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 Accelerated and improved computational 
algorithms forming 3D volumes to assess 
neural ultrastructure in large transmission 
electron microscopy (TEM) images. 

Image Registration: finding the transformation that 
aligns images into one frame of reference. 
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•  4nmx4nmx40nm 
•  Assuming 6 months of 

24/7, camera array 
5-8Mpix/s → ~400µm 
cube 

•  Pixels: 100k x100k x 10k 
•  Terabyte image volumes 
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•  Mapping of objects and their 
connections. 

•  Inherently multi-scale 
processes. Small circuits 
extend through volumes of 
many cubics of µm 

•  Slow! Terabyte-scale volumes 

•  Inter-expert and intra-expert 
variability 
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Smith, S. J. (2007). “Circuit reconstruction tools today”. Curr Opin Neurobiol.   

•  Tissue sample is slices into ultrathin sections with a 
diamond knife and then each slice is imaged by an 
electron beam passing through the tissue. 

•  Building volumes requires to precisely mosaic 
distorted image tiles and register distorted mosaics. 
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Main Types of EM Imaging Techniques 

Differences 
ssTEM 

Serial section transmission  
Anderson et al., 2009. 

SBFSEM 
Serial block face scanning 
Denk and Horstmann, 2004 

Cutting from tissue 
blocks cut prior to imaging cut away and discarded 

after imaging 

Image acquisition transparent’ samples 
surface imaging. 
“backscattered electrons 
detected  by scanning 
remaining block.  

Alignment -Alignment needed +No alignment 

Resolution 
+in-section 1-5 nm, high 
SNR 
Slice thickness ~50 nm 

-in-section 20-30 nm per 
pixel 
Thickness 25 nm 

*SSET/ EMT Similar resolution,low SNR  
artifacts due to limited acquisition angles 

Mischenko, J. Neuroscience Methods 2009 
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Main Types of EM Imaging Techniques 

K.L. Briggman and W. Denk, Curr. Opinion in Neurobiology 2006 
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•  TEM which provides resolutions on the order of a 
nanometer, is the primary tool for resolving the 3D 
network structure and connectivity of neurons (e.g. 
required resolution is ~2 nm for synapses ). 

•  Mapping neural circuits can advance 
understanding of brain structure and function. 

•  Insight into abnormal brain connectivity and 
disorders such as autism and epilepsy. 
TEM acquisition is progressing efficiently, the 
computational tools are the bottleneck! 
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•  High resolution and large size of the images. 
•  Large amount of details for relevant features 

–  Tracing vulnerable structures across large volumes. 
–  Neuronal diversity is high. 

•  Deformation induced by both the acquisition process 
and the intrinsic deformation of slices 
–  physically separate objects.  
–  distortions during handling. 
–  distortions by electron beam exposure. 
–  Artifact: folds, burns, tears. 

Prevents using classical approaches developed 
for conventional imaging modalities. 
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Artifacts 

Folds and Splits   Film: holes,  coming in, 
excess support film  
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•  Can be classified into: 
–  Voxel intensities statistics: utilize an information 

theoretic objective function and an optimizer that finds a 
local optimum of the objective function. 

–  Feature-based: identify features to be aligned and an 
optimal transformation that brings them into alignment. 

•  Algorithms for EM images: 
–  Ourselin, S. et al. (IVC 2000): block matching to estimate a 

global rigid transformation. 
–  Anderson et al. (Plos Biology 2009): A complete 

framework mosaicking, reconstruction and visualization 
(Fourier shift property and landmark based approach).  

–  Dauguet, J., et al.  (MICCAI 2007): finite support properties 
of the cubic B-splines, where the initial estimate for the 
affine registration was based Ourselin et al. 



