just resonance points) are located. These are de�ned
as points on a T1 bifurcation curve at which the multipliers of the period-
one solution are complex roots of unity. Rp is a resonance point in which
(�1;2)

p = 1.
The p complex roots of unity are e�2�iq=p where q = 1; 2; � � � ; p. Passing the
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Figure 2.13 Sub�gure 1 depicts how a +F1 passes through a T1 becoming
a -F1 and giving rise to a quasiperiodic (QP) solution. The -F1
passes through an EE1- point (not shown) in order to double
as a -N1. This causes it to lose stability and continue as an S1.
The -N2 solution changes in an EE2- point (not shown) to a
-F2 thereafter gaining stability in a T2 and becoming a +F2. In
Sub�gure 2 is seen how the QP solutions are destroyed at the
T-PD bifurcation point.

T1 bifurcation curve the multipliers of the period-one solution cross the unit-
circle and can be expressed by �1;2 = e�2�i� where 2�� is the angle at which
they cross. Therefore, at a resonance point, � must be a rational number.
Thus, a Rp-point must be located in a resonant p : q region, inside or on
the border of the Arnol'd tongue. More speci�cally, resonance points can be
found in the codimension two points where CD1 bifurcation curves connect
(T1-SN1, T1-PD1,2 and SNp-SNp) and in singular points in which a period-
p solution crosses itself and becomes identical to a period-one solution.
The Arnold tongues must contain at least one such resonance point and are
divided into weak, p > 5, and strong, p 6 4, resonance [Vance et al., 1989],
[Taylor and Kevrekidis, 1991].
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2.5 Global Bifurcations

In forced oscillators global bifurcations are typically found near the codi-
mension two points. In fact, the existence of a homoclinic bifurcation is
guaranteed in the neighbourhood of a Takens-Bogdanov bifurcation
[Thompson and Stewart, 1986]. This is not evident from Fig. 2.11 but refer-
ring to Sub�gure 1 one can see how the quasiperiodic attractor can collide
with the inset of the saddle solution of period-one resulting in a Blue Sky
Catastrophe. This is also proved in [Knudsen et al., 1991] along with a the-
orem for the existence of global bifurcations near T-PD codimension two
points.

2.6 Summary

� A class of forced oscillators, in which the systems were forced across a
Hopf bifurcation, was introduced.

� Entrainment regions in the excitation diagram were discussed. Related
terms such as rotation numbers, resonance horns and Arnol'd tongues
were introduced.

� Abbreviations for the possible types of periodic solutions were pre-
sented.

� Equal-eigenvalues curves were introduced along with a presentation of
the generic codimension one bifurcations that may occur.

� Codimension two points were discussed in some detail. These included
points where codimension one bifurcation curves connected and reso-
nant points on a period-one torus bifurcation curve.



CHAPTER 3

The Model

The model to be considered in this work is a modi�ed version
of the generic normal form for a Hopf bifurcation subjected to
an external sinusoidal forcing. In this chapter, the model is con-
structed and the various parameters of the system are presented
and explained. Some of these are introduced as a result of trans-
formations of the normal form, the e�ect of which will also be
discussed. An analysis of the system dynamics is performed with
the purpose of providing a basis for a discussion of the results
obtained when forcing the system.

25
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3.1 Choosing a Model

When faced with the task of deciding which system should be the basis of
our investigation, several considerations had to be made. First of all it is of
course desirable to be able to determine which features are generic for forced
oscillators. Secondly, it should allow for alterations in the bifurcation struc-
ture of the autonomous system. This is desired because it provides several
perspectives for future work with the model.
If an already existing model of an oscillating system was chosen, the results
could be directly related to actual events be they biological, physical, or
economic in nature, but such a choice would leave the question of which
observations were generic and which were system speci�c unsettled.

With this in mind, the generic normal form for a Hopf bifurcation was chosen
as the basis of the work in this thesis. Since this model must have dynamics
common to all self-oscillating systems, the approach seemed to be ideal for
an examination of generic aspects. Closer examination of the model reveals
which parameters are responsible for the di�erent parts of the autonomous
oscillations such as period, amplitude, and location of the Hopf bifurcation.
In addition to this, it is possible to decide if the Hopf bifurcations involved
should be sub- or supercritical. These factors are important as they give a
rather high degree of control over the oscillations, which provides a founda-
tion for conversions of the underlying bifurcation structure.

Initial examinations of the forced system proved it necessary to make some
modi�cations to the normal form. In its generic form it exhibited symmetries
to a degree that made it impossible to attain a coupling between the external
forcing and the internal oscillations, and thus no entrainment was observed.
Unfortunately this transformation of the system required the generic aspect
of the results be reconsidered. On the other hand, it provided the basis for
an examination of di�erent types of destruction of the resonance regimes.
In addition to the breaking of the symmetry, a transformation of the time
variable was performed. This was necessary in order to be able to use the
period of the forcing as a control parameter for one- and two-dimensional
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continuation schemes. The nature of the transformations will be elaborated
on in the following.

3.2 The Normal Form for a Hopf Bifurcation

The normal form for a Hopf bifurcation is a system of two coupled di�erential
equations. In Eq. (3.1) and Eq. (3.2) it is presented in Cartesian coordinates
[Nayfeh and Balachandran, 1995].

_x = �x� 
y + (�x� �y)(x2 + y2) (3.1)

_y = �y +
x+ (�x+ �y)(x2 + y2) (3.2)

For reasons, which will be explained, the numerical examinations have all
been performed with the parameters �, �, and 
 �xed at values of �1, 0,
and 1 respectively.

One equilibrium point exists for this system, namely (x; y) = (0; 0). The
stability of this equilibrium point is determined by the eigenvalues that are
found to be �1;2 = �� i
, and the system thus undergoes a Hopf bifurcation
at � = 0. Here, the set of complex-conjugate eigenvalues cross the imaginary
axis transversally as discussed previously.

3.2.1 Parameter Signi�cance

If the system is transformed to polar coordinates, a better understanding of
the signi�cance of the individual parameters for the autonomous oscillations
is obtained. By doing so, information about the amplitude and frequency of
the oscillations is acquired.
The transformation to polar coordinates is performed by setting x = r cos �
and y = r sin �. This gives _x = _r cos � � r _� sin � and _y = _r sin � � r _� cos �,
from which it is deducted that _x cos �+ _y sin � = _r and _x sin �� _y cos � = �r _�.
Substitution of these relations into Eq. (3.1) and Eq. (3.2) yields expressions
for the time derivatives of the amplitude and phase of the oscillation.
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_r = �r + �r3 (3.3)

_� = 
+ �r2 � !0 (3.4)

Since _r is a measure of the rate at which the amplitude r increases, the
amplitude of the limit cycle can be found by solving _r = 0 with respect to
r. This yields r = 0 or r =

p
��=� which only makes physical sense when

� > 0 ^ � 6 0 or � < 0 ^ � > 0

For � > 0^� 6 0 we see that _r = �r+�r3 > 0) r >
p
��=� and similarly

_r < 0 ) r <
p
��=� indicating that the amplitude will increase when the

system is outside the limit cycle and decrease inside the limit cycle. So it
is an unstable periodic solution, and since � = Re(�) < 0 it is enclosing
a stable equilibrium. When � > 0, the system thus undergoes a subcritical
Hopf bifurcation as the parameter � is reduced through 0.
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Figure 3.1 Super- and subcritical Hopf bifurcations occurring in the generic
system. The bifurcations happen at � = 0 for � < 0 and � > 0
respectively.
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By similar arguments, it is seen that when � < 0 and � > 0 a stable limit
cycle of amplitude r =

p��=� encloses an unstable equilibrium point, the
oscillations are thus born through a supercritical Hopf bifurcation. Fig. 3.1
illustrates the two scenarios, and Fig. 3.2 shows the dynamics of the vector
�eld around the isoclines and the limit cycles.

The crossing of the isoclines marks an equilibrium point. The isoclines are
observed to be symmetric with respect to x and y, causing the limit cycles
to be circular, and crossing it in points where it has vertical and horizontal
tangents. In Section 3.4 it will be illustrated how these ow- symmetries are
broken by a necessary transformation of variables.

It is now known that the sign of the parameter � decides if the bifurcation is
super- or subcritical, that � is the bifurcation-parameter, and that � and �
together determine the amplitude of the limit cycle. By looking at Eq. (3.4)
further deductions regarding the parameters can be made. In addition to
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a direct dependence on 
, the frequency !0 of the autonomous oscillations
depends on �; �, and � through the second term in Eq. (3.4). Setting � = 0,
the frequency and consequently the period become constant thus simplifying
the dynamics of the unforced system signi�cantly. As mentioned earlier, the
numerical simulations have all been carried out with � = �1, � = 0 and

 = 1. This leads to a system where oscillations of constant period 2� and
amplitude

p
� are born through a supercritical Hopf bifurcation at � = 0.

3.3 Modifying the Normal Form

The initial hope was that a periodic variation of the bifurcation parameter �
in the system Eq. (3.1)-Eq. (3.2) would yield the Arnol'd tongue structure of
entrainment regions characteristic of forced oscillators. What was observed,
however, was that entrainment occurred solely where the ratio of the forcing
to the natural (autonomous) frequency was a rational number irrespective of
the amplitude of the forcing, i.e. there was no opening of the Arnol'd tongues.
We speculated that the high degree of symmetry of the normal form was the
cause of this lack of entrainment. If no signi�cant changes occurred in the dy-
namics through which the system was forced, how could any response to the
modulation be expected?!? Variations in the parameter � were made, mak-
ing the period of the autonomous oscillations depend on the value of �, but
without any e�ect. This observation was somewhat in accordance with both
theoretical and experimental examinations made elsewhere. Entrainment was
observed for a system forced in a region where the autonomous oscillations
showed only little variation in the period [Sturis et al., 1995]. This led us to
the conclusion that the simpli�cation obtained by setting � = 0 would not
prevent the results from being common to forced oscillators.

3.3.1 Breaking the Symmetry

The coupling to the forcing was instead achieved by a transformation of the
system, leading to a parameter dependence in the location of the equilibrium
point. Substituting x by (x � ��) in the normal form one obtains the new
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equilibrium point (x; y) = (��; 0). No substitution was made in the x2 term
since it was not necessary to introduce the parameter dependence. The new
parameter � dictates the slope of the set of equilibrium points in the (�; x)
plane. This change in the location of the equilibrium causes the system to ex-
perience the necessary variations in the transients as � is varied periodically.

The transformation alters the system in such a way that the eigenvalues
of the Jacobian, evaluated at the new equilibrium point, become �1;2 =
�(1 + ��2�) � i
. As a result, a second Hopf bifurcation is introduced at
� = �1=��2. The new set of bifurcation curves in the (�; �) parameter plane
is shown in Fig. 3.3. When tracing the bifurcation structure of the forced
system in subsequent chapters, the e�ect of varying the workpoint in the
(�; �) plane will also be examined.

The second Hopf bifurcation is also supercritical and will, for increasing �,
mark the end of the the autonomous oscillations. Setting � = 0 leads to
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the original situation with only one bifurcation at � = 0. As � is increased,
the second Hopf bifurcation moves closer to the �rst one thus gradually
reducing the region of oscillations. Fig. 3.4, which shows the equilibrium as
well as the maximum amplitude of the autonomous oscillations, illustrates
the e�ects of an increase in � on the region of oscillations and the position
of the equilibrium solution.
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Figure 3.4 Maximum amplitude plots illustrating the autonomous oscillations
for various values of �.

By comparing Fig. 3.4 and Fig. 3.1 one notices that the amplitude no longer
takes on the regular shape it did in the original system. In addition to the
termination of the oscillations, the x ! (x � ��) substitution causes vari-
ations in the amplitude and the frequency of the autonomous oscillations.
A transformation of the modi�ed system to polar coordinates yields more
complex analytical expressions for _r and _�.
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_r = �r + �r3 � �2� cos � � 
�� sin � � r2��(� cos � + � sin �)

_� = 
+ �r2 + ��r(� sin � � � cos �) +
��2 sin � � ��
cos �

r
(3.5)

It is no longer possible to obtain simple expressions for the amplitude and
period - even if � = 0. A signi�cant change is the phase dependence in the
frequency and amplitude which tells us that at a given � the limit cycle of
the unforced system will no longer be circular, and will be traversed at a
rate which varies with position. If not for the fact that r and � are still 2�
periodic (for 
 = 1), the position at which the Arnol'd tongues originate
would be di�cult to predict. The system does, however, behave as expected.

3.4 The Dynamics of the Autonomous System

At this point, the bifurcation structure of the unforced system has been ex-
amined, and two distinct Hopf bifurcations have been located in the (�; �)
plane. These bifurcations separate this into three regions; two regions con-
taining only steady state solutions separated by a stretch supporting au-
tonomous oscillations. When forcing is introduced, the system will be varied
through these areas of di�erent ow in a periodic manner. The autonomous
states visited in the course of one period will vary according to the choice of
workpoint and amplitude of the forcing.

To gain a better understanding of the dynamic of the underlying system,
a series of plots, illustrating the vector �elds at di�erent locations in the
regions, is presented in Fig. 3.5. The chosen points lie either on the � = 1 or
the � = 0:5 grid lines seen in Fig. 3.3, and are representative of areas forced
into in Section 5.6. Additional plots can be found in Appendix A.

The �rst plot (moving left to right and top to bottom) illustrates the ow
in the leftmost region of steady state solutions. By comparison with Fig. 3.2
the displacement of the stable focus from the origin is noticed. This is an
e�ect of the symmetry-breaking transformation. Keeping � �xed at 0:5 and
increasing � brings us to the next plot which is exactly in the �rst bifurcation
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point at � = 0. A characteristic feature of the bifurcation points is the
perpendicular crossing of the isoclines. Since the limit cycle is just born it is
of zero amplitude and thus not seen.

Further increase of � leads to the following two �gures in which the limit cy-
cle is seen. The ow has become irregular in the sense that the limit cycle is
not circular and the isoclines no longer symmetric as in Fig. 3.2. Had � been
followed to higher values, yet another perpendicular crossing of the isoclines
would have been observed at the second bifurcation. This is also seen when
keeping � �xed and increasing � as is done in the last two plots with � = 1.

There are points in the plane (as can be seen in Appendix A) where closed
loops of null- or 1-clines emerge. This is the e�ect of a curve folding to
the extent of touching itself. Since the isoclines by de�nition cannot cross
themselves transversally, any 'homoclinic' connection causes the fold to be
pinched o�, thus causing the creation of a separate loop and the connection
of the two remaining pieces. Such loops exist in the rightmost steady-state
region, but neither kind of loop has been found to the left of � = 0. Consult-
ing the �gures in the appendix it is seen that the loops enclose areas of the
state space in which the ow is directed away from the equilibrium point.
Two kinds of Arnol'd tongue destruction have been observed. It is suspected
that the ow di�erences in the various regions of the autonomous system are
what cause the two types of collapse to di�er.
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Figure 3.5 Vector �elds and isoclines illustrating the ow in the x-y plane at
various points in the �� � plane. Isoclines are drawn with thick
lines and limit cycles with thin lines.
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3.5 Forcing the System

The forcing of the oscillator is done by periodically varying the bifurcation
parameter � i.e. an actual forcing of the system in the vicinity of and across
a Hopf bifurcation.

In practice the periodic forcing is introduced by the substitution �! (�0 +
A sin!t), and so the workpoint is (�0; �). Three new parameters �0; A, and
! have been introduced. These play key roles in the later analysis of the
bifurcation structures.

3.5.1 Transformation of the Time Variable

When analyzing the dynamics of forced oscillators it is valuable to follow
bifurcation curves in the frequency-amplitude plane, in order to locate pos-
sible regions of periodic entrainment and trace the resonance tongues. For
this purpose, so-called continuation schemes are employed in one and two
dimensions. The use of this technique will be discussed in the following chap-
ter and reference is made to Appendix B for a more detailed description of
the implementation. The sin!t term in the forcing poses a problem when
trying to trace bifurcation curves in the (!;A) plane. This is overcome by
introduction of a new time variable � = !t. Letting superscripts t or � de-
note the time frame of interest, and subscript F terms associated with the
forcing, it is found that T �

F = T t
F!

t
F = 2�. The period of the forcing is thus

constant and equal to 2� in the new time frame.

In the limit of zero forcing amplitude, the characteristic frequencies of the
system are the frequency of the forcing ! and the natural oscillation fre-
quency !0. p and q are invariant to the transformation of the time variable,
and so the rotation number is unaltered and is found as

� =
T t
F

T t
=

2�=!tF
2�

=
1

!tF
� 1

!

The 2:1 tongue is thus known to originate at 1/�=p/q=2/1=!, the 4:5
tongue at 1/�=!=4/5 etc.
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3.6 The Final Model

At this point, the generic normal form has been modi�ed to reach the �nal
form shown in Eq. (3.6). This is the system examined in this work. A list
and brief description of the parameters is given in Table 3.1. Throughout
this report, the actual set of parameters will be referred to by the parameter-
vector M = (�0; �; �;
; A; !; �).

_x =
dx

d�
=

1

!
(�(x� ��)� 
y + (�(x� ��)� �y)(x2 + y2))

_y =
dy

d�
=

1

!
(�y +
(x� ��) + (�(x� ��) + �y)(x2 + y2)) (3.6)

where � = �0 +A sin �

Table 3.1 Model Parameters and Their Signi�cance

M = (�0; �; �;
; A; !; �)

�0 : Workpoint parameter. Value around which the bifurcation
parameter � is forced.

� : Parameter controlling the nature of the Hopf bifurcation: � <
0 ) Supercritical Hopf bifurcations, � > 0 ) Subcritical
Hopf bifurcations

� : Parameter weighing the inuence of the amplitude on the
natural oscillation frequency: � = 0) the only variations in
!0 are due to the x! (x� ��) substitution.


