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LOrigin uses of Total Variation

m In mathematics: the Plateau problem of minimal surfaces, i.e. surfaces of minimal
area with a given boundary

m In image analysis: denoising, image reconstruction, segmentation...
m An ubiquitous prior for many image processing tasks.
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Denoising

Determine an unknown image from a noisy observation.
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Methods

All methods based on some statistical inference.
m Fourier/Wavelets
m Markov Random Fields
m Variational and Partial Differential Equations methods
m ..

We focus on variational and PDE methods.
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Recovery

m The problem: Find u such that
llu— uol® = NMo®, >~ uj =" uoj (1)
i ij
is not well-posed. Many solutions possible.
m In order to recover u, extra information is needed, e.g. in the form of a prior on u.
m For images, smoothness priors often used.

m Let Ru a digital gradient of u, Then find smoothest u that satisfy constraints (1),
the smoothest meaning with smallest

T(u) = lIRul = W
i
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Tikhonov regularization

m |t can be show that this is equivalent to minimize
E(u) = |IKu = o1 + Al|Rul|?

fora A = A\(o) (Wahba?).
m E(u) minimizaton can be derived from a Maximum a Posteriori formulation

_ puolu)p(u)

Arg.maxp(u|u
T (uluo) p(to)

m Rewriting in a continuous setting:

E(u):/(Ku—uo)2 dx+>\/ |Vu|? dx
Q 0
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How to solve?

m Solution satisfies the Euler-Lagrange equation for E:
K* (Ku — up) — AAu = 0.

(K* is the adjoint of K)
m A linear equation, easy to implement, and many fast solvers exit, but...
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Tikhonov example

Denoising example, K = Id.

Original A =50 A =500

m Not good: images contain edges but Tikhonov blur them. Why?
m The term [,,(u — up)? dx: not guilty!

m Then it must be [, |Vul? dx. Derivatives and step edges do not go too well
together?
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m Set Q = [—1,1], aareal number and u the step-edge function

U(X){o x<0

a x>0

m Not differentiable at 0, but forget about it and try to compute

/1 |t (x)? dx.
.

m Around 0 “approximate” uv’(x) by

u(h) — u(=h)

oh h > 0,small
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m with this finite difference approximation

u'(x) =~ 2—3,7, X € [—h, h|

m then

1 —h h 1
/ 2 / 2 / 2 ’ 2
[1 0 (X) 2 dx /71|u(x)| dx+/7,|7u )] dx+/h|u(x)| d

0+ 2h x (z—ah)zw

§—>oo, h—0

m So a step-edge has “infinite energy”. It cannot minimizes Tikhonov.
m What went “wrong”: the square:
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L 1-D computation on step edges

m Replace the square in the previous computation by p > 0 and redo:
m Then

/1 I/ (x)|P dx
—1

—h h 1
/ \u(x)\pdx+/_h|u(x)|pdx+/h U/ (X)|P dx

= 0+2hx]| a ‘p 40

= X ﬁ

= |aP(2h)'P <o whenp <1
m When p < 1 this is finite! Edges can survive here!

m Quite ugly when p < 1 (but not uninteresting)
m When p = 1, this is the Total Variation of u.
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m Let u: Q C R” — R. Define total variation as

J(u):/ Vuldx, |Vu|=
Q

m When J(u) is finite, one says that u has bounded variations and the space of
function of bounded variations on Q is denoted BV(Q).
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L First definition

m Expected: when minimizing J(u) with other constraints, edges are less penalized
that with Tikhonov.

m Indeed edges are “naturally present” in bounded variation functions. In fact:
functions of bounded variations can be decomposed in

smooth parts, Vu well defined,
Jump discontinuities (our edges)

something else (Cantor part) which can be nasty...