14 

Model   

Image 

Transform applied to 
a)  mosaic camera frames into a large 2D image, and 
b)  construct a 3D volume of neural ultrastructure  

2) Search for correspondences:  
features from both images are compared based on the 
Euclidean distance criterion. 
2a) Brute force search strategy 
2b) Approximate NN 

3) EsDmate the alignment transform by EM‐ICP‐NC 

Scene  

Image 

1) Patch extracDon from both images and projecDon 
based on JL dimension reducDon.  

… 

… …

n x d  n x k 

Mosaic Images  Volume reconstrucDon  

 Correspondence matrix 

Input: TEM Dles or 2D Mosaic Images 

Schematic Outline of Alignment Process 
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Optimality of Template Matching 

consider a signal: 
filter response for signal detection: 

Based on the Schwartz inequality the filter that 
maximizes the SNR is  

the optimal filter in the spatial domain  

template at x0, with  
power spectrum Φ(ω) 

additive 
white noise   

SNR definition: filter response at x0 to the variance of the noise 
(assumed to be wide-sense stationary with zero average)  

template rotated by 1800 and 
translated to x0 

Correlation with the template leads to 
optimal detection as it maximizes the SNR. 

 Template matching by correlation is the optimal 
linear operation for detecting a deterministic 
signal in the presence of additive white noise. 

Brunelli, R., and T. Poggio. 1997. Pattern Recognition. 
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•  Normalized Correlation (NC) similarity measure is 
extensively used. 

•  NC is invariant to linear intensity transformation 
and for small corresponding image patches in two 
successive slices, the intensities are locally 
related by some linear intensity transformation. 

NC is equivalent to a squared Euclidean distance  
meets the requirements of the JL Lemma.  
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Equivalence of NC and Euclidean distance 
when the patches are set to be zero mean and unit length. 
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1. A novel efficient search strategy that enabled us to 
dramatically accelerate feature based registration.  

2. A novel algorithm (EM-ICP-NC) for robust 
estimation of alignment transformation once the 
exact/probabilistic correspondence is determined. 

3.  Evaluation of randomized projection for 
dimensionality reduction in the registration. 

4.  Results demonstrating alignment of TEM images 
of neural ultrastructure with increased accuracy 
and efficiency. 
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Johnson-Lindenstrauss (JL) Lemma 

   Any set of n points in d-dimensional 
Euclidean space can be embedded into 
dimension                is logarithmic in n 
and independent of d,  while maintaining 
pairwise distances with a distortion of at 
most  ε. 

Johnson, W.B. Lindenstrauss, J. (1984) “Extensions of Lipschitz mappings  
into a Hilbert space”, Contemp Math,26: 189–206. 
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•  n - the size of the data set 
•  d - the dimension of Euclidean space 
•  k - the reduced dimension 
•  ε -  the distortion rate  
•  R - random matrix projecting the points 

from Rd to Rk. 
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Achlioptas (2003) 
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Some Intuition/ Illustrative Example 

   Two points that are close together on the sphere are also 
close together when the sphere is projected onto the 2D 

    page. This is true no matter how we rotate the sphere. 
From: Slaney and Casey 2008 
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Random Projections in Practice 

•  Naïve JL solution: dense random matrix 
– k < d,  
– O(dk) per data feature 

•  Open Questions: 
– How to selection the dimension k? 
– Faster projection schemes O(d) using sparse 

matrices 

Rd :n points  

in  

d dimensions 

k 

d
Rk : n points  

in  

k dimensions 

E. Liberty 2009  
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Fixed Model (n)Moving Scene (n)
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Nearest Neighbor (NN) Search 
Given a set P of data points in Rd, and query point q: 
NN: returns a point p in P minimizing ||p-q||. 

Brute force Search: Calculate the distance from q to every p 
and choose the point with minimal distance. 

Slow!  
O(dn) 
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Curse of dimensionality 

•  Current solutions for solving the NN problem 
require either space or query time exponential 
in dimensionality d. 

•  When dealing with a large dimensions, in practice 
the solutions often provide little improvement over 
the naïve algorithm. 

