
Package ‘PSM’

September 22, 2008

Type Package

Title Non-Linear Mixed-Effects modelling using Stochastic Differential Equations.

Version 0.8-3

Date 2008-09-18

Encoding latin1

Author Stig Mortensen <sbm@imm.dtu.dk> and Søren Klim <skl@imm.dtu.dk>

Maintainer Authors <psmpackage@imm.dtu.dk>

Depends MASS, numDeriv, odesolve

Description This package provides functions for estimation of linear and non-linear
mixed-effects models using stochastic differential equations. Moreover it provides
functions for finding smoothed estimates of model states and for simulation. The
package allows for any multivariate non-linear time-variant model to be specified, and it
also handels multidimentional input, co-variates, missing observations and specification
of dosage regimen.

License GPL (>=2)

URL http://www.imm.dtu.dk/psm

R topics documented:

Internal functions . 1

PSM-package . 3

PSM.estimate . 4

PSM.plot . 7

PSM.simulate . 8

PSM.smooth . 10

PSM.template . 11

matexp . 12

1

2 Internal functions

Internal functions Internal functions in the PSM-package.

Description

Internal functions in the PSM-package.

Usage

APL.KF(THETA, Model, Pop.Data, LB = NULL, UB = NULL, GUIFlag = 0, longOutput = FALSE, fast=TRUE,Lin

APL.KF.gr(THETA, Model, Pop.Data, LB = NULL, UB = NULL, GradSTEP = 1e-04, GUIFlag = 0, fast=TRUE,Line

APL.KF.individualloop(theta, OMEGA, Model, Data, GUIFlag = 0, fast=TRUE,Linear)

CutThirdDim(a)

ExtKalmanFilter(phi, Model, Data, outputInternals = FALSE)

ExtKalmanSmoother(phi, Model, Data)

IndividualLL.KF(eta, theta, OMEGA, Model, Data, fast=TRUE,Linear=NULL)

IndividualLL.KF.gr(eta, theta, OMEGA, Model, Data, GradSTEP = 1e-04, GUIFlag = 0, fast=TRUE,Lin

LinKalmanFilter(phi, Model, Data, echo = FALSE, outputInternals = FALSE, fast=TRUE)

LinKalmanSmoother(phi, Model, Data)

ModelCheck(Model, Data, Par,DataHasY=TRUE)

logit(x, xmin, xmax)

invlogit(y, xmin, xmax)

Details

APK.KF evaluates the population likelihood function.

APK.KF.gr evaluates the gradient of APL.KF.

APL.KF.individualloop contains the innner loop over individuals for APL.KF.

CutThirdDim removes third and higher dimensions of dim-attribute for an array and thus
creating a matrix.

ExtKalmanFilter Performs a Extended Kalman filtering.

ExtKalmanSmoother performs a non-linear Kalman smoothing.

IndividualLL.KF evaluates the indivdual neg. log-likelihood function.

IndividualLL.KF.gr evaluates the gradient of the indivdual neg. log-likelihood function.

LinKalmanFilter performs a linear Kalman filtering.

LinKalmanSmoother performs a linear Kalman smoothing.

ModelCheck checks for dimensionalities and model objects. Furthermore it tests the Model
objects and the dimensions in the Data set.

logit gives logit transformation of a vector.

invlogit gives invlogit transformation of a vector.

Author(s)

Stig B. Mortensen and Søren Klim

See Also

PSM

PSM-package 3

PSM-package Population Stochastic Modelling

Description

Mixed-effects models using Stochastic Differential Equations

This package provides functions for estimation and simulation of multivariate linear and
non-linear mixed-effects models using stochastic differential equations. The package allows
for multidimensional input, specification of dosage regimen and is able to return smoothed
estimates of model states.

Details

Function overview:

PSM.estimate

Estimate population parameters for any linear or non-linear model.

PSM.smooth

Optimal estimates of model states based on estimated parameters.

PSM.simulate

Simulate data for multiple individuals.

PSM.plot

Plot data, state estimates ect. for multiple individuals.