 : The constant part of the natural oscillation frequency, !0.
A : Amplitude of the periodic forcing.
! : Frequency of the periodic forcing.
� : Workpoint parameter. Determines the slope of the curve of

equilibrium solutions in the x-� plane.
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The model is no longer the generic normal form for a Hopf bifurcation, but
a high degree of parameter control allows for the forcing and many aspects
of the underlying autonomous system to be adjusted.

One of the future perspectives of the model is the examination of the forc-
ing over two supercritical Hopf bifurcations separated by a region of steady
state solutions. When considering the eigenvalues of the linearization of the
autonomous vector �eld around the equilibrium point, it is seen that the
desired bifurcation structure of the underlying system can be achieved by a
proper transformation of the bifurcation parameter. In the case of the pure
normal form, this is particularly simple as it can be done by replacing �
with a term quadratic in � e.g. �! (�� a)2 � b (still keeping in mind that
� = �0 + A sin �). This would cause the eigenvalues, �1;2 = � � 
, to cross
the imaginary axis twice leading to two Hopf bifurcations. By variation of
the parameters a and b, the location and separation of the bifurcations can
be controlled.

An analogue approach can be used in the case of the system Eq. (3.6). Since
�1;2 = �(1+��2�)�i
 is already quadratic in �, a substitution similar to the
one mentioned would result in Ref�1;2g being a fourth order polynomial in �.
By adjusting the parameters one can ensure four crossings of the imaginary
axis resulting in four Hopf bifurcations. Instead of the unbounded regions of
oscillations one would obtain with the generic normal form, the regions are
bounded. The extent of the di�erent regions is dictated by the shape of the
fourth order polynomial.

In the present thesis the attention will be restricted to the case of one au-
tonomously oscillating region. This scenario in itself, contains a wealth of
interesting bifurcation structures which we felt should be examined in some
detail prior to any analysis of the forcing over two bifurcations.
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3.7 Summary

� The generic normal form for a Hopf bifurcation was presented and
discussed as it is the basis of the model considered in this work.

� Various transformations of the generic normal form were carried out.
A periodic variation of the bifurcation parameter and a transformation
of the time variable were introduced, both without a�ecting the bifur-
cation structure of the autonomous system. It was necessary to perform
a symmetry-breaking transformation to get entrainment. This led to a
second curve of Hopf bifurcations bounding the region of autonomous
oscillations in the plane.

� An analysis of the underlying autonomous system was performed to
provide a basis for the numerical investigations of the forced system.
The ows in the two regions of stable equilibrium solutions were found
to di�er.

� The signi�cance of the model parameters was discussed in relation to
the analysis of the autonomous system and the e�ect of the transfor-
mations. A vector containing the parameters of the forced system was
de�ned; M = (�0; �; �;
; A; !; �).

� Suggestions were made for future work with the model, which could in-
volve forcing across two Hopf bifurcations. By substituting the control
parameter with an appropriate polynomial, the system can be altered
to have two regions of autonomous oscillations separated by a region
with a stable equilibrium.
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CHAPTER 4

Methods and Tools

Having presented some of the relevant theory and introduced
the model, attention is now turned to the methods and tools used
in the numerical analysis. The purpose of this chapter is not to
give a detailed description of each method. It is meant to give
an overall view, introducing the di�erent numerical tools. It will
be discussed (i) when a method is relevant to apply, (ii) how the
methods depend on each other, and (iii) what the advantages and
disadvantages of the di�erent methods are. The interested reader
is referred to Appendix B in which the methods are described in
more detail.

41
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4.1 Locating Solutions

In this section the numerical approximation of an integral curve related to
an initial value problem is briey discussed. Di�erent techniques to locate
various types of solutions are outlined and at the end of the section a method
is presented of how to construct one-dimensional invariant manifolds. Con-
struction of these can be very useful in locating solutions and in understand-
ing the dynamics of the system.

4.1.1 Numerical Integration

Let a dynamical system be described by an N dimensional nonautonomous
system:

_x = F(x(t); t;M); x 2 IRN ; t 2 IR; M 2 IRP ; x(t0) = x0: (4.1)

x is a state vector of N variables, t is time, and M is a parameter vector of
P parameters. x0 is the initial condition for the system and F represents the
time varying nonlinear vector �eld.

If F is a nonlinear function Eq. (4.1) generally cannot be solved analytically.
Instead numerical methods must be applied to solve the nonlinear system
approximating x(t). Naturally, we cannot solve numerically for a continuous
solution, but have to settle with an approximation of the states x0;x1;x2; � � �
at a discrete set of points in time t0; t1; t2; � � � .
The numerical methods are numerous and all have di�erent advantages. In
choosing between the methods one has to weigh the speed against the preci-
sion and stability of a method. Moreover, the choice depends on the speci�c
system and on the type of phenomena one wishes to study.

Methods by which xn is calculated at the time tn based only on the knowl-
edge of the state at tn�1 are called one-step methods. If the methods require
information of a time series with k elements - e.g. the system states at the
times tn�k; tn�k+1; � � � ; tn�1 - the methods are called multi-step methods.
Furthermore, the methods are classi�ed as implicit or explicit methods, de-
pending on whether F has to be solved implicitly or explicitly. Finally, the
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methods are classi�ed depending on whether they use �xed step-length or
variable step-length.

Though multi-step methods are often more stable, one-step methods gen-
erally appear more exible requiring knowledge of the solution at just one
point t in time in order to proceed with the integration. Implicit methods
have the advantage of being generally more stable than explicit methods and
can therefore use larger step-length. However, one also has to consider the
amount of extra work it takes to solve F implicitly. This work can be quite
extensive, since F often has to be solved a number of times depending on
the number of the sub-steps for the particular method.

We have chosen to apply two di�erent explicit one-step methods, one of which
is the Runge-Kutta 4 method which uses a �xed step-length; the second one
is the Runge-Kutta 5/6 method employing a variable step-length. Further
discussion of these methods is found in Section B.1. Both methods are very
popular and are described as being among the most e�cient and accurate
codes available [Lambert et al., 1990],[Kampmann, 1995].

4.1.2 Poincar�e Sections

A number of di�erent types of solutions can be found in a dynamical system.
They can be of di�erent dimension and the simplest solutions are equilibrium
points. These can be determined by

F(x; t;M) = 0 (4.2)

and are of zero dimension. Examples of higher dimensional solutions are
one-dimensional periodic solutions, Q-dimensional quasiperiodic solutions
(Q � 2), and chaotic solutions of non-integer dimension. The solutions
can be studied using Poincar�e sections (P-section/P-mapping). For an N -
dimensional autonomous system, a P-section is a sampling of the trajectory
of the solution in an (N � 1)-dimensional subspace of the state space. For a
nonautonomous system, we work in the extended state space and typically
choose to sample the integral curve in the time dimension at evenly spaced
intervals. Such a P-section is often referred to as a stroboscopic P-section.
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Higher order P-sections are based on the idea of multi-sampling. Each sam-
pling reduces the dimension of the system by one, making them useful in
identifying quasiperiodic solutions.

In order to be able to study periodic solutions the continuous-time system
is transformed to a discrete-time system using the P-section. As we shall be
dealing with a forced nonautonomous system, we choose a P-section equiv-
alent to sampling the trajectory at a rate equal to the forcing frequency of
our system.

If TF = 2�=!F is the period of the forcing (!F being the angular forcing
frequency), then the stroboscopic P-section can be described by:

x0 ! xk = Pk(x0) = x0 +

Z t0+kTF

t0

F(x(t); t;M)dt k = 1; 2; � � � (4.3)

A period-k solution of our system is now found as a kth-order �xed point of
this map, and is determined by

x0 � xk = x0 �Pk(x0) = 0 (4.4)

For a given �xed point we can calculate the Floquet multipliers, the eigenval-
ues of the P-map. They can be used to classify the stability of the periodic
solution.

4.1.3 The Brute Force and the Newton Raphson Approach

For a given set of parameter values there are many di�erent methods one can
apply in order to locate the di�erent solutions of a dynamical system. Here
we present the Carpet Bombing (CB) technique. As the name indicates,
we begin by choosing di�erent initial conditions scattered over the state
space. At each of these states one can use di�erent approaches to locate the
solutions in the neighbourhood. These approaches have di�erent advantages
and disadvantages. Two di�erent techniques are presented: (i) the Brute

Force approach and (ii) the Newton Raphson approach.
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Brute Force

Brute Force (BF) is a method in which the system is integrated and iterated
until steady state is achieved. Thus, stable solutions can be located, and
by integrating in reverse time, unstable solutions as well. Saddle solutions
cannot be located by this method since they have both stable and unstable
insets. Brute Force is general and simple but has slow convergence, and it is
di�cult to tell when steady state has been achieved. Note that as long as the
initial condition is in the basin of attraction of an attractor, the BF method
always converges. The method is easy to implement and all that it requires
is a numerical integration scheme.

Newton Raphson

The Newton Raphson (NR) approach is more sophisticated than the BF. The
problem of locating a limit set is transformed into a task of calculating the
zeros of a system of nonlinear equations. The NR algorithm is then applied
to either Eq. (4.2) in order to locate equilibrium points or Eq. (4.4) to locate
�xed points of the P-map. The NR algorithm is explained in Section B.5. The
main advantages of using the NR approach are quadratic convergence and
the fact that any type of equilibrium point or �xed point can be located. If
one is using higher-order P-sections, quasiperiodic solutions may also be lo-
cated. The approach su�ers from the drawbacks that it cannot locate chaotic
solutions, and that the initial states have to lie close to the solutions in order
to guarantee convergence. To locate di�erent solutions by the NR method
tools of integration and construction of P-sections are necessary.

4.1.4 Manifolds

One way of constructing a one-dimensional unstable half-manifold of a �xed
point is by simply iterating a point chosen near the �xed point on the eigen-
vector corresponding to the direction one wishes to study. By reverting time,
stable manifolds may also be studied in a similar manner. Even if the initial
points lie near the �xed point, their iterates can be quite far apart resulting
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in a poor approximation of the manifolds. The stretching is especially com-
mon in chaotic systems. A better technique is to slide a window of points
along the manifolds trying to construct a reasonable density of points. This
method is reasonably fast and can be constructed in such a way as to have
the number of points in the window increased when the dynamic along the
manifold becomes very strong or when the manifold is winding.

When able to construct the stable and unstable invariant manifolds of a
�xed point the advantages one gains are considerable. The information can
be used, not only in understanding the transient dynamics in the state space,
but naturally also in explaining global bifurcation since homoclinic and het-
eroclinic orbits can be constructed. Furthermore, when trying to locate all
solutions in the state space, one would often choose to construct the sta-
ble manifolds of di�erent saddle �xed points. These manifolds separate the
basins of attraction, and through construction of these information is ob-
tained, indicating whether all areas of the state space have been analyzed
su�ciently.

We refer to Section B.4 in which the numerical technique is presented for
construction of one-dimensional invariant manifolds. Although the technique
for construction manifolds of a equilibrium point is easier, the presented
method only applies to manifolds of a �xed point. Naturally, the method
depends on the integration method and on setting up a P-section.

4.2 Tools to Analyze the Solutions

Having located di�erent solutions in the state space, di�erent techniques of
retrieving information from the solutions are presented. In the following we
shall not be interested in equilibrium solutions, but only in solutions that
are not constant in time.

4.2.1 Rotation Number

For a two-dimensional nonautonomous system the rotation number was de-
�ned in Chapter 2 as the ratio of the two dominant frequencies in the system.
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We shall briey explain how the rotation number is calculated for a periodic
or a quasiperiodic solution: In order to calculate � a technique is used in
which a one-sided P-section is applied to our nonautonomous system. In this
case the one-sided P-section corresponds to a sampling every time the line
y = 0 is crossed by the trajectory of a solution moving from negative to
positive values of the x variable. This map is iterated towards in�nity (in
principle) while keeping track of the time needed for the system to get close
to its initial condition. This simulation is repeated for in�nitely (in principle)
many initial conditions.

The technique gives us the average number of iterations q and the average
time Tq it takes to get back to the initial condition on the one-sided P-
section. By dividing Tq with the period of the forcing, p is found. This is
used to estimate the rotation number as the fraction q=p = q Tforcing=Tq
with respect to the stroboscopic mapping. Applying the method to a chaotic
solution we can expect some problems since the number of iterations needed
to get close to the initial values will appear random.

4.2.2 Lyapunov Exponents

The Lyapunov exponents are measures of average divergence of neighbouring
trajectories. The absolute value of the exponents indicate the speed with
which the curves converge, respectively diverge. Negative exponents express
convergence and positive exponents divergence. Zero Lyapunov exponents
indicate neither convergence nor divergence. Note that for dissipative systems
the sum of the exponents will be negative and equal to the dissipation in the
system.

An N -dimensional nonautonomous system have N +1 exponents, but as the
rate of change of the time-variable is constant, one exponent is always zero.
For periodic solutions an additional exponent is found to be zero, and for a
Qth-order quasiperiodic solution Q+1 Lyapunov exponents will be zero. As
a positive exponent implies divergence we use this as an indicator of chaos,
provided that the dynamic remain bounded.

The Lyapunov exponent of an N -dimensional nonautonomous system can be
calculated by studying N + 1 neighbouring orbits/curves in the state space.
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From one of the curves we span N orthonormalized vectors to the other
curves. This is done in a way such that all the vectors originate from the same
point and end on di�erent curves at the same instant in time. The average
growth in time of the length of a vector corresponds to the largest Lyapunov
exponent. The sum of the two largest Lyapunov exponents is calculated as
the average growth of an area spanned between two vectors and so-forth.
To avoid numerical problems, the vectors are orthogonalized from time to
time, and to get the best estimates of the Lyapunov exponents, one should
in principle run the simulation towards in�nity. In practice this is done by
simulating over a time period that is many times (typical factor 10) longer
than the normal period of the dynamics. The technique is relatively fast and
e�ective. Note that the method does not need a P-section for calculating the
Lyapunov exponents.

4.3 Construction of Solution and Bifurcation Curves

After locating solutions in the state space, it may be of interest to follow
the solutions into system space. Naturally, one could just apply the carpet
bombing technique for di�erent sets of parameter value but this is a very
slow technique. We now present two di�erent methods used to follow so-
lutions under variation of a control parameter. The methods can be useful
in determining bifurcation points and in constructing bifurcation curves in
system space.

4.3.1 Brute Force Scanning

This is a general method for calculating bifurcation diagrams of stable steady-
state solutions. Its advantages are generality and simplicity. Let m be the
control parameter that we wish to vary over the interval mmin to mmax.
The system is then simulated for S evenly spaced parameter values in the
interval. For the sth simulation, the P-map of the system is iterated a �xed
number of times. After discarding a transient, the system is assumed to be
in the steady state and the remaining iterations are saved. The drawbacks of
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the method are a long simulation time and an inability to locate saddle-node
solutions.

One trick to speed up the technique is to use adiabatic initial conditions. We
simply use the last values of the state of the system from the sth simulation as
the initial conditions for the next simulation s+1. If S is reasonably large, so
that ms is close to ms+1, and there has been no bifurcation over the interval,
then the steady state solutions at ms and ms+1 are approximately the same.
We can therefore assume that the adiabatic approach reduces the duration
of the transient considerably.

The adiabatic technique leads to an interesting artifact called bifurcation

transient. Bifurcation transients appear on a BF-diagram just after a bifur-
cation when the simulation does not achieve the steady state. We speak of
a delayed response in passing the bifurcation point. This artifact is mainly
found for non-catastrophic bifurcations and can be explained by the follow-
ing. Assuming that the simulation before the bifurcation achieved steady
state, then the initial condition for the simulation just after the bifurcation
lies nearly on the now unstable solution. One of the eigenvalues of the P-
map has just passed through the unit circle and must have a magnitude only
slightly greater than 1. Therefore, the simulation length is often too short
for the orbit to move signi�cantly far from the weakly repelling solution.

BF-scanning with adiabatic initial conditions is useful when locating coex-
isting solutions. This involves an analysis in which an interval is scanned
with both increasing and decreasing control parameter. In such analysis we
may experience hysteresis e�ects indicating the existence of a catastrophic
bifurcation.

4.3.2 The Continuation Method

Consider a solution determined as the root of the function H = H(x;M). By
calculation of the gradient at a point (x0;M0), the solution can be followed
into system space by a method of prediction and correction. Determining
the di�erential DH(x;M) we �nd that

DH(x;M) = DxH(x;M)dx +DMH(x;M)dM = 0 (4.5)
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If the system is of dimension N and P is the number of system parameters,
then DxH(x;M) 2 IRN�N and DMH(x;M) 2 IRN�P . Thus, Eq. (4.5) is a
system of N + P variables and only N equations. The system is therefore
singular, and to solve for the gradient we need to establish P extra conditions.
In Section B.6 we explain how to solve the system of equations including
either one or two-dimensions of the parameter space following solution curves
or bifurcation curves.

Note: When applying the continuation methods to a forced system with
the intent of studying solutions of the system under variation of the forcing
frequency !t, one can encounter serious problems. The problems arise if a
stroboscopic mapping is used. If we do not transform the system into a time
dimension in which the forcing frequency !� is constant, we will not be able
to use the frequency !t as a control parameter.
Consider a case in which we wish to study a period-one solution of the system
found at the frequency !t = !t1. In an attempt to follow the solution the
continuation method will try to locate a solution of the period T t

1 = 2�=!t1
at a new value !t = !t2. But here a period-one solution has a period of T t

2 =
2�=!t2 6= T t

1 , thus making the task impossible for the continuation method.
The problem can be solved by transforming the system into a new time
dimension in which the stroboscopic mapping is una�ected by the variation
of the forcing frequency in the old dimension. This is typically done by the
transformation � = !tt, which stretches or compresses time depending on
the forcing frequency. Such a transformation has been used in Chapter 3.

