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Linear Volumetric Imaging

(a) Tomography (b) Confocal z-
stack imaging

(c) Microrotation 
confocal imaging
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Micro-rotation fluorescence imaging

http://www.pfid.org/AUTOMATION/

Micro-rotation imaging aims at
1) To image living cells in natural 

environment
2) To improve image resolution in 3D



Examples of micro-rotation images

A human living cell, expressing fluorescence at nuclear envelope

Laksameethanasan et al. 2008



Step 0: Image Registration

• Imaging geometry need to be solved prior to 
the reconstruction problem

• Beyond the scope of this talk, but we have
studied that too
– TEM: Brandt et al. (2001a,2001b), Brandt and 

Ziese (2005), Brandt (2006); 
– X-ray tomography: Brandt and Kolehmainen 

(2007);
– Microrotation confocal microscopy: Brandt and 

Mevorah (2006), Palander (2007)



Projection Model

• Assume a linear projection model

where
• Assuming a linear and shift invariant 

system



Bayesian Reconstruction

• Consider the discretised model

• The complete solution is the posterior

where             is the likelihood and 
is the prior

Afm =ˆ



Likelihood

• Obtained from the noise model
• Gaussian noise

• Poisson noise (photon counting)
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Sparsity Prior

• We may take the desired sparsity of the 
solution into account in the prior

• What choices do we have? 
For instance:

– Pseudo norm 
– One norm (Lasso)
– Total variation
– Spatial derivative priors



Total variation Prior

• In the continuous case

• If f is the characteristic function
of the set B

• Discrete definition (four neighbourhood)
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Total Variation Example

Images with the same energy but increasing total variation
TV = 18 TV = 26 TV = 42



Spatial Derivative Priors

• We may use a more general class of 
priors

where G: C3→ C3 is a linear operator
• We have used the Laplacian instead of 

gradient

( )VfGp f d exp ∫−∝ λ

( )Vfp f dexp ∫ Δ−∝ λ



Discrete Laplacian Example

Images with the same energy but increasing total 
absolute (discrete) Laplacian

SD = 32 SD = 42 SD = 52
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How does this relate to 
sparsity of the solution?

• Consider negative log posterior

• Computing the MAP estimate is 
multiobjective optimization

• The regularization parameter is chosen 
so that the fit (likelihood) is at desired 
level (Morozov discrepancy principle)

• From that subset the prior is maximized

( ) ( )ffmf ppE loglog)( λ−−=



How does this relate to 
sparsity of the solution?

• Consider first the one norm prior 
( )

1
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How does this relate to 
sparsity of the solution?

• For the spatial derivative priors 
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How does this relate to 
sparsity of the solution?

• For the spatial derivative priors 
( )
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How does this relate to 
sparsity of the solution?

The linearity preserves the vertex

( ) 1log λCp =− fm
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How does this relate to 
sparsity of the solution?

• Total variation favours sparse solutions 
in the first derivative (edge preservation)

• Our Spatial derivative prior favours 
sparsity in the second derivative (edge 
and smoothness preservation)

• The 1-norm imposes the sparsity for a 
large class of linear operators 



Implementation of the Prior

• The laplacian computed by convolution 
with the LoG filter (Gaussian interpolation)

where G is the Toepliz matrix corresponding 
to the 3D convolution with the LoG kernel 
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Implementation of the Prior

• To make the energy function 
differentiable at zero, we approximate

in
• The prior finally takes the form
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Computation of the MAP 
Estimate

• Poisson noise and the spatial derivative 
prior yields the optimization problem

with subject to
• Here we consider two algorithms:

– Expectation Maximization (EM)
– Non-linear optimization by Skilling-Bryan
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EM algorithm

• Solution by the iteration (Green 1990, Dey 
2006, Laksameethanasan et al. 2008)

where

• Note: the matrices for forward projection
and its adjoint       are not computed
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Toy Reconstruction Example

ML
MAP-TV
MAP-SDML

MAP-TV

MAP-SD



Generalized Skilling-Bryan method

• A 2nd order, non-linear optimization 
algorithm to compute the MAP estimate

which is equivalent to maximizing 

where
and    is the regularisation parameter  
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Skilling-Bryan Algorithm

• The objective function is approximated 
by the 2nd order Taylor expansion 

• To allow high-dimensional search, the 
maximization is done in a subspace.
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Subspace Selection

• The step is solved up the 2nd order:

• The step lies in the subspace spanned 
by



Subspace Selection

• The basis is summarised by

• The gradient directions are weighted by 
f to increase the weight for high values 
(positivity constraint)



Some final details

• The step is solved in the subspace

under the constraint
• The new iterate is obtained as

whilst it needs to be protected against 
negative values (optional rescaling)

aimcc <



Properties of the Skilling-
Bryan Algorithm

• Resembles Levenberg-Marguardt 
Method

• Inherent positivity constraint – thus 
natural for tomographic reconstruction

• Converges faster than 1st order 
methods based on line-search

• Each iteration evaluates six projection-
backprojection pairs (computational 
bottleneck)
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Conclusions

• We have studied the Bayesian approach for 
volumetric reconstruction problems

• TV and Spatial Derivative Priors impose
sparse solutions in the derivatives

• Extended Skilling-Bryan Optimization
– Especially for convex objective functions with the 

positivity constraint
– Suitable for very high dimensional problems
– Fast convergence (≈ 20 iterations)
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