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Outline
• The type of data we are considering (large p, small n problems)

• The theory behind such problems

• Methods and examples
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The type of data
• Supervised 

• Classification or regression

• Large p, small n problems (many features, few observations)

• Examples: Microarrays in genome research, (spectral) images of samples 
which are rare or expensive 

• Next: What should we consider for this type of data?
– We need solutions which are sufficiently rich to answer the questions 

at hand and at the same time generalize well to yet unseen data 
instances
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Considerations - Issue of overfitting in large 
p, small n problems (bias-variance trade off)

Low bias

High variance

High bias

Low variance

High complexityLow complexity
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More on bias-variance trade-off

• Figure is from: Hastie et al., Elements of Statistical Learning, 2nd Ed.
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Curse of dimensionality
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Curse of dimensionality

•For data uniformly distributed in a unit sphere the 
median distance from the center of the sphere to the 
closest point is

•Interpolations 
become 
extrapolations
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Considerations - The curse of dimensionality
• The no. of regions grow exponentially with the dimensionality p (Bellman 

1961)

• When p increases it is necessary to cover a larger and larger range of 
each variable in order to cover the same fraction of data (exponential 
relation)

– This means that local estimates become infeasible: (a) the estimates 
become global if we include more samples, (b) the variance of the 
estimate increases if we user fewer samples

• The median distance from the center of data to the closest point also 
grows with the dimensions – data points are all close to the boundary

– This means that interpolations become extrapolations which have less 
generalization power
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Considerations - Blessings of dimensionality
• It’s not all bad… (Donoho 2000)

• 1st blessing comes from probability theory and assumes that there are 
many similar (highly correlated) features which we can average over.

• 2nd blessing comes from the central limit theorem and says that there is 
an underlying limit distribution which is approached as the dimensions go 
to infinity = data lie on a low-dimensional manifold.

• 3rd blessing arises when measurements are taken from an underlying 
continuous process, e.g. images or spectra and says that for such data 
the underlying structure often gives an approximate finite dimensionality 
= data lie on a low-dimensional manifold. 
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Considerations - Dimension reduction is 
crucial 
• Feature selection or extraction 

– Forward selection
– Backward elimination

• Regularization of parameters (priors)
– Ridge regression, lasso, elastic net, SDA, SPLS

• Projections to lower dimensions – latent variables - decompositions
– PCA, PLS, MNF, ICA, multiway models

• Clustering of features

• Structuring parameter estimates
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The theory behind - regularizations
• First we turn to regression

• Y: continuous response/output
• X: observations times predictors/features
• β : parameters in model
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Sparsity in regression 
using l1-regularization
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The elastic net
• Advantages: Combines the shrinkage of ridge and parameter selection of 

the lasso to obtain robust sparse estimates
– Get rid of irrelevant variables/select important variables (lasso)
– Ability to include more variables than there are observations (ridge)
– Works well when covariates are highly correlated; allows us to 

“average” highly correlated features and obtain more robust 
estimates (grouping feature)

• Disadvantages: Issue of tuning two parameters
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Example of sparse regression
• Multi-spectral images of sand used to make concrete
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Examples - Spectra
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Example - Estimation of moisture content in 
sand used to make concrete
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• Features: 1st, 5th, 10th, 30th, 50th, 70th, 90th, 95th, and 99th 

percentiles are extracted from the ROIs; resulting in 2016 features.
– On each spectrum, on pairwise differences and pairwise ratios 

between spectra
• n = 21 images of sand
• p = 2016 features 

which represent 
each image

Example - Estimation of moisture content in 
sand used to make concrete
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Results - sand
• Sand (type 2), MSE = 0.2 moisture % (leave-one-out predictions)
• 109/2016 features were chosen, ridge regularization 10-1



19/08/2010Sparsity Summer School19 DTU Informatics, Technical University of Denmark

Classification
• In the next slides we will look at classification methods
• And how to make them sparse

• We consider:

• K normally distributed classes with means  μj, j=1,…,k and equal 
dispersion ∑.
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Linear discriminant analysis
– Maximize between-class sums of squares (variance) 

– Minimize within-class sums of squares (variance)

– Find the discriminating directions as, j=1,…,k-1 (Fisher’s criterion)

– Under the orthogonality constraint
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Optimal scoring – Classification via 
regression
• It can be shown that optimal scoring and LDA are equivalent (using 

the equivalence with canonical correlation analysis - CCA)

• Y is a matrix of dummy variables of the classes.
• θ assigns a score θij for each class i and each parameter vector βj. The 

scores give a continuous ordering of the samples. Thus, we regress 
these quantitative responses on the predictors X.
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Methodical development - Sparse 
discriminant analysis
• The ridge and lasso penalties are added to the parameter estimates

• β is p times K
1. Fix θ and update β (elastic net)
2. Next fix β and update θ (singular value decomposition)
3. Repeat step 1 and 2 until convergence or maximum no. of iterations 

is reached
4. Remove trivial directions using the singular values
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Examples of sparse classification
• Example 1 (Matlab): Silhouette profiles: male vs. female (landmarks).