PSM.template

Creates a template with R-syntax to help setup a model in PSM.

Note

For further details please also read the package vignette pdf-document by writing vi-
gnette(”PSM”) in R.

Author(s)

Stig B. Mortensen and Søren Klim

Maintainer: Søren Klim <skl@imm.dtu.dk>

References

Stig B. Mortensen, Søren Klim, Bernd Dammann, Niels R. Kristensen, Henrik Madsen,
Rune V. Overgaard. A matlab framework for estimation of NLME models using stochastic
differential equations: Application for estimation of insulin secretion rates. J Pharmacokinet
Pharmacodyn (2007) 34:623-642.

Web: http://www.imm.dtu.dk/psm

See Also

PSM.estimate, PSM.smooth, PSM.simulate, PSM.plot, PSM.template

4 PSM.estimate

PSM.estimate Estimate population parameters

Description

Estimates population parameters in a linear or non-linear mixed effects model based on
stochastic differential equations by use of maximum likelihood and the Kalman filter.

Usage

PSM.estimate(Model, Data, Par, CI = FALSE, trace = 0, control=NULL, fast=TRUE)

Arguments

Model A list containing the following elements:

Matrices = function(phi) Only in linear models.
Defines the matrices A, B, C and D in the model equation. Must
return a list of matrices named matA, matB, matC and matD. If there
is no input, matB and matD may be omitted by setting them to NULL.
Note, if the matrix A is singular the option fast is set to FALSE, as
this is not supported in the compiled Fortran code.

Functions Only in non-linear models.
A list containing the functions f(x,u,time,phi), g(x,u,time,phi),
df(x,u,time,phi) and dg(x,u,time,phi).
The functions f and g defines the system and df and dg are the
Jacobian matrices with first-order partial derivatives for f(x) and
g(x) which is needed to evaluate the model. A warning is issued if
df or dg appear to be incorrect based on a numerical evaluation of
the Jacobians of f(x) and g(x).
It is possible to avoid specifying the Jacobian functions in the model
and use numerical approximations instead, but this will increase es-
timation time at least ten-fold. See the section ‘Numerical Jacobians
of f and g’ below for more information.

X0 = function(Time, phi, U) Defines the model state at Time[1] be-
fore update. Time[1] and U[,1] can be used in the evaluation of X0.
Must return a column matrix.

SIG = function(phi) in linear models and SIG = function(u,time,phi)

in non-linear models. It defines the matrix σ for the diffusion term.
Returns a square matrix.

S = function(phi) in linear models and S = function(u,time,phi)

in non-linear models. It defines a covariance matrix for the observa-
tion noise. Returns a square matrix.

h = function(eta,theta,covar) Second stage model. Defines how ran-
dom effects (eta) and covariates (covar) affects the fixed effects pa-
rameters (theta). In models where OMEGA=NULL (no random-effects)
h must still be defined with the same argument list to allow for covari-
ates to affect theta, but the function h is evaluated with eta=NULL.
Must return a list (or vector) phi of individual parameters which is
used as input argument in the other user-defined functions.

PSM.estimate 5

ModelPar = function(THETA) Defines the population parameters to be
optimized. Returns a list containing 2 elements, named:

theta A list of fixed effects parameters θ which are used as input to
the function h listed above.

OMEGA A square covariance matrix Ω for the random effects. If OMEGA
is missing or NULL then no 2nd stage model is used. However, the
function h must still be defined, see above.

Data An unnamed list where each element contains data for one individual.
Each element in Data is a list containing:

Time A vector of timepoints for measurements

Y A matrix of multivariate observations for each timepoint, where each
column is a multivariate measurement. Y may contain NA for missing
observations and a column may consist of both some or only NAs. The
latter is useful if a dose is given when no measurement is taken.

U A matrix of multivariate input to the model for each timepoint. U is
assumed constant between measurements and may not contain any
NA. If U is ommitted, the model is assumed to have no input and matB

and matD need no to be specified.

Dose A list containing the 3 elements listed below. If the element Dose

is missing or NULL, no dose is assumed.

