A Hybrid Buffer Design with STT-MRAM for On-Chip Interconnects

Hyunjun Jang, Baik Song An, Nikhil Kulkarni, Ki Hwan Yum, and Eun Jung Kim

Dept. of Computer Science & Engineering
Texas A&M University

Outline

- ☐ Background of NoC
- Motivation of selecting STT-MRAM
- ☐ Challenges in using STT-MRAM
- □ Approaches
 - Hybrid Buffer Design
 - Simple & Lazy Migration Scheme
- ☐ Performance and Power Evaluation
- □ Conclusions

Networks-on-Chip (NoCs)

- □ NoCs for Large-Scale Chip Multi-Processors (CMPs)
- ☐ Packet-Switching Networks
 - Switch-based interconnects
 - Scalable
 - More suitable for large-scale Multi-Processor Systems

But, Power & Area Budgets in On-Chip Networks are very Limited

Why STT-MRAM in NoCs

- □ Near-zero leakage power compared to SRAM or DRAM
- ☐ Much higher density than SRAM (more than 4xs)
- Much higher endurance compared to other Nonvolatile memories e.g., PCM, or Flash
 - Tolerate much more frequent write accesses

STT-MRAM bit storage (MTJ)
Hyunjun Jang - NOCS 2012

Weaknesses of STT-MRAM

- ☐ Long write latency compared to SRAM
 - More than 10 cycles
- ☐ High write power compared to SRAM
 - More than 8xs

To exploit the benefits of STT-MRAM, these challenges should be addressed first

Approaches

- ☐ Hiding the Long Write Latency, while Maximizing Area Efficiency
 - SRAM + STT-MRAM Hybrid Buffer Design
- ☐ Sacrificing the Retention Time
 - From 10yrs to 10ms
 - Accordingly, latency also changes: 3.2 ns → 1.8ns, which is corresponding to 6 cycles in 3GHz clock frequency
- ☐ Reducing the Dynamic Write Power
 - Adaptive flit migration scheme in hybrid buffer considering current SRAM buffer occupancy

Reducing Dynamic Power Consumption

□ Lazy Migration Scheme

- IF (SRAM Buffer Qccupancy >= Threshold)
 - Start migrating flits to STT-MRAM
- ELSE
 - Maintain flits in SRAM

of flits/ buffer size

e.g. threshold in SRAM4 case : 0%, 25%, 50%, 75%

ref. Credit-based Flow Control

Only considers SRAM buffer in credit management

Front-end SRAM Buffer Size

- □ In our experiment, Flits written into buffer stay at least 3 cycles in each on-chip router (Intra-router latency)
- ☐ It is possible to reduce front-end SRAM from 6 to 3
 - Thus, we can replace more SRAM with STT-MRAM

Various Hybrid Buffer Configurations

- □STT-MRAM is 4xs denser than SRAM
- ☐ Therefore, under the same area budget, 1 SRAM space can be replaced with 4 STT-MRAM space
- ☐ So, under the baseline SRAM6 space,
 - SRAM5-STT4
 - SRAM4-STT8
 - SRAM3-STT12
 - SRAM2-STT16

All these 4 different hybrid configurations have same area budget (SRAM6)

Performed experiments to find best hybrid buffer configuration

Performance/Power Evaluation Computer Scientific Scient

- Department of Computer Science & Engineering
- ☐ Performance Model: Cycle-accurate on-chip network simulator
 - Models all router pipeline stages in detail
- □ Power Model: Orion for both dynamic and leakage power estimation

STT Read, Write Energy STT Read, Write Latency	3.826 (pJ/flit), 40.0 (pJ/flit) 1 cycle for Read, 6 cycles for Write
STT Road Write Energy	3 826 (n L/flit) 40 0 (n L/flit)
SRAM Read, Write Latency	1cycle for Read and Write
SRAM Read, Write Energy	5.25 (pJ/flit), 5.25 (pJ/flit)
Synthetic Traffic, Benchmark	UR , BC, NN, Splash-2
Packet Length	4 flits (128bits/flit)
Buffer Depth/VC (Same area budget)	SRAM6(baseline), SRAM5-STT4, SRAM4-STT8, SRAM3-STT12, SRAM2-STT16
# of VC/Port	4
Routing	XY, O1TURN
Topology	8×8 Mesh, 2D-Torus, Flattened BFly

Performance Analysis - Different Traffic

Performance Analysis - Different Routing, Topology *Engineering**

Performance Analysis - Various STT Write latencies

☐ Write latencies (30, 10, 6 cycles)

Performance Analysis - Benchmark Test

□SPLASH-2 parallel benchmarks

Power Analysis

□ Dynamic Power consumption of Input Buffers

Injection Rate (flits/node/cycle)

Normalized Power

□ Dynamic + Leakage Power consumption of on-chip routers

□ SRAM □ SIMPLE □ LAZY (0.25) □ LAZY (0.5) ■ LAZY (0.75)

0.35

0.4

Conclusions

- ☐ Hybrid Buffer Design with STT-MRAM
 - Provide more buffer space under the same area budget
 - Throughput-efficient
- ☐ Performance Improvement
 - 21% on average in synthetic workloads
 - 14% on average in SPLASH-2 parallel benchmarks
- ☐ Power Savings
 - Lazy migration scheme reduces power by 61% on average compared to simple migration scheme