• Example 2: Classification of three fish species (RGB images).

• Example 3: Mixture models – nonlinear boundaries and subgroups within 
classes. A simulation example.
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Example 1 (Matlab) – the data
• load('Silhouettes') 

– % Xa (data) , Fem (female indices), Male (male indices)
• figure, plot([Xa(Fem,:) ].','-+'); axis equal; % 19 female shapes
• figure, plot([Xa(Male,:) ].','-+'); axis equal; % 20 male shapes

Shape = 65 landmarks of (x,y) coordinates = 130 features
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Example 1 (Matlab) – predictors and 
response
• X(:,1:65) = real(Xa); % the first 65 features are the x-coordinates
• X(:,66:130) = imag(Xa); % the last 65 features are the y-coordinates
• Yc(Fem) = 1; % female =  class 1
• Yc(Male) = 2; % male = class 2
• Y = double([Yc-1, -(Yc-2)]); % Y dummy (zeros and ones)

Y =
1     0
0     1
1     0
0     1
0     1
.
.
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Example 1 (Matlab) – train and test
• I = randperm(N);
• Itr = I(1:22);
• Itst = setdiff(1:N,Itr);

• Ytr = Y(Itr,:);
• Xtr = X(Itr,:);
• Xtst = X(Itst,:);

Itr = 31    20    13    16    
14    21     5    35    29     
8    18    27     9    30     1    
24    36    17    26    28    
15     4

Itst = 2     3     6     7    10    
11    12    19    22    23    
25    32    33    34    37    
38    39
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Example 1 (Matlab) – normalizing data
• [Xtr,mx,vx] = normalize(Xtr);
• Xtst = normalize_test(Xtst, mx, vx);

• Every feature gets zero mean and standard deviation one, XTX is now the 
correlation matrix of X.
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Example 1 (Matlab) – running sparseLDA 
• Setting parameters:
• lambda = 1e-2; % L2-norm parameter
• stop = -10 % L1-norm parameter (number of non-zero loadings)
• maxiter = 30; % parameter: max. number of iterations

• Running the function:
• [sl theta rss] = slda(Xtr, Ytr, lambda, stop, maxiter,1);

ite: 1, ridge cost: 22.0037, |beta|_1: 1.1229
ite: 2, ridge cost: 22.0293, |beta|_1: 3.1761
ite: 3, ridge cost: 22.0293, |beta|_1: 3.1761
final update,ridge cost: 5.2001, |beta|_1: 3.1761

ite:%201,%09%20ridge%20cost:%2022.0037,%09%20%7Cbeta%7C_1:%201.1229%0D%0Aite:%202,%09%20ridge%20cost:%2022.0293,%09%20%7Cbeta%7C_1:%203.1761%0D%0Aite:%203,%09%20ridge%20cost:%2022.0293,%09%20%7Cbeta%7C_1:%203.1761%0D%0Afinal%20update,%09%20ridge%20cost:%205.2001,%09%20%7Cbeta%7C_1:%203.1761�
ite:%201,%09%20ridge%20cost:%2022.0037,%09%20%7Cbeta%7C_1:%201.1229%0D%0Aite:%202,%09%20ridge%20cost:%2022.0293,%09%20%7Cbeta%7C_1:%203.1761%0D%0Aite:%203,%09%20ridge%20cost:%2022.0293,%09%20%7Cbeta%7C_1:%203.1761%0D%0Afinal%20update,%09%20ridge%20cost:%205.2001,%09%20%7Cbeta%7C_1:%203.1761�
ite:%201,%09%20ridge%20cost:%2022.0037,%09%20%7Cbeta%7C_1:%201.1229%0D%0Aite:%202,%09%20ridge%20cost:%2022.0293,%09%20%7Cbeta%7C_1:%203.1761%0D%0Aite:%203,%09%20ridge%20cost:%2022.0293,%09%20%7Cbeta%7C_1:%203.1761%0D%0Afinal%20update,%09%20ridge%20cost:%205.2001,%09%20%7Cbeta%7C_1:%203.1761�
ite:%201,%09%20ridge%20cost:%2022.0037,%09%20%7Cbeta%7C_1:%201.1229%0D%0Aite:%202,%09%20ridge%20cost:%2022.0293,%09%20%7Cbeta%7C_1:%203.1761%0D%0Aite:%203,%09%20ridge%20cost:%2022.0293,%09%20%7Cbeta%7C_1:%203.1761%0D%0Afinal%20update,%09%20ridge%20cost:%205.2001,%09%20%7Cbeta%7C_1:%203.1761�
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Example 1 (Matlab) – the selcted parameters
• Which parameters are active?
• [ActV,J]=find(sl);
• disp(ActV')

10    13    14    56    87    88   105   
114   115   130
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Example 1 (Matlab) – the errors
• Prediction:
• [err_tr, err_tst, DCtr, DCtst] = predictSLDA(Xtr, Yc(Itr), Xtst, Yc(Itst), 

sl);

• disp([err_tr*100, err_tst*100])

18.18%  17.65%



19/08/2010Sparsity Summer School31 DTU Informatics, Technical University of Denmark