•  The failure of these search algorithms which are 
efficient in low-dimensional spaces to succeed in 
high-dimensions has been called  the `curse of 
dimensionality`: Exponential dependence of 
the algorithm on the dimension of the input. 

Andoni and Indyk 2006  
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•  Recently several probabilistic algorithms have been 
proposed for ANN search. The algorithms yield sublinear 
complexity in the size of the data. 

•  This approach results in efficient algorithms which are 
based on data structures such as locality sensitive 
hashing (LSH) and tree based search. 

Indyk, P. Motwani, R. (1998) 

•  c-ANN: given a c>0, returns a point pєP s.t ||p-q|| 
is at most c=(1 + ε) factor larger from the distance 
of the nearest point p є P from q. 

Query time: Fast! O(dn ρ(c) )  
space O(dn1+ρ(c)) where ρ(c) = 1/c2 + O(1).  

(1+ε)r

r
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•  si: points of the scene patch set   
•  mj: points of the model patch set 
•  nS, nM: # of points respectively  
•  T:  transformation (scene→model) 
•  A:      correspondence matrix (for each 

scene point indication the matching point). 

S. Granger and X. Pennec, Miccai 2001 eccv 2002 

P.J. Besl and N.D. McKay, IEEE PAMI, 14(2):239–256, 1992. 
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•  The probability of si to correspond to mj can 
be modeled by a Gaussian distribution.  

•  In the case of homogeneous isotropic 
Gaussian noise, where σ represents the 
noise in the measurement si. 

€ 

p si |mj,T( ) = exp −
T ⋅ si −mj

2

2σ 2
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•  The idea is to maximize the log-likelihood 
of the data distribution 

•  The correspondences are unknown hidden 
random variables 

€ 

log p(S,A |M,T)

€ 

A ∈ Rns ×nm
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•  Represent the correspondence estimation as an 
indicator variable 

•  The joint probability of si and Aij is the product 

•  The joint likelihood of all the S,A 

€ 

Aij =1 iff si matches m j

Aij = 0 otherwise.

€ 

p si ,A ij = 1 |M,T( ) = π ij p si |mj ,T( )

€ 

p(S,A |M,T) = π ij p si |mj,T( )( )ij∏
Aij
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•  The prior is based on the NC patch measure defined, 
which encodes knowledge on the structure of the objects. 

•  T is fixed and the probability of the matches A are 
estimated. 

•  Compute the expectation: 

€ 

π ij =
NC(pi, p j )
NC(pi, pk )

k
∑

€ 

p A | S,M,T( ) =
p(S,A |M,T)
p(S |M,T)

=
π ij p si |mj ,T( )
π ik p si |mk ,T( )

k
∑

 

 

 
 
 

 

 

 
 
 ij

∏

Aij

€ 

E Aij( ) =

π ij exp −
T ⋅ si −mj

2

2σ 2

 

 

 
 

 

 

 
 

π ik exp −
T ⋅ si −mk

2

2σ 2

 

 
  

 

 
  

k
∑
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•  The expected value of the complete data 
log-likelihood is maximized to find the new 
estimate of T: 

•  We optimize: 

€ 

Tt = argmaxT E log p(S,A |M,T) | S,M,T (t−1)[ ]( )

€ 

E log π ij p si |mj,T( )( )ij∏
Aij 

 
  

 
 | S,M,T (t−1) 

  
 
  

€ 

= E Aij( )
j
∑

i
∑ log π ij p si |mj,T( )( )
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•  Updated transform T is given by: 

€ 

T t = argmaxT Aij
j
∑

i
∑ −1

2σ 2 T ⋅ si −mj
2
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By composing pairwise 2D alignments of 
consecutive slices while taking as reference 

the middle of the stack. 
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TEMCA 1.0: Series of 160 TEM images of the lateral 
geniculate nucleus of a ferret.  
–  Each image is about 10, 000 × 10, 000 pixels 
–  Pixel resolution of 3nm x 3nm x 60nm. 
–  Blendmont was used  to reconstruct the large field of 

view image from the 5 × 5 mosaics of smaller images 
coming from the camera. 