1D Continuation

Including one-dimension of the parameter space allows us to study equilib-
rium and periodic solutions curves in a bifurcation diagram. We have the pos-
sibility of �nding local bifurcation and of locating equal-eigenvalues points.
The method implemented uses variable step-length and is relatively fast and
stable. We employ a step-reducing method when locating the bifurcation/EE
points, guaranteeing convergence and high accuracy.
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2D Continuation

Including yet another dimension of the parameter space, 2D continuation
gives us a method of constructing codimension one bifurcation curves. Com-
pared to 1D continuation, the extra amount of numerical work 2D continu-
ation demands is unfortunately quite signi�cant, thus reducing the attrac-
tiveness of the method. Furthermore, the stability of the method also seems
reduced as branch jumping, convergence problems, and problems of control-
ling the direction of construction are increasingly troublesome. Adjusting
step-lengths and tolerances will of course help 2D-continuation past some of
its problems. Keep in mind, though, that this would probably have to be
done not only for the di�erent types of bifurcation curves but perhaps also
several places along a single bifurcation curve.

1D Continuation with alternating control parameters.

Bifurcation/EE curves can be constructed using only 1D continuation. Hav-
ing found a bifurcation point using m1 as a control parameter, we simply
change to a di�erent control parameter m2, and choose a direction to travel
away from the bifurcation point. We thus move a small distance away from
the bifurcation point, then change the control parameter back to m1, and
start the search back towards the bifurcation curve. We thereby construct
the bifurcation curve in m1;m2-parameter space. The technique proves to
be a fast and stable method. Moreover, while navigating in parameter space,
one quickly gains insight in complicated bifurcation structures.

Using this method we can rather easily construct bifurcation curves where
2D continuation had serious problems converging or was very slow. Due to
the type of technique 1D continuation uses in locating bifurcation/EE points,
we are guaranteed to stay on one side of a bifurcation curve in parameter
space. This aspect proves important and allows us to e.g. travel deep into a
cusp. It also helps us to di�erentiate between di�erent bifurcation curves that
lie close in the system space. Of course, the method has a drawback since
it does not automatically follow the bifurcation curve and therefore has to
be controlled closely. Some automation is possible, and after evaluation the
method appears to be an excellent alternative to 2D-continuation in that it
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speeds up construction and understanding of the bifurcation structure. In
order to visualize how the technique tracks the bifurcations in system space,
reference is made to Fig. 2.5. As long as control is maintained, maneuvering
on the +N1 solutions that continues up towards larger �, it will be possible
to construct the lower SN1+ bifurcation curve. The curve can be constructed
without interference from the upper SN1+ bifurcation. By applying the tech-
nique it is possible to di�erentiate between the lower and the upper SN1+
bifurcations with high numerical accuracy.

4.4 Summary

� Families of numerical integration schemes were briey presented, that
will give the foundation for more advanced numerical tools.

� The stroboscopic Poincar�e-section was set up in order to study the
dynamical solutions of a forced oscillator.

� Di�erent techniques useful to locate solutions in the state space were
presented - this included the Brute Force and the Newton Raphson
Approach.

� Techniques that construct one-dimensional invariant manifolds of �xed
points of the stroboscopic map were introduced.

� A tool that can calculate the rotation number of a periodic or a quasiperi-
odic solution was described. Additionally, a technique to calculate the
Lyapunov exponents was presented. These tools are especially useful
in analyzing a dynamical solution.

� Brute Force scanning was explained. Related terms such as bifurcation
transient and delayed response were introduced.

� Continuation methods were presented, whereby both the 1D and the
2D technique were introduced. A technique that applies 1D continua-
tion with alternating control parameters was also presented. The latter
technique proved itself as an attractive alternative to 2D continuation.



CHAPTER 5

Results

Attention is now turned to the results of the computations. The
foundation of these discussions will be the excitation diagram,
which is the bifurcation structure in the frequency-amplitude
plane of the forcing.
First the connection of entrainment regions in a representative
excitation diagram is outlined and, subsequently, the focus will
be on the individual tongues for a speci�c set of parameter val-
ues. The tongues are discussed according to the period of the
entrained solutions, some of them in more detail than others.
The nature of the local and global bifurcations is elucidated pri-
marily by means of one-dimensional bifurcations diagrams and
stroboscopic phase portraits. Finally, the destruction of Arnol'd
tongues is discussed in relation to variations of the workpoint.

53
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5.1 The Excitation Diagram

An excitation diagram of the forced system is shown in Fig. 5.1. The dia-
gram consists mainly of the dominant 1:1 and 2:1 entrainment tongues, but
shown are also the 3:1, 4:1, and lesser tongues of 2:3, 4:5, and 3:2 locking.
An in�nite number of tongues exist, but as the period of the entrained so-
lutions increases, the tongues become very thin and thus di�cult to trace
numerically. The tongues may also overlap. Such regions of overlap are seen
in Fig. 5.1, and they lead to coexisting attractors of various types.

Unless it is stated otherwise, the results presented in the following sections
are found at the same set of parameter values at which this diagram is
obtained, that is with �0 = 1; � = 0:5, � = �1; � = 0 and 
 = 1. As
expected, the tongues originate at values of the forcing frequency equal to
the respective p/q ratio of the entrainment and gradually widen at higher
forcing amplitudes. It is noted, that no tongue structures are present at forc-
ing amplitudes larger than approximately A=2. The corresponding region of
the (�; �) parameter plane, over which the system is forced, can be seen in
Fig. 3.3. This involves a forcing across one of the Hopf bifurcations.

In addition to the bifurcation curves, the period-one equal-eigenvalues curves
have been plotted in Fig. 5.1. This is to observe their location relative to the
set of entrainment regions. Their form and location is somewhat dictated by
the Arnol'd tongues and corresponding resonance points.

The boundaries of the entrainment regions consist mainly of saddle-node
bifurcation curves, but also curves of period doubling and torus bifurcations
separate the di�erent frequency-locking regions or mark the transitions from
quasiperiodicity to periodic solutions.
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5.1.1 The T1 Curve and Rp Resonance Points

Most of the tongues close on- or around a curve of torus bifurcations where
a stable torus collapses onto an enclosed unstable focus of period one (-
F1), leaving behind only a stable focus of period one (+F1). Only few of
the dominant tongues are observed to exist above this connecting curve at
large forcing amplitudes (A > 1). TB and T-PD codimension two bifurca-
tions mark the connection of the T1 curve to the 1:q and 2:q tongues. Each
tongue has two such resonance points - one on each side.
Examinations of the 3:1, 3:2, 4:1, and 4:5 tongues show only one reso-
nance point to be associated with each of these. The period three tongues
close smoothly, overlapping the T1 line and enclosing the R3 points. An-
other scenario is seen for the period four tongues. As the torus bifurca-
tion line is approached, they gradually become narrower until they con-
nect in the R4 point on the T1 curve. These observations are in agreement
with other numerical observations made by [Pavlou and Kevrekidis, 1992]
and [Vance and Ross, 1989], and analytical examinations by [Norris, 1993]
in which 4:q are claimed to close in wedges. [Pavlou and Kevrekidis, 1992]
observe the SN4+ curves to stay below the T1 curve, but apparently there is
some uncertainty as to the closure of the period four tongues. That the 4:q
tongues are allowed to close in di�erent ways relative to the T1 bifurcation
curve is strongly supported by our numerical results in which di�erences are
observed in the behaviour of the 4:1 and 4:5 tongues.

5.1.2 The Equal-Eigenvalues Curves

When tracing the bifurcation diagram in the (!;A) plane, it becomes clear
that focus-node transitions of at least the period one and two solutions must
occur in the parameter plane. A quasiperiodic solution on a torus always en-
closes an unstable focus immediately after its birth, so the regions between
the Arnol'd tongues contains such unstable period one solutions with com-
plex conjugate eigenvalues. Since these undergo a torus bifurcation on T1,
stable focus solutions exist above this line. No solutions whose corresponding
eigenvalues are complex conjugates, can undergo neither a period doubling
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nor a saddle-node bifurcation, so the observed bifurcation structure would
be impossible were it not for the existence of these transitions. By meth-
ods described earlier, the locus of the focus-node transitions were traced in
the (!;A) plane. Even though they do not constitute a bifurcation of the
solutions, their importance is evident, and they become no less interesting
when one sees the tongue-like shape of the EE1 curves in Fig. 5.1. Closed
loops of higher period equal-eigenvalues curves are also found, and are an
intrinsic part of the bifurcation structure inside the tongues. The various
equal-eigenvalues curves will be discussed briey in connection with the pre-
sentation of the di�erent entrainment regions.

As can be seen in the diagram, the EE1- curves emanate from the same point
as the tongues. This is no coincidence, but not a must either. The unstable
period one solution is known to be a descendant of the unstable equilib-
rium point of the autonomous system. This allows for the determination of
the points on the ! axis from which the EE1- curves open. The eigenval-
ues evaluated at the autonomous equilibrium solution are �(1 + ���2)� i
,
so at zero amplitude the stroboscopic map shows this solution to have Flo-
quet multipliers �1;2 = e(�(1+���

2)�i
)Tforcing . The tip of EE1- must orig-
inate where Imf�1;2g = 0. This is satis�ed where 
Tforcing = 2n� or

Tforcing = 2(n� 1)�. With 
 = 1,

Tforcing = 2n� ) ! =
2�

2n�
=

1

n
or

Tforcing = (2n� 1)� ) ! =
2�

(2n� 1)�
=

2

(2n� 1)

For n = 1; 2; ::: this coincides with the point of origin of the 1:1, 1:2,... tongues
in the �rst case, and the 2:1, 2:3,... tongues in the latter case. This is speci�c
for our system, as it depends on the parameters. [Kevrekidis et al., 1986]
have determined similar equal-eigenvalues curves and found them to originate
at points outside the tongues.
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5.2 The 1:1 Tongue

At large forcing amplitudes the system entrains to the forcing in the simplest
possible way in a 1:1 frequency locking. Intuitively, this is also what one
would expect when the external perturbation is su�ciently strong.

When the forcing is of lower amplitude, the system behaves in a more diverse
manner, as seen in Fig. 5.1, but also at these amplitudes the 1:1 entrainment
is quite dominant. The 1:1 resonance tongue has a triangular shape, and
opens at a larger angle than the other frequency locking regions.
The appearance of the tongue is deceptively simple, however. The outer
boundary of saddle-node bifurcation curves encloses a variety of phenomena
such as coexisting periodic and quasiperiodic solutions, global bifurcations,
and the connection of codimension one bifurcation curves in codimension
two points.

5.2.1 The Tongue Boundary

Fig. 5.2 shows the 1:1 Arnold tongue which consists of codimension one
SN1+ and SN1- bifurcation curves to which T1 curves connect in the upper
left and right corners.

Points, labeled A, B1, B2, and C, mark areas containing various types of
solutions. In Fig. 5.3 and Fig. 5.4 these solutions are depicted in a one-
parameter bifurcation diagram and four phase plots. A and C lie outside the
tongue where no entrainment is observed. Points B1 and B2 both lie within
the entrainment region but inside and outside of the equal-eigenvalues, horn
respectively.
As can be seen in the bifurcation diagram, the quasiperiodic attractor dis-
appears the instant a period-one saddle and stable node pair is born in
an SN1+ bifurcation. The unstable period one focus continues through the
tongue, but on a stretch inside the tongue it is an unstable node. This is
when it passes through the EE1- region seen in Fig. 5.2. At the other side
of the entrainment region, the S1,+N1 pair collides and disappears in an-
other SN1+ bifurcation, leaving only the unstable period-one focus and a
quasiperiodic attractor.



5.2 The 1:1 Tongue 59

0

0.2

0.4

0.6

0.8

1

1.2

0.6 0.8 1 1.2 1.4 1.6

A

ω

The 1:1 tongue
Μ=(1,−1,0,1,Α,ω,0.5)

A B1 B2 C

EE1+

SN1+ SN1+

EE1-

SN1-

EE1+

T1

T1

Figure 5.2 The 1:1 tongue and the period one Equal-Eigenvalues curves as-
sociated with it.

The scenario can also be followed in Fig. 5.4. These plots show the continu-
ous and stroboscopic phase portraits of the stable and unstable limit cycles,
and the quasiperiodic solutions. It is observed how the -F1 limit cycle lies
inside the torus on both sides of the tongue.
The discrete points of the quasiperiodic attractors will eventually lie densely
on a curve. This outlines the torus surface in the stroboscopic section and
forms an invariant circle. In the two plots, A and C, an equal number of
iterations are shown, clearly illustrating how the solution winds di�erently
in the two cases. For the two quasiperiodic solutions the rotation number is
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calculated to be 1.2995 and 0.8738 rotations per period of the forcing.

The appearance/disappearance of the saddle-node pair happens in a quite
interesting fashion that is of consequence to the direction of the ow outside
the tongue. At the point of the SN1+ bifurcation, the S1, +N1 pair appears
on the invariant circle. Hence, the quasiperiodic attractor ceases to exist,
but the invariant circle remains in the form of a heteroclinic connection of
the saddle and stable node solutions. This is the scenario at low forcing
amplitudes. Stroboscopic phase portraits of the solutions and their invariant
manifolds are shown in Fig. 5.5, Fig. 5.6, and Fig. 5.7.
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Figure 5.3 One parameter bifurcation diagram showing the co-existing period
one solutions inside and just outside the 1:1 tongue at A=0.5. The
quasiperiodic attractor is shown by dots obtained by Brute Force
scan.
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Figure 5.4 The stable and unstable periodic limit cycles and the quasiperiodic
solutions are portrayed in the x-y plane. The solutions are obtained
at the points marked A, B1, B2, and C in Fig. 5.2.

Fig. 5.5 corresponds to a point just inside the 1:1 tongue on the left side.
The location at which the entrained period-one solutions appear can be seen
in Fig. 5.4 - plot A, as a region on the invariant circle with a larger density.
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This is a result of a 'slowing down' of the dynamics. As the forcing frequency
is increased and the tongue traversed, the saddle and the node move around
the invariant circle clockwise and counterclockwise respectively. Fig. 5.6 to
Fig. 5.7 illustrate this. Fig. 5.7 is just prior to the SN1+ bifurcation on the
right tongue boundary. Once again the point, at which the saddle-node pair
collide, attracts a higher density of points on the subsequent torus seen in
the last frame of Fig. 5.4.

A result of this movement of the solutions is a change in direction of the ow
on the quasiperiodic attractors on the two sides of the tongue. It cannot be
seen in Fig. 5.4, but the ow on (and toward) the torus is counterclockwise
in A and clockwise in C. If the unstable manifolds of the saddle point in
Fig. 5.5 - Fig. 5.7 are compared, the directional change is seen to correspond
to the change in the ow along these invariant sets as the tongue is crossed.

Smooth invariant circles, of the kind seen in the previous, exist in a large part
of the tongue, but there are regions at higher amplitudes where they become
increasingly irregular, leading to the homoclinic and heteroclinic crossing of
the manifolds. This is the topic of Section 5.2.3.
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Figure 5.5

The invariant circle
formed by the heteroclinic
connection of the saddle
and the unstable node.
The plot is shortly after
the appearance of the
saddle-node pair on the
torus seen in
Fig. 5.4(Point A)
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The invariant circle at the
point B1 in Fig. 5.2. The
saddle and node points
are moving around the
invariant circle
counterclockwise and
clockwise, respectively. -1.2
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The invariant circle at the
right side of the tongue
just before the two points
disappear in the
saddle-node bifurcation,
leaving behind the torus
depicted in Fig. 5.4(Point
C).
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5.2.2 The Top of the Tongue

The 1:1 tongue is seen to have an upper bound of SN1- bifurcations closing
it. Above this we still have 1:1 entrainment, but only stable node and focus
orbits of period one exist - there are no saddle solutions. As discussed, this
high amplitude region of stable 1:1 entrainment is bounded mainly by torus
bifurcation lines.

On the `lid' of the tongue the T1 curves connect to the SN1 curves. The
Floquet multipliers de�ne the points of connection to be R1 resonance points,
but they are also Takens-Bogdanov points. There is one TB point on each side
of the lid, and the T1 bifurcation lines extend from these to the neighbouring
2:3 and 2:1 tongues, to which they also connect in codimension two points
(T-PD/R2).
The plots in Fig. 5.8 are magni�cations of the upper left and right corners
respectively. The �gures show the same scenario to take place on both sides;
the side and top saddle-node bifurcation curves meet in a cusp close to which
a T1 curve connects tangentially in the TB point and marks the transition
between SN1+ and SN1- bifurcations. The lid thus consists of both types of
saddle-node bifurcations. Also plotted are the equal-eigenvalues curves.

Since the left and right corners are of similar structure, only the left side has
been examined. One e�ect of the T1 line crossing the side of the tongue is
the coexistence of quasiperiodic and stable periodic attractors inside it. This
scenario is found for ! values to the left of the TB point, i.e. where the lid
consists of SN1+ bifurcations and the torus bifurcation curve lies beneath
it. Fig. 5.9 to Fig. 5.11 show one parameter bifurcation diagrams using the
amplitude as bifurcation parameter. The diagrams are obtained on either side
of the codimension two point. The solution-curves are followed by means of
the one-dimensional continuation scheme and have been supplemented by
Brute Force scans showing the non-periodic attractors.
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Figure 5.9 One-dimensional bifurcation diagram at ! = 0:77 through the
left part of the 1:1 tongue, but to the right of the left most TB
point. The sub�gure is a magni�cation of the SN1- bifurcation.