Exmample 1 (Matlab) – illustrating the 
model
• figure, plot(mean(Xa,1).','-r','MarkerSize',10,'linewidth',1), hold on; axis equal;
• Xa_pred = [sl(1:65,1)+i*sl(66:end,1)];
• plot(mean(Xa,1).'+(std(Xa,[],1).'.*Xa_pred*2),'-b','MarkerSize',10,'linewidth',1);
• plot(mean(Xa,1).'-(std(Xa,[],1).'.*Xa_pred*2),'-b','MarkerSize',10,'linewidth',1);
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Example 2 – sorting fish species
• Classify three fish species objectively (can eventually be implemented in 

a construction line)
• The fish species: Cod, haddock, and whiting 
• Image analysis of standard color images -> Classification

Camera + 
computerized 
classification

Cod

Haddock

Whiting

Fish sorting
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Example 2 - The images
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Example 2 - The shape features
• Minimum description length (MDL) landmarks: 700 points for the 

contour, 300 for the midline, and 1 for the eye of (x,y)-coordinates
• Correspondence of landmarks between fish obtained using Procrustes 

alignment (translation and rotation removed)
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Example 2 - The texture features

• Red, green, and blue intensities 
(standard in computer vision)

• A total of 3 x 33782 = 
101346 texture features

• The pixels were matched/annotated 
using a Delauney triangulation
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Example 2 - Results on fish species
• Originally: PCA and LDA gave 76% resubstitution rate
• Comparisons with shrunken centroids regularized discriminant analysis 

(RDA) and sparse partial least squares (SPLS)

• RDA builds on the same underlying model as SDA, but a different 
algorithmic approach to obtaining stable and sparse solutions.

• SPLS does not build on the same underlying model, but uses the same 
algorithmic approach as SDA.

Method Train Test Non-zero 
loadings

RDA(n) 100% 41% 103084

RDA(n) 100% 94% 103348

SPLS 100% 81% 315

EN 100% 94% 90

SDA 100% 97% 60
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Example 2 -
Interpretability
• The 1st and 2nd sparse

directions (SDs)

• With data projected onto 
them

• With the selected features 
for each of them 
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Example 3: Nonlinear boundaries and 
subgroups within classes
• Simulate two groups in four dimensions (each group is a mixture of five 

Gaussians)

– First generate 5 means mk from a multivariate Gaussian distribution 
N((0.4,0,0.4,0)’,I) => BLUE .

– Another 5 means µk from N((0,0.4,0,0.4)’,I) => RED. 
– Pick at random an mk or µk with probability 1/5, and then generate a 

N(mk,I/5) or N(µk,I/5) which leads to a mixture of Gaussians for each 
class.

– Add another 196 randomly distributed variables to all observations
– Data is now 200 by 200
– With 2 groups and 5 subgroups for each group.
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Example 3: sparse linear discriminant 
analysis (4 non-zero parameters, 2 SDs)
• Misclassification: 29%
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Example 3: sparse mixture discriminant 
analysis
• Instead of dummy Y, use subprobabilities of classes (Z)
• For example: 

– true subclass = 0.96
– true class, not subclass

= 0.01
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Example 3: sparse mixture discriminant 
analysis
• Rj = [5,5]; % number of subgroups in each class
• lambda = 1e-6; % L2-norm penalty weight
• stop = -2; % L1-norm penalty (no. of nonzero loadings)
• maxiter=20;

• [sl, theta, Znew, mu, Cov, Dp] = smda(X,Z,Rj,lambda,stop,maxiter,1,1e-
8);

• The algorithm uses the Expectation Maximization algorithm to update Z 
and otherwise works like slda.
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Example 3 – smda prediction
Rz = [0,Rj];

for ii=1:K % probability for class ii
pr(:,ii) = sum(Znew(:,(sum(Rz(1:ii))+1):(sum(Rz(1:ii))+Rz(ii+1))),2);

end

[G, Yhat] = max(pr,[],2); % max. prob.
err_tr = sum(Yhat~=(y+1))/length(y)

• Misclassification: 6%
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Example 3 – smda directions
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Sparse  partial least squares
• Developed by Chun and Keles, University of Wisconsin, published in 2010

• Latent variables (like in PCA but correlated with Y) 

• With sparse loadings (like in SPCA)

• Can be used for regression or classification

• Builds on the elastic net and the same algorithmic approach as both 
SPCA and SDA
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Sparse partial least squares
• SPLS promotes the lasso zero property onto a surrogate direction vector 

c instead of the original latent direction vector a, while keeping a and c
close (like in SPCA).

• Where M=XTYYTX, 0 ≤ κ ≤ 1, and λ2 and λ1 are the weights on the ridge 
and lasso constraints, respectively.

• Solved by iterating over an elastic net regression step with a fixed, and 
an svd step with c fixed.

• In fact: when κ=0.5 and M=XTX this is the same as SPCA.

 

min
a,c

  −κaTMa + (1−κ)(c − a)T M(c − a) + λ1 c 1 + λ2 c 2

s.t.        aTa =1
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