m The functions that do not possess this nasty part form a subspace of BV(Q2)
called SBV(), The Special functions of Bounded Variation, (used for instance
when studying Mumford-Shah functional)
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ROF Denoising

m State the denoising problem as minimizing J(u) under the constraints

/udx:/ Uo dx, /(u—uo)2 dx = [Qlo? (|| = area/volume of Q)
Q Q Q

m Solve via Lagrange multipliers.
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TV-denoising

m Chambolle-Lions: there exists A such the solution minimizes
1
Ery(u) = - / (Ku — up)? dx + >\/ |Vu| dx
2 Ja Q
m Euler-Lagrange equation:

Vu
K*(Ku — —d
(Ku — up) IV(\V ‘)

m The term div ( Vu

\VU\> is highly non linear. Problems especially when |Vu| = 0.

m In fact IVVUU/I (x) is the unit normal of the level line of u at x and div (‘gﬂl) is the

(mean)curvature of the level line: not defined when the level line is singular or
does not exist!
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Acar-Vogel

m Replace it by regularized version
[Vulg =+/IVuZ+8, >0

m Acar - Vogel show that

lim, (Jﬁ(u):/nwum dx) — J(u).
m Replace energy by

E'(u) = /Q(Ku— Uo)? dx + AJs (U)

m Euler-Lagrange equation:

Vu
K*(Ku—uo)—/\div( ):0
IVuls

The null denominator problem disappears. )
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Example

Implementation by finite differences, fixed-point strategy, linearization.

Original A=158=10"*
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L Inpainting/Denoising

m Filling u in the subset H C Q where data is missing, denoise known data

m Inpainting energy (Chan & Shen):

]
Emv(u) =5 /Q\H(uf Ug)? dx + /\/Q |Vu| dx

m Euler-Lagrange Equation:

(u— up)x — Adiv (;—Z‘) =0

(x(x) =1is x ¢ H, 0 otherwise).

m Very similar to denoising. Can use the same approximation/implementation.
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Segmention

Inpainting - driven segmention (Lauze, Nielsen 2008, IJCV)

Aortic calcifiction Detection Segmention

“‘ |
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L Relaxing the derivative constraints

m With definition of total variation as
J(u) = / Vu| dx
Q
u must have (weak) derivatives.

m But we just saw that the computation is possible for a step-edge u(x) = 0, x < 0,
u(x)=a, x>0:

1
| w0~ a

m Can we avoid the use of derivatives of u?
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everywhere norm 1.
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L Relaxing the derivative constraints

m Assume first that Vu exists.

Vu

[Vul =Vu.- —
vul

Yu

oul is the normal to the level lines of u, it has

(except when Vu = 0) and
everywhere norm 1.

m Let V the set of vector fields v(x) on Q with |v(x)| < 1. I claim
J(u) =sup [ Vu(x) - v(x)dx

veVvJQ

(consequence of Cauchy-Schwarz inequality).
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veWJQ
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boundary of Q Then

J(u) = sup [ Vu(x) - v(x)adx
veWJQ

m But then | can use Divergence theorem: H C D C R”, f: D — R differentiable
function, g = (g',...,g") : D — R" differentiable vector field and

divg =31, Gx;»
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with n(s) exterior normal field to OH.
m Apply it to J(u) above:

J(u) = sup (—/Qu(x) div v(x) dx)

vew

m The gradient has disappeared from u! This is the classical definition of total
variation.
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L Relaxing the derivative constraints

m Restrict to the set W of such v’s that are differentiable and vanishing at 9%, the
boundary of Q Then

J(u) = sup [ Vu(x) - v(x)adx
veWw JQ
m But then | can use Divergence theorem: H C D C R”, f: D — R differentiable

function, g = (g',...,g") : D — R" differentiable vector field and
divg =31, Gx;»

/Vf-gdx:—/fdivgdx+/ fg - n(s) ds
H H aH

with n(s) exterior normal field to OH.
m Apply it to J(u) above:

J(u) = sup (—/Qu(x) div v(x) dx)

vew
m The gradient has disappeared from u! This is the classical definition of total
variation.