Fig. 5.9 is at a forcing frequency of 0.77, to the right of the Takens-Bogdanov
point.
Starting at the bottom of the diagram is a stretch of quasiperiodic and
unstable focus solutions. At an amplitude just above A = 0:8 the �rst saddle-
node bifurcation is encountered. This is on the SN1+ curve constituting the
left side of the tongue. The bifurcation scenario is the same as described in
Section 5.2.1 with the S-N pair emerging on the invariant circle. Above this
point three solutions exist; a stable node +N1, a saddle S1, and the unstable
focus -F1. Following the -F1 solution for increasing amplitude, the lid of the
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tongue is approached. As can be seen in the inset, the solution changes type
prior to reaching the top SN bifurcation curve. This is when the EE1- curve
is crossed. The unstable node collides with the coexisting saddle in an SN1-
bifurcation, leaving only the +N1 solution at higher amplitudes.

In a similar scan to the left of the codimension two point, the torus bifurca-
tion curve is also crossed. Fig. 5.11 clearly shows the e�ect of this. In addition
to the quasiperiodic attractor outside the tongue one such also exists inside
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Figure 5.10 One-dimensional bifurcation diagram at ! = 0:722. The scan
is to the left of the Takens Bogdanov point and illustrates the
emergence and destruction of a quasiperiodic attractor inside
the 1:1 tongue.
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Figure 5.11 One-dimensional bifurcation diagram at ! = 0:7217. The scan
is to the left of the Takens Bogdanov point where the curve
of global bifurcations no longer exists. Note the di�erence in
the lower saddle-node bifurcation compared to Fig. 5.9 and
Fig. 5.10.

the tongue. It encircles the unstable focus and exists simultaneously with the
saddle-node pair. The Brute Force scan inside the tongue also shows other
attractors to exist. Amongst these is seen a window of stable period-�ve
solutions. This is due to other smaller tongues overlapping the 1:1 tongue.
The BF method converges to these solutions, but they are not part of the
period-one entrainment scenario as such.
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The attractor disappears abruptly in a catastrophic bifurcation. In Fig. 5.10
this is seen to happen when the attractor collides with the saddle solution.
This is actually a collision with the unstable invariant manifold of the saddle,
an event discussed in more detail in Section 5.2.3. At an amplitude of ap-
proximately 0.9482, the -F1 solution becomes stable in the torus bifurcation.
Since the focus is now stable, the bifurcation closing the tongue must be an
SN1+. This clearly illustrates how the saddle-node bifurcation changes in
the Takens-Bogdanov point. The EE1 curve will be discussed later.

Moving even further toward the corner of the tongue the global bifurcation
disappears. Also a change in the lower SN1+ bifurcation is observed. In-
stead of the saddle-node pair appearing on the torus, forming an invariant
circle, their emergence does not cause the destruction of the quasiperiodic
attractor. In addition to this, there is no collision involving the quasiperi-
odic attractor, and thus the saddle-node pair coexists with this most of the
way to the torus bifurcation. This scenario is seen in Fig. 5.11. Hence, it
must be concluded that the global bifurcation curve has ended prior to this
point. The bifurcation curve cannot cross the T1 curve and must thus have
connected to the lower SN1+ curve in a point that shall be referred to as a
G-SN point.

In accordance with Fig. 5.11 and Fig. 5.10, the G-SN point marks the tran-
sition from the S,+N1 pair emerging on the invariant circle to it happening
o� the invariant circle.

5.2.3 The Global Bifurcations

To examine the global bifurcation scenario in greater detail once again con-
sider Fig. 5.10 and compare this with the various stages of manifold dynamics
illustrated in Fig. 5.12. The �rst frame is at an amplitude above the torus
bifurcation just below the uppermost SN1+ bifurcation. The unstable man-
ifolds of the saddle point end in the two +N1 points, one of which is close
to a collision with the saddle point. When the amplitude is reduced the
EE1+ curve is crossed and the latter node becomes an +F1 point (frame 2).
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Figure 5.12 Series of phase portraits illustrating the homoclinic and hetero-
clinic crossing of the manifolds. The plots show the phase dy-
namics corresponding to various points of decreasing amplitude
in Fig. 5.10.
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The focus becomes unstable through the T1 bifurcation and the quasiperi-
odic attractor emerges around it (frame 3). The unstable manifold now winds
around this attractor approaching it asymptotically.
Just after its birth, the quasiperiodic attractor is still rather smooth, as can
be seen in the third frame. As the forcing amplitude is reduced, the invari-
ant circle expands and becomes increasingly folded, developing '�ngers' that
stretch out. Since the unstable half-manifold encircles/bounds the attractor
it also takes on this shape (frames 4-7).
The stretching and folding taking place are characteristics of chaotic dynam-
ics. Hence, it is likely that we have a torus breakdown leading to a chaotic
attractor. This is in accordance with [Knudsen et al., 1991] who located such
an attractor in a similar scenario.

The tips of the folded invariant circle move closer and closer to the sta-
ble half-manifold of the saddle. By frame eight, the forcing amplitude has
been reduced to a point at which they touch. Frames seven and nine are
just prior to and after the homoclinic crossing of the unstable and stable
manifolds. The initial contact occurs simultaneously at several points along
the manifold. If one follows the iteration of points along the invariant mani-
fold, it becomes clear, that the contact points are connected by subsequent
iterations.

It is not completely evident from looking at the �gure, but the initial cross-
ing leads to an in�nite number of crossings in which the unstable manifold
becomes increasingly folded and stretched as it approaches the saddle along
the stable manifold (frame 9). This is a so-called homoclinic tangle. Any
contact with the invariant inset of a saddle corresponds to a contact with
the saddle point itself and leads to the destruction of a stable attractor. The
homoclinic tangle is thus associated with the destruction of an attractor in
a catastrophic bifurcation.

In the last three frames the strong stable manifold of the stable node has been
included. In addition to the stretching of the unstable manifold, the saddle
and stable node move closer to each other as the lower SN+ bifurcation is
approached. Between frames 9 and 10 a heteroclinic crossing of the unstable
manifold of the saddle and the strong stable manifold of the node takes place
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and a heteroclinic tangle is formed. Homo- and heteroclinic orbits are seen to
coexist. The tangles unfold one by one, as the amplitude is further decreased,
to �nally form an invariant circle.

In order to illustrate the unfolding/folding into a smooth invariant circle,
the examinations of the manifolds are moved to a slightly greater frequency.

At ! = 0:73, with increasing forcing amplitude from below the 1:1 tongue,
a quasiperiodic attractor is destroyed as the SN1+ bifurcation occurs. The
manifolds of the saddle-node pair form an invariant circle as the amplitude
is further increased. Fig. 5.13 illustrates how the quasiperiodic attractor just
outside the 1:1 tongue is practically coinciding with the manifolds of the
saddle and the stable node inside the tongue.

As A increases, the invariant circle loses smoothness and develops a cusp.
Fig. 5.14 illustrates how the invariant circle gradually changes, as it gets
closer and closer to the heteroclinic connection. The �gure includes unstable
manifolds of the saddle at di�erent values of A. Stable manifolds of the
saddle and the strong manifolds of the node are also presented, but only
those corresponding to the initial case where the deformation of the circle

Figure 5.13

A quasiperiodic attractor
is plotted along with the
manifolds of a
saddle-node pair existing
at a slightly greater
amplitude.
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has just begun. Naturally, the �xed points move in the state space as A is
varied. The unstable focus within the invariant circle moves closer to the rim
of it, while the saddle approaches it from beneath. The stable node moves
back and forth in the interval 0:4 < x < 0:6.

Figure 5.14

The invariant circle
deforms as it approaches
the heteroclinic
connection.
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The unstable manifold of the saddle eventually connects with the strong
manifold of the stable node and the heteroclinic tangle is created. The
tangle is presented in Fig. 5.15. No homoclinic tangle is present yet, only
an heteroclinic orbit exists. The �gure includes a zoom near the unstable
focus, illustrating that the manifolds tangle both near the stable node -
and near the saddle. Similar observations concerning the deformation of
the invariant circle have been made by [Pavlou and Kevrekidis, 1992] and
[Vance and Ross, 1989].

Vertical scans through the corner of 1:1 entrainment region located only one
heteroclinic and one homoclinic transition. The set of these connect to the
lower SN1+ curve in the G-SN point somewhere in the interval 0:7217 <
! < 0:722.

Fig. 5.16 illustrates the location of global homoclinic and heteroclinic connec-
tions in parameter space. In the �gure, shaded areas indicate where homo-
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Figure 5.15 The heteroclinic tangle between the unstable manifold of a sad-
dle and the strong manifold of a stable node.

and heteroclinic tangles, and thus orbits, exist. Near the connection point
the shading is darker indicating that they where found to coexist.

The homoclinic bifurcation set originates at the TB point and must stay
beneath this curve. In this work the point of termination of the hetero-
clinic transition curve has not been examined in detail, but it is assumed
to connect to the SN1- bifurcation curve. [Pavlou and Kevrekidis, 1992] and
[Vance and Ross, 1989] have traced the heteroclinic transition curve in a sim-
ilar scenario, and in both cases it is estimated to connect on the SN1- lid of
the tongue. The Ghe curve is able to cross the EE1- curve that lies 'beneath'
the SN1- bifurcation. Note that the heteroclinic curve could have terminated
on a EE1+ curve. Then the stable �xed point would changes from a node to
a focus, in e�ect destroying its strong invariant stable manifolds.

The 1:1 tongue has the same structure in both its corners. Therefore, it is
possible to �nd a similar global bifurcation scenario near the upper right
cusp of the tongue.
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Figure 5.16 Schematic illustration of the regions of homo- and heteroclinic
tangles. Gho indicates the homoclinic bifurcations curve and the
shaded area just below the part of the parameter plane in which
homoclinic orbits exist. Likewise Ghe indicates the heteroclinic
transition and the shaded area just above a region of hetero-
clinic orbits. The darker shaded area near the G-SN point is a
region of coexisting homo- and heteroclinic orbits. The labels
ON/OFF indicate where the SN1+ bifurcation occurs on or o�
the invariant circle.

5.2.4 The Equal-Eigenvalues Curves

Before ending the discussion of the 1:1 entrainment region, some �nal com-
ments are made regarding the associated period-one equal-eigenvalues curves.
There are many ways in which the observed structures can be described. One
way of viewing the EE1 transition in the 1:1 tongue, is as a necessary prereq-
uisite to the saddle-node bifurcations constituting the upper bound. Since
the period-one solution is a focus outside the tongue it must change to a
node before turning on the lid.
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It has already been established where on the ! axis the curves emerge and
how this can be explained. Due to the nature of the equal-eigenvalues tran-
sitions they are often found in association with torus bifurcations. Conse-
quently, they are also closely related to the various codimension two bifur-
cation points involving torus bifurcations. The fact that they run inside the
1:1 tongue is a consequence of the location of the Takens-Bogdanov points
through which the EE1 curves are observed to pass on either side.
In the TB points they change from EE1- to EE1+. This must be so since the
T1 bifurcation changes the unstable focus to a stable focus, or put another
way, because of the change in the type of saddle-node bifurcation above this
line.

5.2.5 Summary

� The structure of the 1:1 Arnol'd tongue was examined. It had a trian-
gular shape and its boundary consisted of SN bifurcations; the sides of
SN1+ bifurcations, and the lid primarily of SN1- bifurcations.

� Above the SN lid, the 1:1 entrainment region was bounded primarily by
curves of period-one torus bifurcations. These connected to the upper
SN curve in Takens-Bogdanov codimension-two points. These points
are also R1 resonance points of the T1 curve.

� At low amplitudes the period-one saddle and node solutions were born
on a smooth torus. As the tongue was traversed, these were observed
to move around the invariant circle in opposite directions. This caused
the ow on the invariant circle to change direction.

� A global bifurcation scenario was examined in the upper left corner
of the tongue. Based on these examinations a schematic bifurcation
diagram was presented. Homoclinic and heteroclinic orbits were found
to coexist near the connection point of the global bifurcation curve on
the side of the tongue.

� The period-one equal-eigenvalues curves associated with the 1:1 tongue
were discussed. They were seen to change type when passing through
the TB points tangent to the SN curve.
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5.3 The 2:1 and 2:3 Tongues

This section contains a discussion of the period two entrainment regions. The
structure of these are exempli�ed by calculations of the bifurcation diagrams
of the 2:1 and 2:3 tongues. The focus will mainly be on the 2:1 tongue where
the numerical analysis has been carried out in detail.
In addition to the usual tongue boundaries consisting of saddle-node bifur-
cations, the upper bound of the period-two tongues consist of closed loops
of period-doubling bifurcation curves. Phase-locked period-two solutions are
thus primarily obtained either through the transition from quasiperiodicity
via an SN2 bifurcation or by a period-doubling of the high amplitude 1:1
locked solutions.

Like the 1:q tongues, the 2:q tongues have a period-one equal-eigenvalues
horn associated with them. These are included in Fig. 5.1. This �gure does,
however, only show the tip of the iceberg. The bifurcation diagram in Fig. 5.17
shows the 2:1 tongue in detail which includes equal-eigenvalues transition
curves of period-two solutions, period-two torus bifurcation curves, a nested
loop of period-doubling loops leading to chaos, and various codimension two
connections of bifurcation curves.

5.3.1 The Tongue Boundary

At low forcing amplitudes, the 2:q tongues are qualitatively similar to the
1:q tongues. The tongue boundary, which consists of SN2+ bifurcations. It
originates at a forcing frequency equal to the p/q ratio and becomes wider
as the forcing amplitude is increased. Like the 1:1 tongue there is also a
transition from saddle-stable-node to saddle-unstable-node bifurcations at
a Takens-Bogdanov codimension two point. Unlike the period-one tongues
this does not happen on the upper bound of the entrainment region but on
the sides. The TB point is located at relatively high values of the forcing
amplitude where the scenario becomes much di�erent from the one observed
in the 1:1 tongue. At amplitudes slightly higher than the TB point, the SN2
curves connect to the period-doubling loop which then acts as the tongue
boundary.
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In Section 5.3.4 is considered how the connections of codimension one curves
can take place relative to each other. We believe at least three di�erent
scenarios to be possible, two of which have been con�rmed through our nu-
merical computations. A one parameter bifurcation diagram, corresponding
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Figure 5.17 The 2:1 tongue and the main bifurcation and equal-eigenvalues
curves associated with it.

to a horizontal cut through the tongue, is shown in Fig. 5.18. It is seen to be
somewhat similar to Fig. 5.3 in the sense that stable solutions appear simul-
taneously with the disappearance of the quasiperiodic attractor. Fig. 5.19
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con�rms the similarities in the birth of the saddle and node solutions and
the change in rotational direction as the tongue is crossed. The di�erence in
pairing on the two sides of the tongue is a necessary result of their occur-
rence on the same invariant circle. Here it is mainly the +N2 solutions that
move around the invariant circle, and their intersection in Fig. 5.18 marks
the frequency at which they lie at the same x-coordinate but on opposite
sides of the circle. This is at approximately ! = 2:13 and is seen in the third
frame of Fig. 5.19.
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Figure 5.18 One parameter bifurcation diagram showing the co-existing
period-one and two solutions inside and just outside the 1:1
tongue at A=0.5. The quasiperiodic attractor is shown by dots
obtained by Brute Force scan.

Once again the unstable period-one solution can be traced through the
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Figure 5.19 Stroboscopic phase portraits through the 2:1 tongue at A=0.5.
It is seen how the quasiperiodic attractor and the invariant mani-
folds form a similar invariant circle. The third frame corresponds
to the crossing of the +N2 solutions in Fig. 5.18.
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tongue and is seen to undergo a change in solution type, as the EE1- curve
is crossed. Unlike the 1:1 scenario this curve now lies on the outside of the
Arnol'd tongue, hence, only a -N1 solution is found inside.

5.3.2 High Amplitude Bifurcation Structure

At amplitudes above 0.8 the 2:1 tongue displays quite complex behaviour.
Even though it is not obvious from Fig. 5.17, the two sides of the tongue
are in most respects qualitatively similar. On the right side, the bifurcation
curves lie very close and are hard to distinguish. Details of the diagram are
thus illustrated near the left boundary.

A magni�cation of the lower left part of the PD1,2 loop reveals important
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Figure 5.20 Magni�cation of the lower left part of the Period-doubling loop.
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details of the bifurcation diagram. In Fig. 5.20 this is seen to be an area
where many of the bifurcation curves come together in various types of codi-
mension two points. The general nature of these points were discussed in
Chapter 2. Postponing a discussion of the equal-eigenvalues curves for later,
the solutions in the vicinity of the codimension two points will now be ex-
amined.

The Takens-Bogdanov Point

The T2 curve extends from the T-PD/R2 point and connects to the curve
of saddle-node bifurcations in a Takens-Bogdanov point. The diagram in
Fig. 5.21 shows the locations and bifurcations of the period-one and two
solutions to the right of this point. The solutions are traced all the way to
the top of the PD1,2 loop and so, in order to see the details relevant in the
context of Fig. 5.20, a magni�cation of the bottom has been included.
Starting at the top of the loop, the stable node loses stability in the PD1,2+
bifurcation and continues as a saddle solution through the PD loop. The
stable period-two node born in the bifurcation becomes a stable focus in a
very short interval, returns to a stable node, and then becomes a saddle in a
PD2,4+ bifurcation. No solutions of a period higher than two are plotted, as
it would crowd the bifurcation diagram. The fates of the S1 and S2 solutions
are seen in the magni�cation.
In the bottom frame of Fig. 5.21 the solutions can be followed as they cross
the bifurcation curves displayed in Fig. 5.20. The S2 solution continues down
to an amplitude of approximately 0.846. Here it once again becomes a stable
node as it crosses the bottom of the PD2,4 bifurcation loop (indicated with an
arrow in the �gure). Before reaching the SN2+ tongue boundary, the solution
must pass through the narrow space between two EE2+ loops inside which
it is a stable focus. The outermost EE2+ loop lies very close to the SN2+
curve. This causes the emerging stable node to exist only a very short period
of time before it collides with a period-two saddle.