Time A vector of timepoints for the dosing. Each must coinside with
a measurement time. Remember to insert a missing measure-
ment in Y if a corresponding timepoint is not present. Dose is
considered added to the system just after the measurement.

State A vector with indexes of the state for dosing.

Amount A vector of amounts to be added.

Par A list containing the following elements:

Init A vector with initial estimates for THETA, vector of population pa-
rameters to be optimized.

LB, UB : Two vectors with lower and upper bounds for parameters. If
ommitted, the program performs unconstrained optimization. It is
highly recommended to specify bounds to ensure robust optimization.

CI Boolean. If true, the program estimates 95% confidence intervals, stan-
dard deviation and correlation matrix for the parameter estimates based
on the Hessian of the likelihood function. The Hessian is estimated by
hessian in the numDeriv package.

trace Non-negative integer. If positive, tracing information on the progress
of the optimization is produced. Higher values produces more tracing
information.

control The list is passed to "optim" to control the settings for the optimization.
As default the max iteration limit is set to 100 and the remaining options
are the same as in "optim".

fast Boolean. Use compiled Fortran code for faster estimation.

Details

The first stage model describing intra-individual variations is for linear models defined as

dxt = (A(φi)xt + B(φi)ut)dt + σ(φi)dωt

6 PSM.estimate

yij = C(φi)xij + D(φi)uij + eij

and for non-linear models as

dxt = f(xt, ut, t, φi)dt + σ(ut, t, φi)dωt

yij = g(xij , uij, tij , φi) + eij

where eij ∼ N(0, S(uij, tij , φi)) and ωt is a standard Brownian motion.

The second stage model describing inter-individual variations is defined as:

φi = h(ηi, θ, Zi)

where ηi ∼ N(0, Ω), θ are the fixed effect parameters and Zi are covariates for individual i.
In a model without random-effects the function h is only used to include possible covariates
in the model.

Value

A list containing the following elements:

NegLogL Value of the negative log-likelihood function at optimum.

THETA Population parameters at optimum

CI 95% confidence interval for the estimated parameters

SD Standard deviation for the estimated parameters

COR Correlation matrix for the estimated parameters

sec Time for the estimation in seconds

opt Raw output from optim

Numerical Jacobians of f and g

Automatic numerical approximations of the Jacobians of f and g can be used in PSM. In
the folliwing, the name of the model object is assumed to be MyModel.

First define the functions MyModel$Functions$f and MyModel$Functions$g. When these
are defined in MyModel the functions df and dg can be added to the model object by
writing as below:

MyModel$Functions$df = function(x,u,time,phi) {

jacobian(MyModel$Functions$f,x=x,u=u,time=time,phi=phi)

}

MyModel$Functions$dg = function(x,u,time,phi) {

jacobian(MyModel$Functions$g,x=x,u=u,time=time,phi=phi)

}

This way of defining df and dg forces a numerical evaluation of the Jacobians using the
numDeriv package. It may be usefull in some cases, but it should be stressed that it will
probably give at least a ten-fold increase in estimation times.

PSM.plot 7

Note

For further details please also read the package vignette pdf-document by writing vi-
gnette(”PSM”,package=”PSM”) in R.

Author(s)

Stig B. Mortensen and Søren Klim

References

Please visit http://www.imm.dtu.dk/psm or refer to the main help page for PSM.

See Also

PSM, PSM.smooth, PSM.simulate, PSM.plot, PSM.template

Examples

cat("\nExamples are included in the package vignette.\n")

PSM.plot Basic plots of data and output

Description

Create basic plots of data and state estimates in PSM.

Usage

PSM.plot(Data, Smooth = NULL, indiv = NULL, type = NULL)

Arguments

Data Data list, see description in PSM.estimate.