m Note that when Vu(x) # 0, optimal v(x) = (Vu/|V|u)(x) and divv(x) is the
mean curvature of the level set of u at x. Geometry is there! e
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m u the step-edge function defined in previous slides. We compute J(u) with the
new definition.

m here W = {¢: [-1,1] — R differentiable, $(—1) = ¢(1) = 0, |p(x)| < 1},

]
J(u) = sup/ u(x)¢’(x) dx
pew J 1
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Step-edge

m u the step-edge function defined in previous slides. We compute J(u) with the
new definition.

m here W = {¢: [-1,1] — R differentiable, $(—1) = ¢(1) = 0, |p(x)| < 1},
J(u) = sup /1 u(x)¢’'(x) dx
pew J—1

m we compute

/_ u(x)e’(x x_a/¢ x) dx

= a(6(1) - 6(0))
= ~a$(0)
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Step-edge

m u the step-edge function defined in previous slides. We compute J(u) with the
new definition.

m here W = {¢: [-1,1] — R differentiable, $(—1) = ¢(1) = 0, |p(x)| < 1},
1
J(u) = sup/ u(x)¢’'(x) dx
pew J—1
m we compute

/_ u(x)e’(x x_a/¢ x) dx

= a(6(1) - 9(0))
= ~a$(0)

m As —1 < ¢(0) < 1, the maximum is |a|.
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Step-edge

m u the step-edge function defined in previous slides. We compute J(u) with the
new definition.

m here W = {¢: [-1,1] — R differentiable, $(—1) = ¢(1) = 0, |p(x)| < 1},
1
J(u) = sup/ u(x)¢’'(x) dx
pew J—1
m we compute

/_ u(x)e’(x x_a/¢ x) dx

= a(6(1) - 9(0))
= ~a$(0)

m As —1 < ¢(0) < 1, the maximum is |a|.
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2D example

m B open set with regular boundary curve partialB, Q2 large enough to contain B and
x g the characteristic function of B

1 xeB
XB(X){O x¢B
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2D example

m B open set with regular boundary curve partialB, Q2 large enough to contain B and
x g the characteristic function of B

1 B
xs(x) = {0 ifZB

m For v € W, by the divergence theorem on B and its boundary 0B
/X(x)div v(x)dx = / div v(x) dx
Q B
= —/ v(s) - n(s)ds
oB

(n(s) is the exterior normal to 9B)
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2D example

m B open set with regular boundary curve partialB, Q2 large enough to contain B and
x g the characteristic function of B

1 B
xs(x) = {0 ifZB

m For v € W, by the divergence theorem on B and its boundary 0B
/X(x)div v(x)dx = / div v(x) dx
Q B
= —/ v(s) - n(s)ds
oB

(n(s) is the exterior normal to 9B)
m This integral is maximized when v = —n : length of 9B perimeter of B.
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m Let H C Q. If its characteristic function x satisfies
J(xH) < o0

H is called set of finite perimeter (and Perq(H) := J(xy) is its perimeter)
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m Let H C Q. If its characteristic function x satisfies
J(xH) < o0

H is called set of finite perimeter (and Perq(H) := J(xy) is its perimeter)

m This is used for instance in the Chan and Vese algorithm.
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Sets of finite perimeter

m Let H C Q. If its characteristic function x satisfies
J(xH) < o0

H is called set of finite perimeter (and Perq(H) := J(xy) is its perimeter)
m This is used for instance in the Chan and Vese algorithm.
m If J(u) < oo and H; = {x € Q, u(x) < t} the lower t-level set of u,

+0oo
J(u):/ J(x#,) dt Coarea formula
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m Let K € L2(Q) the closure of the set {div v, v € C}(Q)?, |v(x)| < 1} i.e. the
image of W by div.
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m Let K € L2(Q) the closure of the set {div v, v € C}(Q)?, |v(x)| < 1} i.e. the
image of W by div.
m Then