TEMCA 1.5 images of mouse visual cortex from 
experiment “ms8 6L“. The data consists of 5x5 arrays of 
tiles from 40 serial sections. 
–  The pixel size is 3.75nm x 3.75nm and sections are 

~45nm thick, 29x53 array spans out to about a 
450x850 micron field of view.  

–  Each image is presented as separate tiles of 
5200x5200 pixels; 
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1.Effectiveness of Template Matching 
   (a)   (b)        (c)

• Correlation maps for patches in original and 
successive slice were superimposed on images 

• The features are a sharp local maxima of the NC. 
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2. Impact of projection to dimension k 

(a) Distance Distortion ver. k. 

Decrease in distortion as the 
projected dimension k increases.  

(b) Accuracy of Transformation 
estimation error vers. k,  

Decreases as k increases. 
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Dimension Scale of 
1000x1000 

Scale of 
5000x5000 

K=30 with JL 3.61±2.34 3.1±1.65 
d=10000 

without JL 
3.52±2.66 3.02±1.30 

   Comparing the automatic and manual  transformations.  
High accuracy is obtained with and without projection. 
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Alignment Visualization 

(a) Fixed    (b) Moving before      (c) After Alignment   (d) checkerboard 
        composite. 
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Orthogonal views of stack reconstruction 
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4. Projection by PCA  
•  Finds the direction u s.t. projecting n points 

in d onto u gives the largest variance. 
•  Formally: n patches of dimension d. 
•  Normalized in advance to have zero mean 

and unit variance. 
•  Covariance matrix  
•  u is the eigenvector of Su=λu. 
•  The low dimension space is based on the 

first k eigenvectors ( maximal eigenvalues)  
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Projection Schemes 

              Randomized        PCA   
 [JL 1984, Achlioptas, Liberty,Ailon, Singer 2008]  [Turk Pentland 1991, Kirby Sirovich   1990] 

The need to have the same basis 
function reduces the overall efficiency. 

An adaptive basis function adds 
communication cost due to the need 
to communicate the basis functions.   

Projection on an Eigen-subspace. The 
Eigen-values correspond to variance 
and have no guarantees regarding local 
properties of the resulting projection. 

Projection s.t the Euclidean distance 
between features in the low 
dimensionality projection ~ Euclidean 
distance between the original features. 

Data aware  

Multiply by  the same pre-
computed random matrix. 

Data oblivious  
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Comparison to Projection by PCA 

(a)  Illustration of Eigenvector images  
k =1-5 (upper) 6-9, 20 (lower) from left to right. 

(b) Transformation error vs. k  
when projecting by PCA. 
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•  T ~ 100 : # images in the volume. 
•  n = MxM =1010 : Size of the images in pixels. 
•  d = NxN =104 : typical patch/feature dimension . 
Brute force Search d: O(Tn*nd)   
Brute force Search k: O(Tn*nlogn) 
Approximate NN     : O(Tn*dn0.25) 

 Search time per query in the Accelerated New approach 
by LSH  O(dn1/c^2 )  where  for  c=2  becomes O(dn1/4) 
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Computational Complexity 

80/110 8.5 

700 

Odyssey cluster, FAS Research 
Computing Group. 
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•  A novel efficient search strategy that dramatically 
accelerates feature based registration. 
–  speedup (~1000-fold) allows to carry out an exhaustive search 

for correspondences, in contrast with truncated local searches. 
•  A novel algorithm for robust estimation of an alignment 

transformation. 
•  Results are shown of TEM images of neural 

ultrastructure with increased accuracy and efficiency. 
•  Algorithm extensions and evaluation of randomized 

projection for dimensionality reduction.  
–  Comparison of dimension reduction techniques, evaluation of 

dimensionality reduction that can be  sustained while maintaining 
accuracy, an evaluation of the impact on distance distortion. 
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