84 Results

0.85

0.9

0.95

1

1.05

1.1

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

A

x

1D continuation of solutions up through the 2:1 tounge at constant frequency
Μ=(1,−1,0,1,Α,1.7,0.5)

+N2 +N2

+N1

S2 S2

+F2+F2

PD2,4+

S1

0.844

0.846

0.848

0.85

0.852

0.854

0.856

0.858

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

A

x

Zoom on lower saddle-node and period doubling bifurcations
Μ=(1,−1,0,1,Α,1.7,0.5)

S2 S2-N1

S1

+N2
+N2+F2+F2

PD2,4+ PD2,4+

S2

Figure 5.21 Co-existing period-one and two solutions in the 2:1 tongue at
! = 1:7 - to the right of the Takens-Bogdanov point. The
magni�cation illustrates the PD1,2+ and SN2+ bifurcations.
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Since the +N2 solution is di�cult to see in the small interval, it has been
marked by arrows in addition to the label. The S2 solution with which it
collides is born in the supercritical period-doubling of the S1 curve at an
amplitude just below 0.858. This is at the bottom of the large PD1,2 loop.

To the left of the TB point a di�erent set of bifurcations is encountered. The
changes occur only at forcing amplitudes in the vicinity of the TB point,
and can be seen in Fig. 5.22. Tracing the solutions from the bottom up,
the lower saddle-node bifurcation is (just barely) seen to spawn an unstable
node and a saddle - i.e. it is now an SN2- bifurcation. The multipliers of
the node coincide and subsequently become complex conjugates through the
EE2- transition. Increasing the amplitude brings this unstable focus through
the second new bifurcation, namely the T2 torus bifurcation. This occurs at
A � 0:845. Above this point the scenario is qualitatively the same as the one
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Figure 5.22 Co-existing period-one and two solutions in the 2:1 tongue at
! = 1:64 - to the left of the Takens-Bogdanov point.
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at ! = 0:7.

The Degenerate Period-doubling and T-PD Connection Points

The SN2- curve connects to the bottom of the PD1,2 loop in an SN-PD (or
DPD) point. At the left side of the PD1,2 loop is an important point marked
T-PD/R2. Here two torus bifurcation curves connect to the loop of period-
doubling bifurcations and furthermore, it is a R2 point of the T1 curve with
double multipliers in -1. It is necessarily so because of the simultaneous torus
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Figure 5.23 Co-existing period-one and two solutions in the 2:1 tongue at
! = 1:54 - to the left of the degenerate period-doubling point
and the cascade of period-doubling loops. The lower period-
doubling is now subcritical.
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bifurcation and period-doubling, which cause the multipliers of the period-
one solution to be both complex conjugate and pass through -1 on the unit
circle.
The period-one equal-eigenvalues curve is noted to change type while passing
through it tangentially to the loop.
In Chapter 2 was illustrated how the period-doubling changes between super-
and subcritical at the SN-PD and T-PD connection points. In accordance
with this, the piece of the loop running between them is seen, in Fig. 5.20, to
consists of subcritical period-doublings. This piece is now the lower bound-
ary of the 2:1 entrainment region instead of the SN2- curve.
A full vertical scan through the loop at ! = 0:54 is presented in Fig. 5.23. It
passes through the 2:1 tongue between the T-PD and the DPD points. Thus,
a period-one solution crosses both a subcritical and a supercritical period-
doubling bifurcation point. The period-two solution no longer experiences a
saddle-node bifurcation and is observed to undergo both an EE2+ and an
EE2- transition. Between these transitions a T2 bifurcation occurs.

5.3.3 The Equal-Eigenvalues Curves

The EE1 Curves

The observations made with respect to the period-one equal-eigenvalues
curves in the 1:1 tongue are in many ways similar to those made when ex-
amining the 2:1 tongue. This is not surprising, as the same 'rules' apply to
the EE1 transitions in both cases.
There are two di�erences though; (i) at the 2:1 tongue the EE1 curves run
through a T-PD point and not a TB point, and (ii) the EE1 curves lie out-
side the resonance tongue.
Both observations can be explained by the way in which the T1 curve con-
nects to the PD1,2 loop. In Section 5.3.4 a scenario, in which the T1 curve
crosses the SN2 curve and connects to the PD1,2 loop below the SN-PD
point, will be discussed. Such a scenario would cause the EE1 curve to lie
inside the tongue at least some of the way.
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The EE2 Loops

Three closed loops of period-two equal-eigenvalues points have been observed
in the 2:1 tongue and can be seen in Fig. 5.17. Two of these are located at
the left side of the tongue, one inside the other. The outermost of these and
the loop at the right side of the tongue are associated with torus bifurcations
of period two solutions.
Inspection of Fig. 5.20 reveals how the outer loop runs through the T-PD
and the TB codimension two points and changes type in both of these.
The necessity of its presence and the change in type can be understood by
arguments similar to those regarding the EE1 curves. However, a slightly
di�erent argument must be given for the presence of the innermost loop.
Unlike the right side of the tongue, the left side has the above-mentioned
cascade of period-doubling loops. These PD loops are enclosed by the EE2
rings. The extra EE2 curve is needed due to the PD2,4 loop. If the node-to-
focus change caused by the outer EE2 transition is not 'reversed' the period
two solution cannot period-double.

5.3.4 Possible Scenarios of the 2:q Tongues

Through investigations of the 2:1 tongue, under variation of both �0 and �,
certain features are consistently found: (i) At lower amplitudes the SN bi-
furcations of the tongue are SN2+ curves. (ii) At high amplitudes the upper
part of the PD loop is supercritical, i.e. PD1,2+. (iii) The SN2 curves and
the T1 curve connect to the PD loop in codimension two points.
Subject to these constraints, and the wish for the simplest possible bifurca-
tion structure, three possible scenarios are found theoretically possible for
the 2:q tongues. On each side of the tongue it is of importance whether the
T-PD connection points are located below or above the DPD points. The
possible tongue scenarios can either be symmetric or asymmetric depending
on the loci of these codimension two connection points. A symmetric tongue
has the same connection scenario on both sides while the asymmetric does
not.
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Figure 5.24 Bifurcation scenario 1. A symmetric tongue structure in which
the DPD connections lie below the T-PD on both sides of the
tongue. The scenario corresponds to the observed structure of
the 2:1 Arnol'd tongue at M = (1;�1; 0; 1; A; !; 0:5).

Scenario 1

Fig. 5.24 is a schematic representation of a symmetric scenario. The T-PD
point is located above the DPD point on both sides of the tongue.
In accordance with the considerations made in Chapter 2, the SN curve be-
low the PD+ loop is of the opposite sign, namely SN2-. As the lower part
of the 2:1 tongue consists of SN2+ bifurcations, there must be a CD2 point
marking a change from SN- to SN+ somewhere along the side. Furthermore,
the -N2 solutions extend from the SN2- and the PD1,2- curve must change
stability to +N2 solutions for consistence.
A simple way to solve the discrepancies is if a T2 curve extends from a TB
point on the SN curve towards the PD loop, and connects in the already
existing T-PD point. The codimension of the T-PD point is una�ected as
the T1 and the T2 bifurcations involve two di�erent solutions. Any other
connection of the T2 to the PD� curve would create a \new" codimension
two point and destroy the organization of the �-shifts and thus change the
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global scenario of the tongue. This could naturally be avoided if additional
bifurcation curves where present but that would alter the simplicity of the
tongue structure.

In Fig. 5.25 schematic bifurcation diagrams along the lines A1, B1 and C1
are presented. These are included, to help visualize the solutions passing
through the bifurcation structure, but also to show that the organization
of the tongue is consistent. In the �gures EE transitions are included for
completeness, but for simplicity they are not included in Fig. 5.24.
The bifurcation structure has been found in the present study, and also
in many other systems of forced oscillators e.g. [Vance and Ross, 1989] and
[Pavlou and Kevrekidis, 1992].
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The scan at A1 passes through the period-doubling loop between the T-PD
and the DPD points. The period-1 solution experiences both a sub- and a
supercritical PD, and the period-2 solution passes through a T2 bifurcation
for the structure to be consistent.
B1 is between the DPD and the TB points. Both PD bifurcations are now
supercritical and the period-two solution turns in an SN2- bifurcation.
C1 passes through the 2:1 tongue to the right of the TB point. The SN
bifurcation has changed to an SN2+ and the T2 bifurcation no longer exists.

Scenario 2

The second consistent bifurcation scenario of the 2:1 tongue is also symmetric
but with DPD points connecting above the T-PD points. The scenario is
depicted in Fig. 5.26. Note that the overall characteristics of the tongue are
unchanged from the �rst scenario. Supercritical bifurcations still dominate
the PD loop, and the lower SN bifurcations are SN+ curves.
The structure does not involve additional bifurcation curves. In fact, the

PD1,2+

SN2+

DPD

PD1,2+

PD1,2- DPD

T-PDT-PD

T1

T1
PD1,2-

A2 B2 C2

Figure 5.26 Bifurcation scenario 2 - a symmetric tongue structure in which
the DPD connections occurs above the T-PD points on the
period-doubling loop.
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presence of a T2 bifurcation running between the PD loop and the SN curve
would only destroy the already consistent organization of the tongue.

In Fig. 5.27 scans at A2 and B2 are illustrated. The scan at C2 passes through
a bifurcation scenario similar to that at C1 in Fig. 5.25.
Scanning with increasing amplitude, a period-1 solution in �gure A2 experi-
ences a torus bifurcation and then passes through two supercritical period-
doubling bifurcations. Moving from the left side of the DPD point to the
right, the scan at B2 passes through both a sub- and a supercritical bifur-
cations. Period-2 solutions extend down from these period-doubling bifurca-
tions and terminate at the SN2+ bifurcation curve.

In the present analysis this structure has not been observed, nor has it ap-
peared in any work known to us.
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Figure 5.27 Illustrations of scans through Fig. 5.26 at A2 and B2.

Scenario 3

The last scenario considered to be possible is one in which the tongue is
asymmetric: On one side the DPD lies below the T-PD point and on the
other it lies above. Corresponding to Fig. 5.24, a T2 bifurcation line must
run from a TB point on the SN curve to the T-PD point on the PD loop,
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Figure 5.28 Bifurcation scenario 3. The bifurcation structure of the tongue is
asymmetrical as the DPD connection lies above the T-PD point
in the left side and beneath it in the right side. The lines passing
through the tongue correspond to scans presented in relation to
Fig. 5.24 and Fig. 5.26: A3=A2, B3=B2, C3=C2=C1, D3=B1,
E3=A1, and F3=A3=A2.

when the DPD is below the T-PD point. Similar to Fig. 5.26, no bifurcations
other than T1 and SN2+ are involved when the DPD lies above the T-PD.
The scenario is portrayed in Fig. 5.28 and the scans through the structure
correspond to the ones presented in Fig. 5.25 and Fig. 5.27. The asymmetric
structure is observed in the present system. For the parameter values M =
(0:05;�1; 0; 1; A; !; 0:5) the 2:1 tongue is constructed in great detail and
shown in Fig. 5.29. A zoom on the upper right connections of the saddle and
the torus to the period-doubling loop is also included.

The change between scenarios 1 and 2 was caused by variation of the work-
point with the strength of the coupling held constant. If this transition
is to occur smoothly a singular point, at which the T-PD and the DPD
points coincide, will exist in the limit between the scenarios. Such a point
can be considered a codimension three point in which a T2 bifurcation is
born/destroyed.
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Figure 5.29 The 2:1 tongue. Note that the workpoint, relative to the point
at which Fig. 3.3 was obtained, has moved closer to the Hopf
bifurcation of the autonomous system. The overall structure cor-
responds to the 3rd scenario presented in Fig. 5.28 with the DPD
point below the T-PD point on the left side of the tongue and
above on the right side.
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5.3.5 The 2:3 Tongue

The lesser 2:q tongues are of a structure similar to that of the 2:1 tongue.
To exemplify this, the 2:3 tongue is presented in Fig. 5.30.

In addition to the outer bounding curves of the 2:3 resonance region, the
�gure also includes a zoom on the lower left part of the PD1,2 loop. Once
again the T1 curve is observed to connect to the PD curve in a T-PD point.
None of the codimension two points are marked in the �gure as they are not
determined with high accuracy. The structure of the 2:3 tongue is, however,
found to correspond to the �rst scenario presented in Section 5.3.4. Inside
the PD1,2 loop a period-doubling cascade leading to chaos has been located.
It is interesting to note that the lower bound of the loops is also at an am-
plitude of approximately one, which corresponds to the forcing just touching
the Hopf bifurcation of the unforced system. The loops are densely \packed"
and this area of the parameter plane is rich on overlap of di�erent entrain-
ment regions. The 4:5 resonance tongue has been included, in the zoom of
the 2:3 tongue, illustrating such an overlap. Note that the two tongues are
of similar shape, but as is shown later, connect di�erently on the T1 curve.
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Figure 5.30 The 2:3 tongue. Notice the period-doubling loops inside the
PD1,2 loop. In the magni�cation on the period-doubling loops
the 4:5 tongue and the T1 bifurcation curve are included
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The complex bifurcation structure in the neighbourhood of the 2:3 tongue is
illustrated by a Brute Force scan passing up through the tongue at ! = 0:64
in an amplitude interval from 0.5 to 1.1. In the diagram the 2:3 synchro-
nization is not reached through a PD1,2 bifurcation. A series of catastrophic
bifurcations, dominated by saddle node bifurcations, pass through di�erent
modes of synchronization and chaos. The 2:3 mode is �nally reached through
a backwards period-doubling cascade bringing the system out of the chaotic
regions.

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

A

x

Μ=(1,−1,0,1,Α,0.64,0.5)

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

A

y

Μ=(1,−1,0,1,Α,0.64,0.5)

Figure 5.31 A Brute Force study of the 2:3 resonance region. The forcing
amplitude is varied from 0.9 up to 1.1 at constant frequency.

An analysis of the Lyapunov exponents of the corresponding solutions reveals
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that chaos is �rst introduced as an 5:q entrainment region ends in a saddle
node bifurcation. In Fig. 5.32 the Lyapunov exponents are presented for the
interval leading out of this synchronized state into chaos. The �rst positive
Lyapunov exponent has been found at an amplitude just below 1.
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Figure 5.32 A study of the Lyapunov exponents for the corresponding solu-
tions observed in the Brute Force examinations in Fig. 5.31
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5.3.6 Summary

� The numerically constructed 2:1 and 2:3 tongues were presented. At
lower amplitudes the Arnol'd tongues were cone shaped regions bounded
by SN2 bifurcations. The SN2 curves connected to loops of PD1,2 bi-
furcations at higher amplitudes. Both of the period-two entrainment
regions were closed by these loops.

� Codimension two points, related to the 2:1 tongue, were determined
with high accuracy and the period-two solutions examined in a neigh-
bourhood of these. Two resonant Hopf bifurcation points were associ-
ated with each of the entrainment regions. These coincided with T-PD
points on both sides of the tongues.

� Three scenarios, in which the connections of codimension one curves
di�ered, were postulated as possible in the 2:q tongues. Two of the sce-
narios have been found in the present study. If the transitions between
the scenarios are to occur smoothly, a second order resonance point of
codimension three must occur as a degenerate period-doubling point
coincides with both a period-one and two torus bifurcation.

� Chaos was observed inside a cascade of PD loops in both tongues. This
was determined by means of the Brute Force method and calculation
of Lyapunov exponents. The analysis of a route to chaos inside the 2:3
tongue was presented.

� In addition to period-one equal-eigenvalues curves, which formed a
tongue-like structure on the outside of the 2:1 resonance region, three
loops of period-two equal-eigenvalues curves were found inside the
boundaries of the region. Two of these were associated with torus bi-
furcations of period two solutions and the third was a necessary con-
sequence of a PD2,4 loop located on the left side of the tongue.



100 Results

5.4 The 3:1 and 3:2 Tongues

Originating at ! = 3 is the third strong resonance region, the 3:1 tongue.
This is traced and examined as a representative of the qualitatively similar
3:q entrainment regions. The 3:2 tongue is also discussed albeit in less de-
tail. Fig. 5.33 shows the 3:1 tongue relative to the T1 bifurcation line which
extends from the rightmost T-PD point of the 2:1 tongue. It is seen to be
di�erent from the previously considered 1:q and 2:q regions both in shape
and relation to the T1 line. The 3:1 region is bounded solely by SN3+ bi-
furcation curves and has no EE1 curves associated with it. As expected, the
tongue widens as the amplitude is increased but as the T1 line is approached,
it gradually narrows in and closes on itself.
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Figure 5.33 The 3:1 tongue.
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The uppermost part of the tongue will be the focus of attention in the fol-
lowing as this is where the strong resonant, R3, Hopf bifurcation is found
along with period-three equal-eigenvalues transitions and global bifurcation
curves.

5.4.1 The Top of the 3:1 Tongue

Details of the closing of the 3:1 tongue are presented in Fig. 5.34. The �rst
frame reveals how the tongue closes smoothly in a loop above the curve of
period-one torus bifurcations. The top encloses a single R3 resonance point
which, unlike the scenarios found in the 1:q and 2:q tongues, does not coin-
cide with the tongue boundary.
In the overlap-region period-three saddles and nodes coexist with stable
period-one focus solutions. Below the T1 curve, and the associated reso-
nance point, lies a closed loop of EE3+ transition points. Contrary to the
EE2 loops, this closed curve does not pass through any codimension two
points, and does not change type correspondingly.
In addition to the resonance point, seven locations have been marked by
bullets in the second sub�gure of Fig. 5.34. These mark parameter values at
which the solutions will be examined in depth. Stroboscopic phase portraits
reveal the presence of homoclinic bifurcations in this tongue also. We have
made observations regarding the pairing of saddle and node solutions which
will be discussed and explained on the basis of the global bifurcations in the
tongue.
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Figure 5.34 Enlargements of the top of the 3:1 tongue. The top sub�g-
ure shows the closed loop of EE3+ points relative to the T1
curve and the resonant Hopf bifurcation. A further magni�ca-
tion corresponding to the dashed box is presented in the bottom
�gure. The numbered bullets mark locations at which strobo-
scopic phase portraits are analyzed.
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Saddle-Node Pairing and the R3 Resonance Point.

