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differential geometry, and computer vision, are summarized in Section 3. The pro-
posed model of structure is described in Section 4 along with some algorithmic
considerations. Finally, results are shown in Section 5 and we point out promising
avenues for future research in Section 6.

2 Related Work

2.1 Topological methods

The topological framework was first applied to the visualization of second-order ten-
sor field by Delmarcelle and Hesselink [4]. Leveraging ideas introduced previously
for the topology-based visualization of vector fields [12, 9], these authors proposed
to display a planar tensor field through the topological structure of its two orthogonal
eigenvector fields. As discussed in their work, the lack of orientation of eigenvector
fields leads to singularities that are not seen in regular vector fields. Indeed, those
degenerate points correspond to locations where the tensor field becomes isotropic,
i.e. where both eigenvalues are equal and the eigenvectors are undefined. Yet, this
seminal work shows that a similar synthetic representation is obtained in the ten-
sor setting through topological analysis: degenerate points are connected in graph
structure through curves called separatrices that are everywhere tangent to an eigen-
vector field. Refer to Figure 1.

Fig. 1 Topological graph. Singularities correspond to the nodes of the graph, while separatrices
form the edges. Left: vector field topology of a turbulent flow. Right: topology of a rate of strain
symmetric tensor field.

The three-dimensional case was first considered in a subsequent paper by Hes-
selink et al. [13]. Interestingly, their discussion was primarily focused on the types
of degenerate points that can occur in this setting. As such it did not explicitly men-
tion that the most typical singularities in 3D are lines and not isolated points. In fact,
this basic property was first pointed out in the work of Zheng and Pang [34] who also
proposed the first algorithm for the extraction of these line features. In a nutshell,

computation time to construct MCGs, and larger integration
errors may be introduced as well (Fig. 6).

As is indicated in Fig. 4, the !-map approach leads to a
combinatorial multivalued map F with smaller images
(than the geometry-based method) and, hence, a finer
Morse decomposition. An important point that can easily be
overlooked is the freedom of choice in the construction of
F . We have chosen an approach that is a compromise
between accuracy of F and speed of computation. For
problems in which computational time is not a concern, one
can expand on the adaptive sampling technique and the
choice of ! to refine the images. Alternatively, if one knows
that the original vector field contains significant errors, and
since the F needs only to be an outer approximation, these
errors can be incorporated into the construction of the
images of F (Fig. 5). Thus, even in the presence of
considerable small perturbation (Fig. 5), one can ascertain
that the resulting MCG is valid.

An interesting observation is that to compute the
sufficient outer approximation, our algorithm tends to use
more samples for the flow regions with divergent behaviors
(sources under forward mapping and sinks under back-
ward mapping) and stretching behaviors (separatrices and
periodic orbits). Fig. 11 provides the density maps of
sample rates of the two analytic fields using our algorithm.
The color coding of the density map uses red for the region
with a larger sampling rate and blue for a lower sampling
rate. We observe that the regions having a larger sampling
rate tend to coincide with the regions with highly stretched
flow behavior. This verifies that our backward and forward
mapping framework combined with adaptive sampling
technique locates the flow regions with high distortion
correctly.

5 TEMPORAL ! VERSUS SPATIAL !s
The !-map introduced previously refers to a time discretiza-
tion, i.e., every particle travels for a time ! . We refer to it as a
temporal !-map. In many scientific data sets, the vector field
magnitude of the underlying flow varies significantly. If a
constant time ! is used, the advection of some triangles
corresponding to the flow region with a slow speed may not
be advected far enough in order to construct the edges of F ! .
One solution is to choose a ! that makes sure every triangle is
advected sufficiently far. However, this is likely to affect the
overall performance and introduce errors. Similar problems
have appeared in texture- and streamline-based flow

visualization. One popular approach is to normalize the
vector field before generating the streamlines or advecting
the textures. Under these normalized vector fields, the vector
values at the vertices are scaled to have the same magnitude
except for fixed points. Therefore, the streamline computa-
tion can be executed efficiently. Motivated by this
observation, we propose the idea of a spatial !-map, which
we refer to !s-map.

More specifically, a !s-map is defined on a spatial
discretization !s. When computing a !s-map in the compu-
tational domain (a triangle mesh X here), for each sample of
the triangle T in X, we keep track of the integral length of
the sample following the flow until the accumulated
integral length reaches the spatial constraint !s. Since all
the particles will travel the same distance in the same speed
(e.g., the maximum speed) everywhere except for the
neighborhoods of the fixed points, one can expect a faster
computation than tracing with respect to the original (non-
normalized) vector field. When considering spatial !s, we
still can reuse the framework in Algorithm 2 to compute the
F ! with the only difference being that we now accumulate
integral length instead of integral time. One important
concern is how to compute the correct trajectory when the
tracing enters the neighborhood of a fixed point. The basic
rule is that the trajectory should not cross any fixed point.
Fortunately, the flow will slow down in those neighbor-
hoods according to the properties of fixed points (where
vector magnitude equals zero) and the continuous approx-
imation of the flow guaranteed by the interpolation
schemes we are using (Section 4). Hence, we stop tracing
when the vector magnitude is below a certain threshold
(for instance, 0.01 times the uniform vector magnitude). We
point out that after normalization, we have artificially
introduced deviation to the original vector field.