Smooth Output from PSM.smooth.

indiv A vector of integers with which individuals to include.

type A vector of strings listing the types of plots to create. The possibilities
are:

‘Y’ Observations

‘U’ Input

‘X’ Simulated states at sample times

‘longX’ Simulated states with time increment deltaTime

‘Xp’ Predicted states

‘Xf’ Filtered states

‘Xs’ Smoothed states

‘Yp’ Response based on predicted state

‘Ys’ Response based on smoothed state

‘Yp.Y’ As above with observations added

‘Ys.Y’ As above with observations added

8 PSM.simulate

‘res’ Residuals (Y-Yp)

‘acf’ Auto-correlation of residuals

‘eta’ Shows estimates of random effects in plot. If Smooth is not given it
will show the value of simulated random effects if they are contained
in Data.

If a string is preceeded by ‘logx.’, ‘logy.’ or ‘logx.logy.’ the corresponding
axis is shown on log-scale.

An example is: type=c(’Xs’,’logy.Ys.Y’,’res’,’eta’)

Value

None (invisible NULL).

Note

For further details please also read the package vignette pdf-document by writing vi-
gnette(”PSM”) in R.

Author(s)

Stig B. Mortensen and Søren Klim

References

Please visit http://www.imm.dtu.dk/psm or refer to the help page for PSM.

See Also

PSM, PSM.estimate, PSM.smooth, PSM.simulate, PSM.template

Examples

cat("\nExamples are included in the package vignette.\n")

PSM.simulate Create simulation data for multiple individuals

Description

Simulates data for multiple individuals in a mixed effects model based on stochastic differ-
ential equations using an euler scheme.

Usage

PSM.simulate(Model, Data, THETA, deltaTime, longX=TRUE)

PSM.simulate 9

Arguments

Model A list containing the model components either Linear or Non-Linear
Model list.*

Data List with elements described below. No Data$Y is needed as it is generated
through the simulation. The number of individuals simulated is equal to
length(Data).

Time Time vector

U Input list for the Model

covar Covariates list

THETA Vector of population parameters

deltaTime Time Step in the Euler scheme

longX Boolean. Toggles output of the entire simulated outcome of the states

* See description in PSM.estimate.

Details

The ηi is drawn from the multivariate normal distribution N(0, Ω). The simulation is an
euler based method but for every time interval dt the model is predicted and the states
affected by system noise (σ).

The measurements are added an normal error term belonging to N(0, S).

The function mvrnorm from the MASS pacakge is used to to generate random numbers fra
multivariate normal distributions.

Value

The simulated outcome of the model is returned in a list, where each element is the data
for an individual.

X Simulated states sampled at time points for measurements

Y Simulated measurements

Time Time points for measurements

U Input vector used in the simulation

eta The random effects used in the simulation

Dose The dose list used in the simulation

longX Entire outcome of simulated states

longTime Time points for longX.

Note

For further details please also read the package vignette pdf-document by writing vi-
gnette(”PSM”) in R.

Author(s)

Stig B. Mortensen and Søren Klim

References

Please visit http://www.imm.dtu.dk/psm or refer to the help page for PSM.

10 PSM.smooth

See Also

PSM, PSM.estimate, PSM.smooth, PSM.plot, PSM.template

Examples

cat("\nExamples are included in the package vignette.\n")

PSM.smooth Smoothing of model states based on estimated population param-
eters.

Description

Gives estimates of model states and random effects η. The function is intended to be used
based on population parameters found using PSM.estimate or to check initial values before
parameter estimation.

Usage

PSM.smooth(Model, Data, THETA, subsample = 0, trace = 0, etaList = NULL)

Arguments

Model Model list.*

Data Data list.*

THETA Vector of population parameters used for the state estimation.

subsample Number of points to estimate states in between measurements. The extra
points are linearly spaced.

trace Non-negative integer. If positive, tracing information on the progress
of the optimization is produced. Higher values produces more tracing
information.

etaList Matrix where each column contains an etimate of ηi. etaList has the
same format as the output of PSM.estimate. If ommitted, the function
will evalutate the population likehood function to find estimates of ηi for
all individuals.

* See description in PSM.estimate.

Details

The function produces three types of estimates.

Predicted Only past measurements are used for the state estimate at time t.