J(u) = sup (/Q updx = (u, ¢>L2(Q))

peK
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Chambolle algorithm

m Let K € L2(Q) the closure of the set {div v, v € C}(Q)?, |v(x)| < 1} i.e. the
image of W by div.
m Then

J(u) = sup (/Q updx = (u, ¢>L2(Q))

beK
m Solution of the denoising problem arg.min [, (v — Ug)? + AJ(u) given by
u=up — mrk (o)

with 7,k orthogonal projection onto the convex set AK (Chambolle).
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m Let K € L2(Q) the closure of the set {div v, v € C}(Q)?, |v(x)| < 1} i.e. the
image of W by div.

m Then

J(u) = sup (/Q updx = (u, ¢>L2(Q))

peK

m Solution of the denoising problem arg.min [, (v — Ug)? + AJ(u) given by
u=up — mrk (o)

with 7,k orthogonal projection onto the convex set AK (Chambolle).

m Needs a bit of convex analysis to show that: subdifferentials and subgradients,
Fenchel transforms, indicators/characteristic functions and elementary results on
them



Total Variation
LTota\ Variation Il

L Using the new definition in denoising: Chambolle algorithm

Chambolle algorithm

m Let K € L2(Q) the closure of the set {div v, v € C}(Q)?, |v(x)| < 1} i.e. the
image of W by div.

m Then

J(u) = sup (/Q updx = (u, ¢>L2(Q))

peK

m Solution of the denoising problem arg.min [, (v — Ug)? + AJ(u) given by
u=up — mrk (o)

with 7,k orthogonal projection onto the convex set AK (Chambolle).

m Needs a bit of convex analysis to show that: subdifferentials and subgradients,
Fenchel transforms, indicators/characteristic functions and elementary results on
them



Total Variation
LTota\ Variation Il

L Using the new definition in denoising: Chambolle algorithm

Fenchel Transform




Total Variation
LTota\ Variation Il

L Using the new definition in denoising: Chambolle algorithm

Fenchel Transform

m X Hilbert space, f : X — R convex, proper. Fenchel transform of F:

F*(v) = sup ((u, v)x — F(u))
ueX
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Fenchel Transform

m X Hilbert space, f : X — R convex, proper. Fenchel transform of F:

F*(v) = sup ((u, v)x — F(u))
ueX

m Geometric meaning: take u* such that F*(u*) < +oo: the affine function
a(u) = (u,u™) — F*(u")

is tangent to F and a(0) = —F*(u*).
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m Convex
m if & is the transform of F and A > 0, then the transform of u — AF(A™"(u) is A®.
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Fenchel transform

m Interesting properties:
m Convex
m if & is the transform of F and A > 0, then the transform of u — AF(A™"(u) is A®.
m if F 1-homogeneous, i.e. F(Au) = AF(u) then F*(u) only take values 0 and +oc as the
property above implies F* = AF*, A > 0.
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Fenchel transform

m Interesting properties:

Convex

if ® is the transform of F and A > 0, then the transform of u +— AF(A~"(u) is A®.

if F 1-homogeneous, i.e. F(Au) = AF(u) then F*(u) only take values 0 and +oco as the
property above implies F* = AF*, A > 0.

In that case, the set where F* = 0 i a closed convex set of X, F* = §¢, the indicator

function of C,
0 xeC
) = ’
c(x) {+Oo x¢cC
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Fenchel transform

m Interesting properties:

Convex

if ® is the transform of F and A > 0, then the transform of u +— AF(A~"(u) is A®.

if F 1-homogeneous, i.e. F(Au) = AF(u) then F*(u) only take values 0 and +oco as the
property above implies F* = AF*, A > 0.

In that case, the set where F* = 0 i a closed convex set of X, F* = §¢, the indicator

function of C,
0 xecC
é = ’
c(x) {+<><> X & C
Forx e R — |x|,C = [-1,1]
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Fenchel transform

m Interesting properties:

Convex

if ® is the transform of F and A > 0, then the transform of u +— AF(A~"(u) is A®.

if F 1-homogeneous, i.e. F(Au) = AF(u) then F*(u) only take values 0 and +oco as the
property above implies F* = AF*, A > 0.

