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Micro-rotation fluorescence imaging

Micro-rotation imaging aims at

1) To image living cells in natural
environment

2) To improve image resolution in 3D

Y +
focal plane

http://www.pfid.org/AUTOMATION/



Examples of micro-rotation images

A human living cell, expressing fluorescence at nuclear envelope

Laksameethanasan et al. 2008



¥ Step 0: Image Registration

 Imaging geometry need to be solved prior to
the reconstruction problem

 Beyond the scope of this talk, but we have

studied that too
— TEM: Brandt et al. (2001a,2001b), Brandt and
Ziese (2005), Brandt (2006);
— X-ray tomography: Brandt and Kolehmainen
(2007);
— Microrotation confocal microscopy: Brandt and
Mevorah (2006), Palander (2007)



Projection Model

 Assume a linear projection model
mi(x;y) — Aif(x&yjz)&
where A;: C3 — Cs

 Assuming a linear and shift invariant
system

mz’(xvy) ( Xy Vs 2 )*fl( 7y72) ;

z=d



Bayesian Reconstruction

e Consider the discretised model

m = Af
 The complete solution Is the posterior
PR S s p(E)p(me).
where p(m|f) is the likelihood and p(f)
IS the prior

p(fim) =



Likelihood

 Obtained from the noise model
 Gaussian noise

p(lf) o exp(_zium _Af\rj
O

e Poisson noise (photon counting)

KM
p(m|f) = H (%) exp(m' log(Af) — 1"Af)



Sparsity Prior

e \We may take the desired sparsity of the
solution into account in the prior p(f)

e \WWhat choices do we have?

For instance:
— Pseudo norm
— One norm (Lasso)
— Total variation
— Spatial derivative priors



Total variation Prior

e In the continuous case
p, exp(—iﬂVf\dV)

* If fis the characteristic function

of the set B v
TV(f)= J'\Vf\ d¥ = length(oB)

* Discrete definition (four neighbourhood)

p(f)= eXp(—

zeN



- Total Variation Example

TV =18 TV = 26 TV =42
Images with the same energy but increasing total variation



Spatial Derivative Priors

 \We may use a more general class of
priors

J exp(—/lﬂGf\dV)
where G: C;— C5 Is a linear operator

 \We have used the Laplacian instead of
gradient

p, «expl- [|ar]e )



Discrete Laplacian Example

SD =32 SD =42 SD =52

1

Images with the same energy but increasing total
absolute (discrete) Laplacian




How does this relate to
sparsity of the solution?

Consider negative log posterior
E(f) = —log p(mif )~ 2109 p(f)

Computing the MAP estimate Is
multiobjective optimization

The reqgularization parameter is chosen
so that the fit (likelihood) Is at desired
level (Morozov discrepancy principle)

From that subset the prior is maximized



How does this relate to
sparsity of the solution?

e Consider first the one norm prior
E(f) = —log p(mlf )+ AJf],




How does this relate to
sparsity of the solution?

* For the spatial derivative priors
E(f) = —log p(mf )+ 2|Gf],

N gf, = ||Gf|, = 2



How does this relate to
sparsity of the solution?

* For the spatial derivative priors
E(f) = —log p(mf )+ 2|Gf],




How does this relate to
sparsity of the solution?

he linearity preserves the vertex




- How does this relate to
B sparsity of the solution?

« Total variation favours sparse solutions
In the first derivative (edge preservation)

e Our Spatial derivative prior favours
sparsity in the second derivative (edge
and smoothness preservation)

 The 1-norm imposes the sparsity for a
large class of linear operators



Implementation of the Prior

* The laplacian computed by convolution
with the LoG filter (Gaussian interpolation)

TV(f)= \Gf\dV

~ 2

where G Is the Toe

Zszg k) = HGfH

ollz matrix corresponding

to the 3D convolution with the LoG kernel



. Implementation of the Prior

 To make the energy function
differentiable at zero, we approximate

t| ~ g~ cosh(p)
in |Gf], ~|Gf;
e The prior finally takes the form

p(f) o exp(- 2|Gf] )




Computation of the MAP
Estimate

* Poisson noise and the spatial derivative
prior yields the optimization problem

mini1" (Af)-m" log(Af)+ 2Gf| |

with subject to /f; =2 0Vi

 Here we consider two algorithms:
— Expectation Maximization (EM)
— Non-linear optimization by Skilling-Bryan



EM algorithm

e Solution by the iteration (Green 1990, Dey
2006, Laksameethanasan et al. 2008)

f m
oo = : AT
T ATL4V|GE, - [ Afkj
where
V|Gf,[; =GT tanh(4Gf, )

* Note: the matrices for forward projection
A and its adjoint A" are not computed



®  Toy Reconstruction Example
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Generalized Skilling-Bryan method

e A 2" order, non-linear optimization
algorithm to compute the MAP estimate

arg max p(flm),  f,=0vi
which Is equivalent to maximizing
qg(f)=s(f)—Ac(f), f, =0Vi
where s(f)=1log p(f), c(f)=~log p(mf)
and A iIs the reqgularisation parameter



TABLE 1. Likelihood and prior terms with their gradients and Hessians used in the extended
Skilling—Bryan minimisation method. The operations between two vectors are performed element

by element.
Functions Gradient g Hessian H
Gaussian noise cg % m — Af||? —AT(m — Af) ATA
Poisson noise cp 11(Af) —m'log(Af) —Al(R 1) Aldiag ((Af)(f&f)) A
Guassian prior sg —11I1f]12 —f —1I
Entropy prior sg 17f— f% log(f/fo) —log(f/fo) —diag(1/f)
TVopriorst —1'f 'log(cosh(BGf)) —Gltanh(BGf) —Gldiag(f sechz(BGf)) G




Skilling-Bryan Algorithm

* The objective function is approximated
by the 2nd order Taylor expansion

1
q(f +p) = q(f)+9§p+§pTqu

* To allow high-dimensional search, the
maximization is done Iin a subspace.



Subspace Selection

 The step is solved up the 2nd order:

p = —(Hy+1)"'g,
~ _(I+}/_1Hq)g91
~ _gs+)Lgr:+}/_l{(H5'_)LHC)(g?_)Lch
 The step lies In the subspace spanned

by
g, g, Hege, Hsgs, Hyge and H.g;



Subspace Selection

 The basis is summarised by

g1 = 1g;,
e, = fg..

iy — fHC( 1 9 )JerS( €1 ez)
gl gl sl gl

e The gradient directions are weighted by
f to Increase the weight for high values
(positivity constraint)




Some final detalls

 The step Is solved in the subspace
p=Ex=xe; +xre; +x3e3.

under the constraint ¢ <c,;,

 The new iterate Is obtained as

fnew =1+ Ex,

whilst It needs to be protected against
negative values (optional rescaling)



Properties of the Skilling-
Bryan Algorithm

Resembles Levenberg-Marguardt
Method

Inherent positivity constraint — thus
natural for tomographic reconstruction

Converges faster than 1st order
methods based on line-search

Each iteration evaluates six projection-
backprojection pairs (computational
bottleneck)
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Conclusions

We have studied the Bayesian approach for
volumetric reconstruction problems

TV and Spatial Derivative Priors impose
sparse solutions in the derivatives

Extended Skilling-Bryan Optimization

— Especially for convex objective functions with the
positivity constraint

— Suitable for very high dimensional problems
— Fast convergence (= 20 iterations)
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