Filtered Only past and the current measurements are used for the state estimate at time
t.

Smoothed All measurements (both past and future) are used to form the state estimate
at time t. This is usually the prefered type of state estimate.

If subsample>0 then the data is automatically subsampled to provide estimated of the
model states between observation time points.

PSM.template 11

Value

An unnamed list with one element for each individual. Each element contains the following
elements:

Time Possibly subsampled time-vector corresponding to the estimated states

Xs, Ps Smoothed state and state co-variance estimate

Ys Response based on smoothed state: Ys = g(Xs).

Xf, Pf Filtered state and state co-variance estimate

Xp, Pp Predicted state and state co-variance estimate

Yp, R Predicted observations and observation variances

eta Estimated eta

negLogL Value of the negative log-likelihood function at THETA (thus same value
for all individuals).

Note

For further details please also read the package vignette pdf-document by writing vi-
gnette(”PSM”) in R.

Author(s)

Stig B. Mortensen and Søren Klim

References

Please visit http://www.imm.dtu.dk/psm or refer to the help page for PSM.

See Also

PSM, PSM.estimate, PSM.simulate, PSM.plot, PSM.template

Examples

cat("\nExamples are included in the package vignette.\n")

PSM.template Creates a template for a model in PSM

Description

Creates a template with R-syntax to help setup a model in PSM.

Usage

PSM.template(Linear=FALSE,dimX=2,dimY=3,dimU=4,dimEta=5,file="")

12 matexp

Arguments

Linear Boolean. Linear or non-linear model.

dimX Number of state equations.

dimY Number of response variables.

dimU Number of input variables (can be zero).

dimEta Number of random effects (can be zero).

file A character string naming the file to print to. If ’””’ (the default),
PSM.template prints to the standard output connection.

Value

None (invisible NULL).

Note

For further details please also read the package vignette pdf-document by writing vi-
gnette(”PSM”) in R.

Author(s)

Stig B. Mortensen and Søren Klim

References

Please visit http://www.imm.dtu.dk/psm or refer to the help page for PSM.

See Also

PSM, PSM.estimate, PSM.smooth, PSM.template

Examples

Linear model with input, random effects and dose

PSM.template(Linear=TRUE,dimX=1,dimY=2,dimU=3,dimEta=4)

Non-linear model without input, random effects and dose

PSM.template(Linear=FALSE,dimX=1,dimY=2,dimU=0,dimEta=0)

matexp Matrix exponential

Description

Matrix exponential af a square matrix computed by the pade approximation.

Usage

matexp(a, dt=1,order = 8)

matexp 13

Arguments

a A square numeric matrix

dt Integration Time step

order Pade approximation order

Details

This implementation is based on Niels Rode Kristensens work. This package is also highly
inspired by David Firth’s R package mexp.

Value

The matrix exponential is returned. The function issues an error if problems occured in the
fortran engine.

Note

For indepth material on matrix exponentials - see Moler and van Loan (2003).

Author(s)

Søren Klim, Stig B. Mortensen

References

This implementation is based on Niels Rode Kristensens work. This package is also highly
inspired by David Firth’s R package mexp.

The examples below are all from David Firth’s mexp package but the accuracy example has
been removed as this package does not calculate the accuracy.

Niels Rode Kristensen, http://www2.imm.dtu.dk/ ctsm/

Examples

##

The test cases have been taken directly from David Firths MEXP package.

##

##

Test case 1 from Ward (1977)

test1 <- t(matrix(c(

4, 2, 0,

1, 4, 1,

1, 1, 4), 3, 3))

matexp(test1)

Results on Power Mac G3 under Mac OS 10.2.8

[,1] [,2] [,3]

[1,] 147.86662244637000 183.76513864636857 71.79703239999643

[2,] 127.78108552318250 183.76513864636877 91.88256932318409

[3,] 127.78108552318204 163.67960172318047 111.96810624637124

-- these agree with ward (1977, p608)

##

A naive alternative to mexp, using spectral decomposition:

mexp2 <- function(matrix){

14 matexp

z <- eigen(matrix,sym=FALSE)

Re(z$vectors %*% diag(exp(z$values)) %*%

solve(z$vectors))

}

try(

mexp2(test1)

) ## now gives an error from solve !