We apply the idea of spatial !s to a designed vector field
(Fig. 12). The geometry domain of the vector field consists
of 6,144 triangles. Ten Morse sets have been extracted
using a temporal ! ¼ 12. The extraction took 2.42 seconds on
a 3.0-GHz PC with 1.0 Gbytes of RAM. With a spatial
!s-map ð!s ¼ 0:049Þ, we extract the similar Morse sets using
only 1.57 seconds. The result of the geometry-based method
is also shown (Fig. 12b). The corresponding MCGs and ECG
of the field are also shown in the bottom row in Fig. 12.
Based on the results, we observe that using a spatial !s, we
can achieve faster Morse decomposition (Fig. 12d). The use
of !s also extends our understanding of !-maps. In the
previous section, we set a constant ! for all flow regions
during the F ! computation. It is not necessary and may lead
to the distortion of the outer approximation when large ! is
used. The success of !s-maps shows that it is possible to use
different ! ’s in different flow regions. This is because given a
constant distance !s and different flow speed vs, we will
obtain different tracing time t ¼ !s=vs in different flow
regions (Fig. 13). Therefore, more heuristic information from
the dynamics of the flow can be employed to guide the
choice of a proper ! for a specific flow region. This is the
challenge we plan to address in future research.

6 APPLICATIONS

In this section, we provide the vector field analysis results
using the efficient Morse decomposition framework for
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Fig. 11. This figure shows the density maps of the sample rates of the
two analytic fields using our algorithm. The color coding of the density
map uses red for the region with a larger sampling rate and blue for a
lower sampling rate.

two engine simulation data sets. They are the extrapolated
boundary velocity fields that are obtained through a
simulation of an in-cylinder flow. Engineers are interested
in knowing whether or not the flows on the surface follow
the ideal patterns [17].

Fig. 14 shows the results of the gas engine simulation
data. The first column shows the results using the
geometry-based method. The second and third columns
provide the results using the temporal !-maps with ! ¼ 0:1
and ! ¼ 0:3, respectively. The corresponding MCGs are also
displayed under the flow images. We observe that a Morse
set has been extracted at the back of the chamber. It shows a
recurrent pattern that indicates the flow starting to
approximate the ideal tumble motion. The Morse sets
obtained based on a !-map capture regions that are more
faithful to important features, while the approach using the
geometry-based map could give rise to fewer Morse sets
that cover large regions, which makes the identification of
important features more difficult.

The results shown in Fig. 15 are from the diesel engine
simulation. The first column shows the results using the
geometry-based method. Notice that the rainbowlike regions
indicate the recurrence behavior that does not actually exist.
That is, the geometry-based method generates a Morse
decomposition with misleading information. In the remain-
ing columns, we provide two Morse decomposition results of

the same data using a temporal !-map ð! ¼ 0:3Þ and a spatial
!s-map ð!s ¼ 0:08Þ, respectively. For the temporal case, the
obtained Morse decomposition contains 200 Morse sets. It
took 1,146.807 seconds to obtain the result. For the spatial
case, the number of the extracted Morse sets of the
Morse decomposition is 201. The time for computing this
Morse decomposition is 740.826 seconds. Either temporal !
method or spatial !s method provides accurate information of
the recurrence behavior of the bottom of the in-cylinder of the
diesel engine, but the spatial !s-map shows faster F !

computation than the temporal !-map scheme.
Table 1 provides the performance information of the

two data sets using different F !s.

7 CONCLUSION

In this paper, we have demonstrated the fundamental
difficulties associated with the definition of vector field
topology based on individual trajectories. As a solution, we
advocate the use of an MCG to represent the topology of a
vector field. Moreover, we have described an efficient
framework for computing Morse decompositions of vector
fields. Compared to individual trajectory-based vector field
analysis, Morse decomposition and the associated MCG
accounts for the numerical errors inherent in the vector field
data. This makes it more suitable for a rigorous interpreta-
tion of vector field topology. To obtain a finer MCG than
previous methods (i.e., the geometry-based method), we
employ the idea of !-maps to perform flow combinator-
ialization and encode the flow dynamics into a directed
graph F ! , upon which we perform Morse decomposition.
In order to compute F ! efficiently, we make use of both
forward and backward tracing and introduce an adaptive
sampling algorithm along the edges to account for the
discontinuity problem while computing the approximate
image. As an alternative to the temporal !-map, we present
the use of a spatial !s-map, which typically provides faster
computation than temporal !-map scheme with similar
fineness in the MCGs. We show the utility of our approach
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Fig. 13. The visualization of the integral time of different flow regions
under a constant spatial !s. A rainbow coloring scheme is used, where
the red regions indicate larger tracing time is used, and blue means
smaller time.