Fig. 5.35 through Fig. 5.37 are one-dimensional bifurcation diagrams across
the tongue. The labels (1) - (4) and (R3), in the upper left corner, correspond
to the numbered bullets in Fig. 5.34, hence, most of the diagrams are scans
along grid-lines in the �gure. To allow direct comparison, the plots are all
shown in the same !-x range.
Beginning at (1), the solutions in Fig. 5.35 are seen to be born in saddle-
stable-node pairs on the left side of the tongue. This scan passes through
the EE3+ loop. In agreement with this, the stable nodes become focus solu-
tions in the range of frequencies between 3.95 and 3.962 approximately. At
the other side of the tongue the solutions collide in a di�erent con�guration
of saddle and node pairs, the solutions forming a single closed curve in the
bifurcation diagram. Fig. 5.35, which is a scan at a higher amplitude, is qual-
itatively similar. The inset is a magni�cation of the details of the crossings.

Further increase of the amplitude causes a change in the bifurcation struc-
ture. At amplitudes corresponding to the points (3) and (4) above the T1
bifurcation curve, the solutions no longer form a single closed curve, but
three separate loops. This is seen in Fig. 5.36. In the ! � x projection there
is no longer a crossing of the saddle curves, but more importantly the S3,+N3
pairing is now the same on both sides of the tongue. The change is abrupt
and it turns out to be the location of the resonance point that marks the
transition amplitude.

Fig. 5.37 is a scan through the R3 resonance. From the �gure and the inset,
the saddle solutions are seen to coincide and e�ectively become a period-one
solution in this point. A plot involving the y-variable reveals the same cross-
ing. This ensures that it is not merely an artifact of the projection as it is
when the saddle solutions cross in the other bifurcation diagrams.
Based on the de�nition of the resonant Hopf bifurcation, and associated com-
ments given in Chapter 2, this coalescence of saddles could have been anti-
cipated as the R3 point is located inside the entrainment region and not at
a connection point of codimension one curves.
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Figure 5.35 One-parameter bifurcation diagrams illustrating the scenario
where the saddle-node pairing changes as the tongue is crossed.
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Figure 5.36 One-parameter bifurcation diagrams illustrating the scenario
where the saddle-node pairing does not change as the tongue is
crossed.
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Besides the apparent symmetry, there is nothing in these observations which
explains why the resonance point causes a change in saddle-node pairing.
The answer to this question is found when considering the global bifurcations
inside the entrainment region.
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Figure 5.37 One-parameter bifurcation diagram through the R3 resonance
point. At this point the saddle curves coincide and e�ectively
become a period one solution. The amplitude at which this scan
is obtained marks the transition between the two di�erent types
of saddle-node pairing observed in Fig. 5.35 and Fig. 5.36.

Global Bifurcations

Analyses of the phase plane dynamics at points (1) through (7) have been
carried out by determination of points on the invariant manifolds of the rel-
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evant �xed points. These are presented in the following and establish the
presence of homoclinic bifurcations qualitatively similar to the ones in the
lower order resonance tongues.

The �rst four phase portraits in Fig. 5.38 to Fig. 5.41 paint a picture of the
dynamics around the solutions seen in the previous bifurcation diagrams. At
point (1) the solutions lie on a deformed invariant circle with cusps at the
stable solutions. Enclosed by this is the unstable period-one focus. As the
amplitude is increased, the saddle points approaches each other and the -F1
solution. Point (2) lies outside the EE3+ loop and thus the +F3 solutions
of Fig. 5.38 have been replaced by +N3 solutions in Fig. 5.39. The strong
invariant manifolds of the nodes are included in the �gures. The lack of
smoothness and cusp formation on the invariant circle indicate a previous
heteroclinic tangle of the outset of the saddles and strong stable inset of the
nodes. This is a scenario analogue to the one observed in the 1:1 tongue.
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Figure 5.38

Stroboscopic phase
portrait at point (1) in
Fig. 5.34. The invariant
circle is not smooth and
has developed cusps at
the stable period-three
solutions. This is a result
of a heteroclinic tangle
occurring at lower
amplitudes.
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Figure 5.39

Stroboscopic phase
portrait at point (2) in
Fig. 5.34. The manifolds
still form a closed curve,
but the stable
period-three solutions are
now nodes.

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74

y

x

Stroboscopic phase portrait in the 3:1 tongue
Μ=(1,−1,0,1,1.323,3.96,0.5)

+N3

+N3

+N3

-F1 S3
S3

S3

2O



5.4 The 3:1 and 3:2 Tongues 109

Figure 5.40

Stroboscopic phase
portrait at point (3) in
Fig. 5.34. As a result of a
homoclinic bifurcation,
the manifolds no longer
form an invariant circle.
The central period-one
solution has become
stable through a torus
bifurcation.
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Figure 5.41

Stroboscopic phase
portrait at point (4) in
Fig. 5.34. This scenario is
qualitatively similar to
that of Fig. 5.40 but
closer to the tongue
boundary, consequently
the saddle solutions have
moved towards the nodes.
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Somewhere between the points (2) and (3) a homoclinic bifurcation occurs.
Above the T1 line the central period-one focus has become stable, and the
invariant circle has been destroyed. In Fig. 5.40 the saddle solutions lie close
to the +F1 point; this is a reection of their collapse onto this solution in the
nearby R3 point. Increasing the amplitude towards (4) causes the saddles to
move further away from the focus and closer to the nodes. Fig. 5.41 gives
a clearer picture of the dynamics which are qualitatively similar at (3). A
more accurate location of the global bifurcation is found at a frequency of
3.95. At this frequency the phase portraits have been obtained at amplitudes
corresponding to the points (5) - (7), and are portrayed in Fig. 5.42, Fig. 5.43,
and Fig. 5.44. The homoclinic bifurcation takes place between (5) and (6)
i.e. at an amplitude in the range from 1.3228 to 1.322705. In Fig. 5.42 a
quasiperiodic attractor coexists with the -F1, S3 and +N3 solutions, the
unstable manifolds of the saddle solutions winding around it. Decreasing the
amplitude causes the stable inset of the saddles to move closer to the outset
and �nally the homoclinic crossing occurs. The quasiperiodic attractor is
destroyed and replaced by a closed invariant circle on which the period-three
solutions lie. In Fig. 5.43 it is di�cult to see this closure of the manifolds,
but the destruction of the quasiperiodic attractor is clearly indicated by the
stable manifolds of the saddles, which now spiral out from the enclosed focus.
Fig. 5.44, which is a phase portrait obtained at point (7), has been included
to give a better illustration of the distorted invariant circle formed in this
process.
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Figure 5.42

Stroboscopic phase
portrait at point (5) in
Fig. 5.34. The scenario is
close to (above) a
homoclinic crossing. A
quasiperiodic attractor
encloses the unstable
period-one focus.
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Figure 5.43

Stroboscopic phase
portrait at point (6) in
Fig. 5.34. Decreasing the
amplitude has destroyed
the quasiperiodic
attractor of Fig. 5.42. The
manifolds form a highly
distorted invariant circle.
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Figure 5.44

Stroboscopic phase
portrait at point (7) in
Fig. 5.34. The portrait is
a clearer illustration of
the manifold connections
of Fig. 5.43.
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Curves of global bifurcations are not followed in this thesis. The results
presented in the previous are, however, in good agreement with observations
made by [Pavlou and Kevrekidis, 1992] and [Vance and Ross, 1989] who have
traced such bifurcations. The curves are found to connect to the resonant
Hopf bifurcation point and the sides of the tongue in a fashion somewhat
similar to the scenario in the 1:1 and 2:1 tongues. Fig. 5.45 is a schematic
drawing of the bifurcation sets at the tongue top. This is not only in accord
with the phase portraits we have obtained but also with the bifurcation di-
agrams of Fig. 5.35, Fig. 5.36, and Fig. 5.37.
The numbered bullets indicate some of the phase portraits, (1) through (7),
that are representative of the di�erent regions.

Returning now to the issue of saddle-node pairing, three scans through the
schematic tongue are considered. These are labeled A, B, and C in Fig. 5.45.
Below the G-SN connection the saddle-node solutions are born on an invari-
ant circle. At low amplitudes this is smooth like it was observed in the 1:1
and 2:1 tongues. Above the connection point the manifolds of the emerging
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Figure 5.45 Schematic illustration of 3:1 homo- and heteroclinic transitions.

solutions do not form an invariant circle. As in Fig. 5.16 this is indicated by
'ON' and 'OFF' in the �gure.

A bifurcation diagram obtained through a region corresponding to A will be
of the same type as found in Fig. 5.35. The solutions appear in pairs on an
invariant circle, move around it, and collide with the solutions of a neigh-
bouring pair at the other side of the tongue.
At C the manifolds do not form an invariant circle on either side of the
tongue, and thus the stable manifolds of the saddle points prevent any con-
tact with the other pairs. When the tongue is crossed here, it is only possible
for the solutions to collide with their initial partner. This results in a dia-
gram as seen in Fig. 5.36.
Despite the fact that the solutions do not lie on an invariant circle at either
tongue boundary, traversing the tongue at an amplitude between the G-SN
and R3 points (e.g. at B) yields a closed loop bifurcation diagram similar to
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the one obtained at A. What might appear as an inconsistency is explained
by the crossing of the global bifurcation curve. Even if there is only one
possibility of saddle-node pairing on both sides, the homoclinic tangle pro-
vides the breaking of the pairs necessary for the explanation of the observed
bifurcation diagrams of Fig. 5.35. This can be visualized by comparison of
Fig. 5.42 and Fig. 5.44.
It should be noted that it is su�cient to cross only one of the Ghe lines to
achieve the change in pairing.

Consequently, R3 is the point where the one-dimensional bifurcation dia-
grams are cut because it marks the upper bound on the global bifurcation
curves. Above this the saddle-node pairs are always separated by the stable
manifolds of the saddle solutions.

The lines representing heteroclinic transitions have been connected to the
EE3+ loop, as this is the scenario observed by [Pavlou and Kevrekidis, 1992]
and [Vance and Ross, 1989]. One could, however, imagine a single Ghe curve
running between the G-SN points below the EE3+ loop. This would not
violate any of the principal aspects of the scenario.
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5.4.2 The 3:2 Tongue

Between the 1:1 and 2:1 tongues lies the 3:2 tongue. The top of the tongue
has another shape than that of the 3:1 region, but it also closes smoothly
around an R3 resonance point on the T1 curve. Fig. 5.46 shows the tongue
along with this curve. It extends above the curve of Hopf bifurcations but
unlike the 3:1 tongue, it has a beak-like structure pointing towards the 1:1
tongue. It is near the tip of this protrusion the resonance point is found.
Inside the entrainment region, the T1 curve ends in an R2 point where it
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Figure 5.46 The 3:2 tongue closes smoothly over the T1 curve correspond-
ing to the behavior of the 3:1 tongue. The associated R3 point
lies just inside the tongue and not on the border. The T1 curve
terminates in an R2/T-PD point. The tongue encloses a super-
critical period-doubling loop marked PD3,6+.
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connects to the 2:1 tongue. A signi�cant overlap of the two tongues is thus
observed in this area, which can also be seen in the excitation diagram of
Fig. 5.1. An enlargement of the bifurcation set in the overlap region is pre-
sented in Fig. 5.47.
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Figure 5.47 A zoom of the 3:2 tongue as it closes over the T1 curve. Also
included are bifurcation curves that de�ne the 2:1 entrainment
regions.

Such overlap of entrainment tongues cause additional solutions to coexist
at points in the region. In this case there is even an overlap of many loops
of period-doubling bifurcations and torus bifurcation lines, so one can ex-
pect to observe some very complex behaviour. Most likely, this includes the
simultaneous existence of periodic, chaotic, and quasiperiodic attractors.
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The enlargement reveals a loop of period-doubling bifurcations inside the 3:2
tongue. As was the case in the period-two entrainment regions, the bifurca-
tion is the �rst in a cascade leading to chaos.

In this work such period-doubling bifurcations have not been located in the
3:1 tongue, and we are unaware of any other examinations which have made
similar observations in a period-three entrainment region.
The period-doubling bifurcations of higher period have not been traced, but
their presence and the route to chaos is con�rmed by the Brute-Force dia-
grams and Lyapunov exponents shown in Fig. 5.48 and Fig. 5.49 respectively.

In the Brute Force scan both the x and and the y variables are depicted.
The scan is performed using decreasing forcing frequency, and initially the
system is in a 3:1 synchronized state. The Lyapunov exponents are calcu-
lated for the solutions observed in the Brute Force diagram and presented
in Fig. 5.49. The scan across the 3:2 tongue is performed at the amplitude
at which the R3 point is located.
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R3 indicates the position of the resonance point located at
(x; y; !;A)jR3 = (0:753976; 0:0573065; 1:46566; 0:82228).
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Figure 5.49 Lyapunov exponents calculated for the solutions observed in the
Brute Force diagram Fig. 5.48. The vertical marker at approxi-
mately 1.46566 indicates the value of ! at which the R3 point
for the 3:2 tongue is located.

Looking at the Brute Force diagrams it is seen that the period-three solu-
tion doubles to a period-six at approximately ! = 1:58. It appears as if some
bifurcation transient occur here. It is not easily seen from the �gure but a
cascade of period-doubling bifurcations accumulates at ! � 1:65 which is
also where the �rst positive Lyapunov exponents are observed.
Chaos is dominant in a short interval of the forcing frequency but destroyed
as a window of period-four solutions is initiated through an SN4+ bifurca-
tion. Inside the period-four window the system goes through a sequence of
period-doubling bifurcations, but the route is reversed before accumulating
in chaos. Here a delayed response of the Brute Force method is also observed.
As the periodic window terminates, chaos is once again located as indicated
by the Lyapunov exponents.



120 Results

The chaotic motion disappears as the system passes through a backward PD
route back \down" to the period-three solution. Finally, the 3:2 region has
been traversed and 1:1 locking is located shortly after passing the R3 point.

5.4.3 Summary

� The structures of the 3:1 and 3:2 Arnol'd tongues were examined. These
period-three entrainment regions were bounded solely by SN3+ bifur-
cations and closed smoothly above the T1 bifurcation line.

� One resonant Hopf bifurcation point was enclosed by each of the period-
three tongues. At this point the period-three saddle solutions were
observed to coincide and become a period-one solution.

� Global bifurcations, involving the destruction of quasiperiodic attrac-
tors through homoclinic bifurcations, were located. Based on these ob-
servations and examinations performed by [Pavlou and Kevrekidis, 1992]
and [Vance and Ross, 1989] schematic illustration of the global bifur-
cation scenario was presented. In this global bifurcation curves passed
through the R3 point tangent to the T1 line, and connected to the SN
boundary of the tongue.

� Below the resonance point one-dimensional bifurcation diagrams through
the 3:1 tongue were found to exhibit a di�erent saddle-node pairing
than diagrams obtained above this point. This was explained by the
fact that R3 marks the upper bound on the homoclinic bifurcation
curves.

� A cascade of period-doubling bifurcations, leading to chaos, was found
inside the 3:2 tongue, but no such scenario was located in the 3:1 region.
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5.5 The 4:1 and 4:5 Tongues

The 4:q entrainment regions are the last of the strong resonance tongues pre-
sented here. They are not examined in detail and have been traced primarily
with the intent of clarifying how they close relative to the T1 curve.
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Figure 5.50 The 4:1 tongue. The tongue is very narrow and stays under the
T1 curve. It closes in a wedge in a R4 point on the T1 curve.

The narrow 4:1 tongue is depicted in Fig. 5.50. The shape looks somewhat
similar to that of the 3:1 entrainment region, but it closes di�erently at the
resonance point. The boundary consists of SN4+ bifurcations which lie ex-
tremely close to each other as the T1 curve is approached and come together
in the R4 point. No overlap with the 1:1 entrainment region is observed.
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A di�erent scenario is found for the 4:5 resonance region. In the excitation
diagram in Fig. 5.1 it is located between the 1:1 and 2:3 tongues. It was also
presented in Fig. 5.30 where it was seen to overlap with the 2:3 tongue. A
magni�cation of the region around the resonance point is shown in Fig. 5.51.
Compared to the 4:1 tongue, the wedge, in which it closes at this point, is
very wide, but the primary di�erence is the fact that this tongue crosses the
T1 curve.

In [Pavlou and Kevrekidis, 1992] a scenario similar to the one observed for
the 4:1 tongue is found, but it is also indicated that the closure of the 4:q
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Figure 5.51 Zoom on the closure of the 4:5 tongue. Notice that the tongue
encloses a PD4,8+ loop and that the T1 curve passes through
the tongue. The 4:5 closes in a wedge at the R4 point on the
T1 curve.
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tongues has not been fully examined and understood. There does, however,
seem to be a strong indication that they all close in wedges as observed here.

Another noteworthy feature of the 4:5 tongue is the period-doubling loop it
encloses. This is another aspect which di�ers from the 4:1 region. No closer
examinations have been carried out inside the PD loop, but it is suspected
that a cascade of period-doubling bifurcations is present, similar to the ones
in the 2:3 and 3:2 tongues.

5.5.1 Summary

� The 4:1 and 4:5 tongues were traced and found to have boundaries
of period-four saddle-stable-node bifurcations. Both tongues closed in
wedges at the R4 resonance points on the T1 bifurcation curve.

� An overlap with the T1 curve, and thus the 1:1 entrainment region,
was observed for the 4:5 tongue, but the boundaries of the 4:1 region
stayed beneath this line.