##

older result was

[,1] [,2] [,3]

##[1,] 147.86662244637003 88.500223574029647 103.39983337000028

##[2,] 127.78108552318220 117.345806155250600 90.70416537273444

##[3,] 127.78108552318226 90.384173332156763 117.66579819582827

-- hopelessly inaccurate in all but the first column.

##

##

Test case 2 from Ward (1977)

test2 <- t(matrix(c(

29.87942128909879, .7815750847907159, -2.289519314033932,

.7815750847907159, 25.72656945571064, 8.680737820540137,

-2.289519314033932, 8.680737820540137, 34.39400925519054),

3, 3))

matexp(test2)

[,1] [,2] [,3]

##[1,] 5496313853692357 -18231880972009844 -30475770808580828

##[2,] -18231880972009852 60605228702227024 101291842930256144

##[3,] -30475770808580840 101291842930256144 169294411240859072

-- which agrees with Ward (1977) to 13 significant figures

mexp2(test2)

[,1] [,2] [,3]

##[1,] 5496313853692405 -18231880972009100 -30475770808580196

##[2,] -18231880972009160 60605228702221760 101291842930249376

##[3,] -30475770808580244 101291842930249200 169294411240850880

-- in this case a very similar degree of accuracy.

##

Test case 3 from Ward (1977)

test3 <- t(matrix(c(

-131, 19, 18,

-390, 56, 54,

-387, 57, 52), 3, 3))

matexp(test3)

[,1] [,2] [,3]

##[1,] -1.5096441587713636 0.36787943910439874 0.13533528117301735

##[2,] -5.6325707997970271 1.47151775847745725 0.40600584351567010

##[3,] -4.9349383260294299 1.10363831731417195 0.54134112675653534

-- agrees to 10dp with Ward (1977), p608.

mexp2(test3)

[,1] [,2] [,3]

##[1,] -1.509644158796182 0.3678794391103086 0.13533528117547022

##[2,] -5.632570799902948 1.4715177585023838 0.40600584352641989

##[3,] -4.934938326098410 1.1036383173309319 0.54134112676302582

-- in this case, a similar level of agreement with Ward (1977).

##

matexp 15

Index

∗Topic htest
PSM.estimate, 4
PSM.plot, 7
PSM.simulate, 8
PSM.smooth, 10
PSM.template, 11

∗Topic internal
Internal functions, 1

∗Topic math
matexp, 12

∗Topic models
PSM.estimate, 4
PSM.plot, 7
PSM.simulate, 8
PSM.smooth, 10
PSM.template, 11

∗Topic multivariate
PSM.estimate, 4
PSM.plot, 7
PSM.simulate, 8
PSM.smooth, 10
PSM.template, 11

∗Topic package
PSM-package, 3

∗Topic ts
PSM.estimate, 4
PSM.plot, 7
PSM.simulate, 8
PSM.smooth, 10
PSM.template, 11

APL.KF (Internal functions), 1

CutThirdDim (Internal functions), 1

ExtKalmanFilter (Internal functions),
1

ExtKalmanSmoother (Internal
functions), 1

IndividualLL.KF (Internal functions),
1

Internal functions, 1
invlogit (Internal functions), 1

LinKalmanFilter (Internal functions),
1

LinKalmanSmoother (Internal
functions), 1

logit (Internal functions), 1

matexp, 12
ModelCheck (Internal functions), 1

PSM, 2, 7–12
PSM (PSM-package), 3
PSM-package, 3
PSM.estimate, 3, 4, 7–12
PSM.plot, 3, 7, 7, 10, 11
PSM.simulate, 3, 7, 8, 8, 11
PSM.smooth, 3, 7, 8, 10, 10, 12
PSM.template, 3, 7, 8, 10, 11, 11, 12

16