Fig. 12. This figure shows various analysis results of an analytical data set: (a) ECG, (b) MCG (geometry-based method), (c) MCG (temporal ! ¼ 12),
and (d) MCG (spatial !s ¼ 0:049). The computational time for (b)-(d) is 0.17 second, 2.42 seconds, and 1.57 seconds, respectively. Notice how the
Morse sets are refined by using the idea of !-maps. We also observe that using a spatial !s-map for the analysis of this field can give rise to a
comparable Morse decomposition (having the same Morse sets) to the one using a temporal ! with a faster performance. The visualization scheme
of ECGs and MCGs is described in Fig. 1.

separatrices in 3D are not restricted to curves;
they can be surfaces, too. These surfaces are
special types of so-called stream surfaces that
are constituted by the set of all streamlines that
are integrated from a curve. The linear 3D top-
ology is thus composed of nodes, spirals, and
saddles that are interconnected by curve and
surface separatrices. Depending on the con-
sidered type, repelling and attracting eigen-
spaces can be 1D or 2D, leading to curves and
surfaces (Figs. 17.4b and 17.4d). Surface separ-
atrices emanate from 3D saddle points spanned
by the eigenvectors associated with the two
eigenvalues of the same sign.

17.2.3 Parameter-Dependent
Vector Fields
The previous sections focused on steady vector
fields. Now, if the considered vector field
depends on an additional parameter, the struc-
ture of the phase portrait may transform as the
value of this parameter evolves: position and
nature of critical points can change along with
the connectivity of the topological graph. These
modifications—called bifurcations in the litera-
ture—are continuous evolutions that bring the
topology from a stable state to another, struc-
turally consistent, stable state. Bifurcations
have been the subject of an intensive research
effort in pure and applied mathematics [7]. The
present section will provide a short introduction
to these notions. Notice that the treatment of
3D bifurcations is beyond the scope of this

paper, since they have not been applied to flow
visualization up till now. We start with basic
considerations about structural stability and
then describe typical planar bifurcations.

17.2.3.1 Structural Stability

As said previously, bifurcations consist of
topological transitions between stable struc-
tures. In fact, the definition of structural
stability involves the notion of structural
equivalence. Two vector fields are said to be
equivalent if there exists a diffeomorphism (i.e.,
a smooth map with smooth inverse) that takes
the integral curves of one vector field to those of
the second while preserving orientation. Struc-
tural stability is now defined as follows: the
topology of a vector field v is stable if any
perturbation of v, chosen small enough, results
in a vector field that is structurally equivalent to
v. We can now state a simplified version of the
fundamental Peixoto’s theorem [7] on structural
stability for 2D flows. A smooth vector field on a
2D compact planar domain of IR2 is structurally
stable if and only if (iff) the number of critical
points and closed orbits is finite and each is
hyperbolic, and if there are no integral curves
connecting saddle points. Practically, Peixoto’s
theorem implies that a planar vector field
typically exhibits saddle points, sinks, and
sources, as well as attracting or repelling closed
orbits. Furthermore, it asserts that nonhyper-
bolic critical points or closed orbits are unstable
because arbitrarily small perturbations can
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Figure 17.4 Linear 3D critical points. (a) 3D mode; (b) node saddle; (c) 3D spiral; (d) spiral saddle.
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Image gradients Keypoint descriptor

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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The tract interfaces are delineated by the valley surfaces in
Fig. 5c, which also includes for reference a translucent cut-
ting plane with RGB coloring of the principal diffusivity

direction, as well as a view-aligned clipping plane to reveal
the RGB color differences among the MCP, CST, and
TPT. Fig. 5d illustrates how valley surfaces delineate major

Fig. 3. Functional components of crease feature definition. The ridge surface strength srs (a), valley surface strength svs (b), and ridge line strength srl (c)
are all defined in terms of the eigenvalues of the FA Hessian. These are used to modulate the display of the ridge surface (d), valley surface (e), and ridge
line (f) functions defined in terms of the FA gradient g and Hessian eigenvectors ei. The crease features are visible as dark lines (in the case of crease
surfaces) or dark dots (in the case of ridge lines) in the bright areas.

Fig. 4. Anisotropy creases near the corpus callosum. CC, corpus callosum; IC, internal capsule; CR, corona radiata; FX, fornix; CB, cingulum bundles;
SFO, superior fronto-occipital fasciculus; SLF, superior longitudinal fasciculus.
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