� A loop of supercritical period-doubling bifurcations was found inside
the 4:5 tongue.
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5.6 Collapse of the Arnol'd Tongues

What is called the workpoint in this paper corresponds to the 'natural' state
of an unperturbed autonomously oscillating system. Its position relative to
the Hopf bifurcation will di�er from system to system. A chemical oscillator
is an example of a system in which the location of the workpoint can be
altered. An externally imposed periodic variation of the concentration of a
speci�c reactant would correspond to a forcing of the oscillator. Before sub-
jecting the system to this forcing, the nature of its autonomous oscillations
could be adjusted by means of other externally controllable parameters such
as temperature, the amount of a catalyst or simply the mean value of the
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Figure 5.52 Hopf bifurcation curves and various workpoints. The numbers
correspond to the excitation diagrams presented
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reactant, thus e�ectively moving the workpoint.
The possible e�ects of such variations are examined this section.

To this point all the entrainment regions presented, save the one in Fig. 5.29,
have been obtained at one particular set of parameters;M = (1;�1; 0; 1; A; !; 0:5).
The choice of � = �1; � = 0 and 
 = 1 was discussed in Chapter 3. The
workpoint is given by the other two parameters, �0 and �. These were chosen
to yield a representative excitation diagram. The workpoint corresponding
to this choice is labeled 'Main' in Fig. 5.52. The e�ects of forcing around the
other labeled points will be presented in the following.

Two primary approaches to the workpoint-variation have been employed;
variation of � at constant �0, and variation of �0 at constant �. It turns out,
the Arnol'd tongues are destroyed as the workpoint is moved into a region
in which the autonomous oscillations are not sustained. There are, however,
variations in some aspects of the tongue destruction depending on whether
it is the � = 0 or the � = 1=�2 bifurcation line that is crossed.

5.6.1 Variation of the Workpoint - Scenario One

Since the �rst attempts at forcing the normal form, it has been known that
decreasing the parameter � towards zero leads to a narrowing of all the en-
trainment regions. This low-� collapse of the tongues is a result of the high
degree of symmetry of the generic normal form. No 'coupling' between the
forcing and the system occurs in this limit and subsequently no entrainment
is observed. When the parameter is increased at constant � > 0 the up-
per Hopf bifurcation is approached. For � = 1 this bifurcation is situated
at � = 1. The series of excitation diagrams in Fig. 5.53 show the 1:1 and
2:1 tongues at the points labeled 1 through 6 in Fig. 5.52. The tongues are
somewhat crude compared to the ones presented previously, but the level of
details is su�cient for the present discussion.
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Figure 5.53 Destruction of the 1:1 and 2:1 tongues as � is increased. As
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When comparing the tongues in the �rst �gure with those in the excita-
tion diagram of Fig. 5.1, they are observed to have changed in size. Most
notably the upper SN bound of the period-one tongue has moved from an
amplitude of approximately 0.9 to somewhere in the vicinity of 0.2. As � is
further increased the 1:1 Arnol'd tongue continues to shrink. In addition to
the reduction in height it opens at an increasing angle. The evolution of this
tongue is emphasized in the last picture in Fig. 5.53. As the extent of the
saddle-node boundary is decreased, the line of torus bifurcations running be-
tween the two tongues becomes longer and moves closer to the ! axis. Even
if the size of the Arnol'd tongue is reduced, the 1:1 entrainment region as
a whole becomes increasingly dominant at the expense of the quasiperiodic
regime and the resonance regions that are known to terminate on the T1
bifurcation line. In the course of the �rst three frames, the gradual widening
of the 1:1 tongue is accompanied by changes in the 2:1 tongue. While the
top of the period-doubling loop does not move much, the bottom is pulled
toward lower amplitudes, and the loop is thus elongated. At the same time
the SN2 boundary is reduced in size in a manner somewhat similar to that
of the 1:1 tongue. It does not widen signi�cantly but the upper bound moves
closer to the ! axis.

As the workpoint reaches the Hopf bifurcation, the T1 line and the resonance
points located on it, coincide with the !-axis. At this point the period-
doubling loop has developed a tip at the bottom, which just touches the
axis at a point in which the R2 resonance points have collided. In short no
SN bounded resonance tongues exist, and besides the quite large 2:1 locking
region inside the loop, no entrainment regions other than the 1:1 are found.
The loop seems to have been 'cut o�' and is now oating upwards as the
workpoint is shifted further into the equilibrium region.
A scenario qualitatively similar to the above is found in the forced Brusselator
by [Knudsen et al., 1991].
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5.6.2 Variation of the Workpoint - Scenario Two

Moving the workpoint towards the � = 0 bifurcation also causes the de-
struction of the Arnol'd tongues. Many aspects of the collapse are similar
to those seen when approaching the high frequency equilibrium region. The
saddle-node boundary of the 1:1 tongue is diminished while the period-one
entrainment region widens, and eventually the T1 line comes all the way
down to the ! axis.

A di�erence is observed, however, in the collapse of the period-two resonance
region. The three plots in Fig. 5.54 clearly illustrate how the 2:1 tongue,
including the period-doubling loop, shrinks both in height and width. It is
di�cult to distinguish the structure of the tongue in the last two frames, but
by considering the magni�cation in Fig. 5.55, one should be convinced that
the 2:1 tongue retains the structure characteristic of a period-two tongue.
The upper curve of saddle-node bifurcations has not been included in the
enlargement of the 1:1 tongue, but is still present.

After the destruction of the Arnol'd tongues, there is no remaining period-
two entrainment. The loop of period-doubling bifurcations vanished along
with the SN2 boundary. Further reduction of �0 does not alter the scenario.
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Collapse of the 1:1 and
2:1 tongues as the
workpoint is moved
towards the leftmost Hopf
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5.6.3 Discussion

When forcing around a point inside an oscillatory region, the tongues were
observed to close on the T1 curve at critical amplitudes large enough to bring
the forcing parameter close to, or even across, the Hopf bifurcation.
After the destruction of Arnol'd tongues, in the �rst scenario, a region of 2:1
entrainment is observed. The onset of this entrainment also seems to occur
at critical amplitudes. Its existence might thus be explained by the interac-
tion with the underlying Hopf bifurcation.
However, since the interaction with the � = 0 bifurcation, in the second sce-
nario, does not lead to a similar entrainment region, additional factors must
be of consequence.
Reference is made to the analyses of the isoclines of the unforced system in
Section 3.4. The analyses showed the equilibrium regions to di�er, as only
one of them (� > 1=�2) contained areas of the state space in which the ow
was repelled from the stable equilibrium solution.

We believe these variations in the transient dynamics to be the cause of the
di�erences in the post-collapse entrainment scenarios. Since the forced Brus-
selator exhibits tongue destructions similar to the �rst scenario presented,
an examination of the unforced Brusselator could be of interest.
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5.6.4 Summary

� The e�ect of moving the workpoint across the Hopf bifurcations at � =
0 and � = 1=�2 was examined. This was done along lines of constant �0
and � respectively. The results were presented in an excitation diagram,
containing the 1:1 and the 2:1 tongues.

� Arnol'd tongues existed only when the workpoint was located in a
region containing oscillations of the unforced system.

� As the workpoint coincided with the �rst order Hopf bifurcation of the
autonomous system, the 1:1 tongue vanished and the T1 bifurcation
curve coincided with the !-axis. This caused the destruction of all
resonance horns. Subsequently, the resonant Hopf bifurcation points
were located at rational values on the !-axis.

� Moving the workpoint into the equilibrium regions of the autonomous
system caused two di�erent types of collapse of the 2:1 tongue. Only
1:1 synchronization was located for � < 0 whereas 2:1 entrainment
was observed for � > 1=�2. The period-two synchronization was found
inside the period-doubling loop of the 2:1 tongue and remained after
the collapse of the Arnol'd tongues.
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CHAPTER 6

Conclusion

A detailed computational study of the dynamics of a forced oscillator was
presented. The system examined was a modi�ed version of the generic nor-
mal form for a Hopf bifurcation subjected to an external sinusoidal pertur-
bation. A package in C++ containing numerical continuation methods was
optimized and expanded with additional methods during the course of the
project.
Breaking of the symmetry of the normal form proved to be necessary in or-
der to achieve a coupling between the external forcing and the autonomous
oscillations of the system. A parameter was, therefore, introduced enabling
the strength of the coupling to be controlled.
The symmetry of the autonomous system was broken without losing con-
trol of the autonomous oscillations. Parameters controlling the stability and
frequency of the oscillations were chosen, so that the system included two
supercritical Hopf bifurcations enclosing a region of autonomous oscillations.
Moreover, the frequency of these oscillations was kept constant throughout
their stability region.

The investigation of a representative tongue structure in the forcing pa-
rameter plane was presented. Strong resonance tongues were examined in
greater detail, more speci�cally the 1:1, 2:1, 2:3, 3:1, 3:2, 4:1, and the 4:5
tongues were studied. Attention was also given to the focus-node transitions
of period-one and period-two solutions occurring in the parameter plane.
At low forcing amplitudes the tongues were found to be of a rather similar
structure but as the amplitude was increased the characteristic features of
the various tongues became evident. Complex nonlinear behaviour was ob-
served, including chaos inside a cascade of period-doubling loops within the
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2:1, 2:3, and 3:2 entrainment regions. The initial period-doubling loops were
traced and presented. A period-doubling loop inside the 4:5 tongue was also
observed, indicating possible chaos within that tongue.
Motivated by locating codimension two points, neighbouring regions to these
points were examined by manifold analysis. These examinations revealed the
presence of global bifurcations in the 1:1 and 3:1 tongues.
Based on considerations of the possible loci of codimension two points re-
lated to the 2:q tongues, three di�erent possible scenarios were postulated.
Two of these were detected in the present study.

Under variation of the workpoint, around which a system parameter of the
autonomous system was perturbed, the resulting bifurcation structures of
the dominant 1:1 and the 2:1 tongues were examined. The workpoint was
moved between regions containing only one stable attractor of the underlying
autonomous system. This included the movement out of a region of limit-
cycles and into two di�erent regions containing equilibrium solutions. The
examinations were performed with and without varying the strength of the
coupling between the forcing and the autonomous system. Hence, a four-
parameter numerical bifurcation analysis was carried out.

Moving the workpoint into a region that does not sustain oscillations of the
unforced system, caused the destruction of the Arnol'd tongue structure.
The collapse was caused by an increasingly dominant 1:1 entrainment in the
forcing parameter plane. The 1:1 Arnol'd tongue was continuously widened
and reduced in height as the workpoint moved towards a Hopf bifurcation.
This caused pairs of �rst- and second-order resonance points of codimension
two to collide as the period-one torus bifurcation curve coincided with the
forcing frequency axis at zero forcing amplitude. This, in e�ect excluded the
possibility of Arnol'd tongues.
Di�erences were observed in the destruction of the dominant 2:1 tongue. It
is suggested that the di�erences in their collapse are due, primarily, to the
di�erences in the transient dynamics of the autonomous system.

Workpoint variation, and the forcing of systems with various underlying
bifurcation structures, provide many interesting aspects for further exam-
inations. We are convinced that the numerical analyses presented in this
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thesis have elucidated features common to oscillators forced across a Hopf
bifurcation. In addition to this, the model constructed here provides a high
degree of control of the bifurcations and dynamics of the autonomous sys-
tem. Hence, it is our hope that our work can provide a foundation for future
investigations of forced oscillators.
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APPENDIX A

Additional Figures

In this appendix vector �elds, isoclines and limit cycles of the
autonomous system are portrayed. These corresponds to di�er-
ent pairs of the system parameters � and � for � = �1; � = 0,
and ! = 1. Isoclines are drawn with thick lines and limit cycles
with thin lines.
The stability regions of the unforced system, in the (�; �) param-
eter plane are indicated in the �gure below:
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APPENDIX B

Numerical Methods

The purpose of this appendix is, to explain in some depth, the
di�erent numerical routines which have been implemented and
used in the analysis of the nonlinear dynamical system.

We shall explain (i) a numerical integration scheme (i.e. Runge-
Kutta), (ii) how to set up a Stroboscopic Poincar�e-section, (iii) a
method of constructing one dimensional invariant manifolds, (iv)
a root solving scheme (i.e. Newton-Raphson), and �nally (v) the
Continuation method.
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B.1 Numerical Integration

B.1.1 General

Consider a N dimensional nonautonomous system of ordinary di�erential
equations. The equations describing the ow are of the form

_x = F(x; t;M) =

0
BBB@

F1(x; t;M)
F2(x; t;M)

...
FN (x; t;M)

1
CCCA : (B.1)

Here x 2 IRN is the state vector, t 2 IR is time, and M 2 IRP is a P
dimensional parameter vector. We wish to approximate the solution to the
initial value problem:

x(t) = x0 +

Z t

t0

F(x(�); �;M)d� , where x0 � x(t0); (B.2)

which often cannot be solved analytically.

Numerical integration schemes can be classi�ed into two groups: one-step
and multi-step methods. One-step methods estimate the solution at a time
tn only based on the information of the state of the system at time tn�1. An
i-order multi-step method requires information to a time series describing
the system at di�erent times tn�i; tn�i+1; : : : ; tn�1 before an estimate of the
state of the system at time tn can be calculated.

Many arguments can be made in favor of both methods. Generally, one-step
methods have better and more robust error estimates. Furthermore, they
avoid the problem of generating an initial time series, thus being relatively
easy to implement. In the following we will describe two so-called Runge-
Kutta (RK) methods. Both of them are one-step methods. The �rst method
is the RK-4 integration scheme which uses a �xed time step; the second one
is the RK-56 method which uses a variable step-length.
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B.1.2 The Runge-Kutta Methods

The simplest of all numerical integration methods is Euler method,

xn+1 = xn + hF(x; t): (B.3)

Clearly, this is a one-step method which takes the step h in the direction
of the gradient F. It is easy to change the step-length in Euler's method
but the method is not very stable for large step-length. The Runge-Kutta
methods use the same principle as Euler's method, which can indeed be called
a 1st order Runge-Kutta method (RK-1). The idea behind the methods is to
calculate the gradient in a number of points along the step h from the state
x(t), and to use these in the estimate of the state of the system at x(t+ h).
Hence,

x(t+ h) �= �p(x(t); t; h;F) = x(t) + h
nX
i=1

biki: (B.4)

�p is a p'th-order estimate of the state x(t + h), h is the step-length and n
is the number of sub-steps the method is using. The constants bi are used to
weight the gradients ki which are calculated from

ki = F(x(t) + h
nX

j=1

aijki; t+ cih); (B.5)

where ci and aij are constants which are related by

ci =
nX

j=1

aij : (B.6)
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The constants are called Butcher coe�cients. They describe the method
and determine the order of the estimate. In methods where aij = 0; j �
i; j = 1; 2; � � � ; n, every ki is given explicitly by previously calculated kj ; j =
1; 2; � � � ; i� 1, which naturally eases the implementation. Such methods are
called explicit/classical Runge-Kutta methods.

Every numerically calculated solution is only an estimate of the unique so-
lution of a well-posed initial value problem. The unique solution can be
thought of as a single integral curve in the extended state space IRN+1. Due
to truncation and round-o� error, the numerical solution will always wander
o� from this curve. The numerical solution is therefore inevitably going to be
a�ected by the dynamics of the neighboring integral curves. Thus, the family
of integral curves and their dynamics are of importance. The Runge-Kutta
methods gather information on the family of curves and use this to make an
estimate of the unique solution.

Fig. B.1 visualizes the principle of an n'th order Runge-Kutta method.
First, as described by Eq. (B.5)-Eq. (B.6), we calculate the gradients k1 =
F(x0; t0), k2 = F(x0 + c2hk1; t0 + c2h), � � � , kn = F(x0 + cnhkn; t0 + cnh).
We have thus gathered information on the family of integral curves. Now, by
Eq. (B.4), an estimate �p can be made to describe the state of the system
at the time t1 = t0 + h.

k

k
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t t+hc t2

h

t

x

k n
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0 1

 2

 3
 0x

x1

k  1

Figure B.1 Illustration of a RK-n method.

The local errors are due to truncation and round-o� error. For the Runge-
Kutta methods the truncation error is generally proportional to hp+1 and
the round-o� error with h�1. The global error is the accumulation of the
local errors over several integration steps.
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We have chosen to implement a 4th-order Runge-Kutta method. Looking at
the Butcher coe�cients presented in Table B.1, we immediately notice some
attractive features of this method. Several of the coe�cients are either zero
or one, keeping the numerical work during calculations to a minimum.

The step-length, h, used in the methods is easy to change, but it is di�cult to
tell when to either increase or decrease the step-length in order to optimize
numerical speed and precision.

The RK-56 method is a numerical scheme that, with a minimum of work,
calculates two estimates at the 5th- and 6th-order. Notice that we have two
sets of b-coe�cients in Table B.2. Naturally, at each time-step, the numerical
work is much larger for the RK-56 compared to the RK-4 method. But the
RK-56 has the advantage that it allows us to use the di�erence between its
two estimates as a measure of how well the integration is proceeding. Thus,
by studying this error estimate, one can get a hint on how to control the step-
length. The stability of the numerical scheme is now increasingly dependent
on the speci�c system we are integrating. Therefore, one should be careful
to adjust relevant tolerances when introducing a new system. Moreover, one
should check whether the integration routine is stable to variations of system
parameters. If one succeeds in adjusting the RK-56 tolerances with respect
to the step-control, the method often becomes an attractive alternative to
RK-4. Optimally reducing the total amount of numerical work done when
integrating a system, while maintaining a high order of precision. Numerical
integration schemes that use variable step-length can be implemented to
stop at the desired time either by interpolating between states or simply by
posing restrictions on the �nal time-step. A 7th-order interpolation scheme
is presented in [Enright et al., 1986].