In that case, the set where F* = 0 i a closed convex set of X, F* = §¢, the indicator

function of C,
0 xeC
) = ’
c(x) {+Oo x¢cC

ForxeR»—wx\ C=[-1,1]
For J(u), C
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Subdifferentials

m subdifferential of F at u: OF(u) = {v € X, F(w) — F(u) > (w — u,v),VYw € X}.
v € 9F(u) is a subgradient of F at u.
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m Three fundamental (and easy) properties:
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m Three fundamental (and easy) properties:
m 0 € 9F(u) iff u global minimizer of F
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Subdifferentials

m subdifferential of F at u: OF(u) = {v € X, F(w) — F(u) > (w — u,v),VYw € X}.
v € 9F(u) is a subgradient of F at u.
m Three fundamental (and easy) properties:

m 0 € 9F(u) iff u global minimizer of F
m Ut €OF(uU) & F(u)+ F*(u*) = (u,u*)
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Subdifferentials

m subdifferential of F at u: OF(u) = {v € X, F(w) — F(u) > (w — u,v),VYw € X}.
v € 9F(u) is a subgradient of F at u.
m Three fundamental (and easy) properties:

m 0 € 9F(u) iff u global minimizer of F
m Ut €OF(uU) & F(u)+ F*(u*) = (u,u*)
m Duality: u™ € OF(u) & u € OF*(u)
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Subdifferentials

m subdifferential of F at u: OF(u) = {v € X, F(w) — F(u) > (w — u,v),VYw € X}.
v € 9F(u) is a subgradient of F at u.
m Three fundamental (and easy) properties:
m 0 € 9F(u) iff u global minimizer of F
m Ut €OF(uU) & F(u)+ F*(u*) = (u,u*)
m Duality: u™ € OF(u) & u € OF*(u)
m The duality above allows to transform optimization of homogeneous functions into
domain constraints!
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TV-denoising

m To minimize:

1
Sllu = ol g + AI(u)
m optimality condition:

U —u

0€u—uy+ NoJ(u) € oJ(u)
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TV-denoising

m To minimize:

1
S0 = ol + M)

m optimality condition:

0€u—uy+ NoJ(u) th — U

€ 8J(u)

m Duality
s} Up — u

A A

U —u
A

1
—oJ*
v ()
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TV-denoising

m To minimize:

1
Sllu = ol g + AI(u)
m optimality condition:

U —u

0€u—uy+ NoJ(u) € oJ(u)

m Duality

U _up—u 1 up—u

— —oJ*

A A + A ( A )
m Setw = - w satisfies

oew— 2 Tosw
A A



Total Variation
LTota\ Variation Il

L Using the new definition in denoising: Chambolle algorithm

TV-denoising

m To minimize:

1
Sllu = ol g + AI(u)
m optimality condition:

U —u

0€u—uy+ NoJ(u) € oJ(u)

m Duality

U _up—u 1 up—u

— —oJ*

A A + A ( A )
m Setw = - w satisfies

oew— 2 Tosw
A A

m This is the subdifferential of the convex function

1 > 1
—||lw — ug/X —J*(w
5w = o/ A2 + £ (w)
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TV-denoising

m To minimize:

1
Sllu = ol g + AI(u)
m optimality condition:

U —u

0€u—uy+ NJ(u) € oJ(u)

m Duality

U _up—u 1 up—u

— —oJ*

A A + A ( A )
m Setw = - w satisfies

oew— 2 Tosw
A A

m This is the subdifferential of the convex function
1w = o /A2 + Lo (w)
2 0 A

m But J*(w) = dk(w): we get w = mx(gA). °
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Example

The usual original

Denoised by projection
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m Image Simplification
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Camerman Example

Solution of denoising energy present numerically stair-casing effect (Nikolova)

Original A =100 A =500

The gradient becomes “sparse”.
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