B.2 Stroboscopic Poincar�e-sections

B.2.1 Setting up the Poincar�e-Section

A Stroboscopic Poincar�e-section (P-section) is a typical choice of P-section
when working with nonautonomous system; even more so, when working
with forced systems. The P-section simply registers the state of the system
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c A

b
=

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

Table B.1 RK-4 Butcher Tableau [Lambert et al., 1990]

c A

b1

b2
=

0 0 0 0 0 0 0 0 0
1
6

1
6 0 0 0 0 0 0 0

4
15

4
75

16
75 0 0 0 0 0 0

2
3

5
6

�8
3

5
2 0 0 0 0 0

5
6

�165
64

55
6

�425
64

85
96 0 0 0 0

1 12
5 �8 4015

612
�11
36

88
255 0 0 0

1
15

�8263
15000

124
75

�643
680

�81
250

2484
10625 0 0

1 3501
1720

�300
43

297275
52632

�319
2322

24068
84065 0 3850

26703 0

13
160 0 2375

5984
5
16

12
85

3
44 0 0

3
40 0 875

2244
23
72

264
1955 0 125

11592
43
616

Table B.2 RK-5/6 Butcher Tableau [Enright et al., 1986]
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at evenly spaced time intervals T . For forced systems T is normally chosen as
the period of the forcing. We can now de�ne our P-section, x0 ! P(x0) = x1,
such that the i 'th iterate will be given by,

Pi(x(t0)) = x(t0 + iT ) = x0 +

Z t0+iT

t0

F(x(�); �;M)d�: (B.7)

Introducing the stroboscopic P-section, we reduce the order of the space of
the solution by one, going from extended state space to state space. Further-
more, the analysis of the system can now be based on the theory for discrete
dynamical systems. In order to apply the P-section in other more advanced
numerical techniques, it is important to be able to determine it's derivatives
with respect to the system variables and parameters.

B.2.2 Derivatives of the Poincar�e-Section

Given an N dimensional nonautonomous system by Eq. (B.2) and an initial
state x0 = x(t0). The trajectory, de�ned as �t(x0; t;M), that passes through
x0 at t0 is described by

d�t
dt

= _�t(x0; t0;M) = F(�t(x0; t0;M); t;M): (B.8)

Di�erentiating with respect to the initial condition x0 we �nd

Dx0
_�t(x0; t0;M) = DxF(�t(x0; t0;M); t;M)Dx0�t(x0; t0;M); (B.9)

where Dx0�t0(x0; t0;M) = I.

De�ning,

't � Dx0�t(x0; t0;M) 2 IRN�N ; (B.10)

we can rewrite Eq. (B.9) to the so-called variation equation:
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_'t = DxF(�t(x0; t0;M); t;M) � 't (B.11)

where 't0 = I.

Let us also di�erentiate Eq. (B.8) with respect to M such that

DM _�t(x0; t0;M) = DxF(�t(x0; t0;M); t;M)DM�t(x0; t0;M) +DMF(�t(x0; t0;M);
(B.12)

where DM�t0(x0; t0;M) = 0. De�ning,

�t � DM�t(x0; t0;M) 2 IRN�P (B.13)

we �nd the parameter-variation equation.

_�t = DxF(�t(x0; t0;M); t;M) � �t +DMF(�t(x0; t0;M); t;M) (B.14)

where �t0 = 0.

Now 'adding' the equations Eq. (B.11) and Eq. (B.14) to the original system
Eq. (B.2), we have a N(1 + N + P ) dimensional system where we simulta-
neously can solve for �t; 't and �t.

De�ne the total system y � (�t; 't; �t) 2 IRN�(1+N+P ), which will be de-
scribed by

dy

dt
= Fy(x; t;M) =

0
@ _x

_'t
_�t

1
A (B.15)

=

0
@ F(x; t;M)

DxF(�t(x0; t0;M); t;M) � 't
DxF(�t(x0; t0;M); t;M) � �t +DMF(�t(x0; t0;M); t;M)

1
A ;

where y0 = (x0; I; 0).
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Applying the Stroboscopic P-section to this set of equations, we �nd that
the i'th iterate of y0 contains the derivatives of the P-section,

yi = Pi(y(t0)) = y(t0 + iT )

= y0 +

Z t0+iT

t0

Fy(x(t); t;M)dt (B.16)

=

0
@ xi

'i
�i

1
A =

0
@ Pi(x0; t0;M)

DxP
i(x0; t0;M)

DMP
i(x0; t0;M)

1
A :

B.3 Equilibrium Points and Periodic Solutions

In this section we shall simply state the equations which describe equilibrium
points and periodic solutions. The equations are presented as functions in
which the roots are the system state solutions.

Equilibrium points are found as the root to the function H:

H = F(x; t;M) = 0: (B.17)

Note that the derivatives, with respect to x and M, are found as

DxH = DxF(x; t;M) (B.18)

and

DMH = DMF(x; t;M) (B.19)

respectively.

Having already described our P-section, we can easily state an equation that
can be used to determine a period k orbit:
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H = Pk(x;M)� x = 0: (B.20)

Again, di�erentiating with respect to the state variable and the parameter
vector gives

DxH = DxP
k(x;M) � I (B.21)

and

DMH = DMP
k(x;M) (B.22)

respectively.

B.4 Construction of Invariant Manifolds

B.4.1 General

This section is a brief summary of the technique used in constructing invari-
ant manifolds of periodic solutions.

For the �xed point x� of a period k solution we have the following eigenvalue
problem

�NDxP
k(x�;M) = �N�N ; (B.23)

where �N represents the eigenvectors, and �N the corresponding eigenvalues.

The eigenvectors, whose corresponding eigenvalues lie inside the unit cir-
cle, span the stable subspace Es (the stable manifold). Eigenvectors, whose
corresponding eigenvalues lie, on the unit circle, span the center subspace
Ec (the center manifold). Finally, the unstable subspace Eu (the unstable
manifold) is spanned by the eigenvectors whose corresponding eigenvalues
lie outside the unit circle.
Hence,
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Es = spanf�1; �2; � � � ; �sg; j�1���sj < 1;
Ec = spanf�s+1; �s+2; � � � ; �s+cg; j�s+1���s+cj = 1; and
Eu = spanf�s+c+1; �s+c+2; � � � ; �s+c+ug; j�s+c+1���s+c+uj > 1:

(B.24)

Initial states contained in the stable subspace cause the system to approach
the periodic solution as t ! 1. States initialized in the unstable subspace,
lead to the periodic solution as t ! �1. Solutions initiated in the center
subspace neither grow nor decay in time.

B.4.2 The Numerical Technique

Note: The following method of construction is restricted to one dimensional
invariant manifolds.

Consider a �rst order �xed point x� for which we wish to study the dynamics
along the unstable manifold. The Hartman-Grobman theorem states that
the local nonlinear dynamics P(x;M) near a �xed point, x�, is qualitatively
similar to the dynamics of the associated linear system PL(x;M) = x� +
DxP(x

�;M)(x � x�).

We assume that an � exists such that the vector x = x� + ��u can be
constructed to lie on the invariant unstable manifold, when �u is the unstable
eigenvector for the linearized system with the corresponding real eigenvalue
�u > 1.

As a relative-absolute error estimate we use

jP(x� + ��u;M)�PL(x
� + ��u;M)j < �rx

� + �a; (B.25)

where �r and �a are the relative and the absolute tolerances.

We now construct two windows (lists) containing states of the system Lx =
fx1; x2; � � � ; xnxg and Lpx = fpx1; px2; � � � ; pxnpxg related in such ways that
xnx = P(x1;M) and pxi = P(xi;M).
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Lx is a list of states that have been accepted under the condition
jxi � xi+1j � ~�rxi + ~�a for each i. This criteria ensure that the constructed
manifolds are su�ciently smooth. We let the windows slide along the man-
ifold accepting px1 if it lies close to px2. If px1 is accepted, it is removed
from Lpx and added as the last element in Lx, simultaneously x1 is removed
from Lx. In the case where px1 cannot be accepted, we simply expand our
lists using linear interpolation so that Lx = fx1; (x1 + x2)=2; x2; � � � ; xnxg
and Lpx = fpx1;P((x1 + x2)=2); px2; � � � ; pxnpxg. When implementing this
method of construction much is gained by creating small procedures that
manipulate the lists. Points, that within a certain tolerance lie on a straight
line, can easily be reconstructed by interpolation and can thus be removed
from the lists. Moreover, this helps save memory by maintaining short lists
and keeps the amount of numerical work at a minimum when sliding the
windows along the manifold.

The method extends to the study of higher order period k solutions substi-
tuting P(x;M) with Po(x;M). Direct invariant manifolds for which �u > 1
are constructed choosing J = k. Because of the 'ipping' dynamics along the
inverse invariant manifolds where �u < �1, we simply choose to study the
manifold as if it were of twice the order of k, setting J = 2k.

Although the method cannot be used to construct higher order invariant
manifolds it is not entirely meaningless to apply it to one dimensional sub-
spaces within these. After calculating eigenvectors for the linearized system
of a stable or unstable node, we can use the above technique to construct
the dominant one-dimensional subspace of a high order invariant manifold in
the neighborhood of the �xed point. For stabile (unstable) nodes we can �nd
the manifolds with the largest ow towards (away) the �xed point. Stable
manifolds of �xed points are constructed by reversing time.

B.5 The Newton-Raphson Method

Assume that the function H(x) has the root x�. In order to locate the root
we approximate
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y = H(x) (B.26)

by a linearization. The change in y, dependent on the change in x, is now
given by

�y = DxH(x)�x (B.27)

To locate the root in H, we now choose �y = �H(x) solving Eq. (B.27) with
respect to �x we �nd

�x = �DxH
�1(x)H(x) (B.28)

From this it is possible to write the iteration formula known as the Newton-
Raphson (NR) iteration scheme. Let �x = xi+1 � xi so that

xi+1 = xi �DxH
�1(xi)H(xi) (B.29)

Note, that the method does not guarantee convergence, but only in a cer-
tain neighborhood of x�. The method diverges when DxH becomes singular,
but is attractive typically as a numeric corrector since it includes quadratic
convergence.

Substituting the equations, that determine equilibrium points and periodic
solution in Eq. (B.31), we get the following iterations schemes:

Equilibrium points:

xi+1 = xi �DxF
�1(xi)F(xi) (B.30)

Periodic solutions:

xi+1 = xi � (DxP
k(xi)� I)�1(Pk(xi)� xi) (B.31)



158 Appendix B

B.6 Continuation

This last section of the appendix describes the Continuation methods.

B.6.1 General

Consider a solution described as the root to the function H = H(x;M). The
solution can be followed into system space by Euler-integration along the
gradient from a point (x0;M0). Determining the di�erential DH(x;M) we
�nd that

DH(x;M) = DxH(x;M)dx +DMH(x;M)dM = 0 (B.32)

This is a singular system of N equations with N + P variables. De�ning

DH(x;M) � [DxH(x;M) DMH(x;M)] (B.33)

we can rewrite Eq. (B.32) as

DH(x;M)

�
dx
dM

�
= 0

Note, that if DH(x;M) has full rank the vector [dxT dMT ]T lies in a P -
dimensional subspace (L) of the former system space. The vector will be
the tangent to the curve H = 0 in the point (x;M). By adding P extra
equations to Eq. (B.32) it becomes possible to solve the system and calculate
the tangent.
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B.6.2 1D Continuation

First consider the case where P = 1; M = m 2 IR. We are interested
in developing a method that can follow a solution in the subspace IRN+1

of the system space. As an extra equation to add Eq. (B.32) we use the
normalization constraint

jj [dxT dm]T jj = 1 (B.34)

This constraint limits [dxT dm]T to one of two unit vectors in the space
de�ned by Eq. (B.6.1), thus generating a vector �eld H : IRn+1 ! IRn+1

H = [dxT dm]T (B.35)

Solving for this vector �eld it is possible to follow a solution curve in a
bifurcation diagram. We can use the method to study both equilibrium and
periodic solutions.

Implementation

In practice, the solving of the vector �eld H is done by a method of pre-
diction and correction although other techniques are also possible. Here we
use a Euler step as predictor and the Newton-Raphson iteration scheme as
a corrector.

Rewriting Eq. (B.32) as

DxH(x;m)dx = �DmH(x;m)dm (B.36)

and choosing in which direction we wish to travel in parameter space,

dm = �1 (B.37)

Solving Eq. (B.36) for dx, normalizing the vector [dxT dm]T via. Eq. (B.34)
we �nd

dp � [dxT dm]T ; (B.38)
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and take a step h into system space to the predictor point p = p(x;m):

p � [xT0 m0]
T + h dpT ; (B.39)

The state p is typically close to, but seldom satis�es H(p) = 0. Therefore,
we use a corrector to reduce the error from the Euler integration step. Let
the corrector be initialized with the predictor point:

ci=0 = p(x;m) (B.40)

The iteration scheme is described by the following equations:

�
DH(ci )

dpT

�
dp =

� �H(ci )
0

�
(B.41)

ci+1 is calculated from

ci+1 = ci + dc (B.42)

In Eq. (B.41) we have imposed a constraint on the corrector steps restricting
the search to a subspace perpendicular to dp. This is necessary because the
system DH(ci )d

p = �H(ci ) is singular.

Depending on how fast the NR-method converges/diverges, we can adjust
our step-length h. If the method diverges, one can simply calculate a new
predictor point using a shorter step-length, and if the method converges after
just a few iterations one might want to increase the step-length.

Locating Bifurcation Points

With the means of 1D continuation it is possible to follow solutions as they
pass bifurcation points or equal-eigenvalues points (EE points). One can use
di�erent techniques in locating both of these, for instance by applying the
NR-method searching for a particular bifurcation. This is probably one of the
faster techniques. Neglecting saddle-node bifurcations the problem is rather
where along the solution curve to look for the bifurcation points. When
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searching for points involving transversal intersection of di�erent solutions
one can use a check of the matrix

M(x;m) =

�
DH(x;m)

dpT

�
(B.43)

M only becomes singular when H is not well de�ned implying a transversal
intersection.

The amount of work it takes, to calculate the eigenvalues in every point
constructed on the solution curve, is relatively low for lower dimensional
systems. It can also be of interest exactly how the eigenvalues behave along
the curve away from the bifurcation points. We have thus chosen to calculate
the eigenvalues in all points. This allows us to use a technique to locate bi-
furcation/EE points that work in the same manner as the Time-Half method
known from construction of P-sections.

After accepting a new point along the solution curve, we check whether a
change of (i) stability of the solution or (ii) the complexity of the eigenval-
ues has occurred. If we wish to locate the bifurcation or EE point that we
have just over-stepped, we simply go back to our initial state and decrease
our step-length into system space. How to decrease the step-length can be
optimized using the information of the norm of the relevant eigenvalue in
the initial point and in the point that has over-stepped the bifurcation/EE
point. The method is relatively fast, guarantees convergence - and has an-
other great advantage: Because of the numerical limits, a bifurcation point
can only be located within a certain accuracy. Generally, we will always be a
little o� from the true point, and when using, say the NR-method, we may
end up on either side of the bifurcation point. This detail is of importance
while doing advanced analysis on the system, maneuvering along the solu-
tion curves in system space, while changing control parameter. Using the
Step-Reducing (SR) method we avoid the problem and are guaranteed to
locate the desired point from the 'incoming' side on the solution curve.

B.6.3 2D Continuation

Having located a bifurcation point it is possible to follow this bifurcation
into IRN+2 system subspace with the technique 2D continuation. In princi-
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ple, the method works in the same manner as 1D continuation, we just need
to add two equation to Eq. (B.32). Again we choose to use the normalization
constraint as the �rst equation. As the second we wish to formulate an equa-
tion that attempts to 'lock' the critical eigenvalue �c. Say we are studying a
periodic solution. We then pose the following restricting equation

Dx�cdx+DM�cdM = 0 (B.44)

here Dx�c = [Dx1�c Dx2�c � � � DxN�c] and DM�c = [Dm1
�c Dm2

�c].

Again we choose a direction to travel in the , choosing dm2 = �1. This allows
us to solve the system of N+1 equations and variables:

�
DxH(x;M) Dm1

H(x;M)
Dx�c(x;M) Dm1

�c(x;M)

� �
dx
dm1

�
= �

�
Dm2

H(x;M)
Dm2

�c(x;M)

�
dm2

(B.45)

Note: For equilibrium solutions �c should be substituted with Re[�c].

Normalizing the vector dp = jj [dxT dM]T jj = 1 and taking a step h to the
predictor point p = [xT MT ]T . We use the following NR-iteration scheme
as a corrector:

2
4 DH(ci )
D�(ci )

dpT

3
5dc =

2
4 �H(ci )
�H�(

c
i )

0

3
5 (B.46)

Where D� and H�(
c
i ) are de�ned by

D� =

�
[DxRe[�c(

c
i )] DMRe[�c(

c
i )]] ; for equlibrium solutions

[Dx�c(
c
i ) DM�c(

c
i )] ; for periodic solutions

(B.47)



B.6 Continuation 163

and

H�(
c
i ) =

�
Re[�c(

c
i )]; for equlibrium solutions

�c(
c
i )� 1; for periodic solutions

(B.48)

ci+1 is determined from ci+1 = ci + d.

It might seem as if 2D continuation is easy to control, and in some cases
it does indeed easily travel the bifurcation curves. But one should not be
surprised if in some cases it is di�cult to force the method along one's
speci�ed direction. This is mainly because our attempt to control the travel
direction, through the predictor step, can be 'overruled' by the NR-method.
Furthermore, the NR-method may have a lot of problems when bifurcation
curves lie close in the system space. Here it really has to struggle in an
attempt to convert. This is due to the fact that NR is jumping between the
neighborhoods of the di�erent solutions.

One can only try to adjust step-length and tolerances in order to help 2D
continuations past its problems, but these might have to be adjusted several
places along a bifurcation curve.
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