

Transient and Permanent Error Control for High-End Multiprocessor Systems-on-Chip

Qiaoyan Yu¹, José Cano², José Flich², Paul Ampadu³

¹University of New Hampshire, USA ²Universitat Politècnica de València , Spain ³University of Rochester, USA

Outline

- Introduction & Motivation
- Impact of permanent and transient errors on NoC routers
- Advanced topologies
- Proposed method
- LBDRhr
- Transient error control in LBDRhr
- Experimental results
- Summary and conclusions

Introduction

- Types of MPSoCs:
- Application-specific
 - Fully irregular topologies
 - ➤ System design totally customized
 - ➤ E.g. Spidergon STNoC

- High-end
 - ➤ Regular structures (2D mesh-based topologies)
 - ► E.g. Tilera

This work focuses here !!!

Introduction

- Critical challenge in current NoCs: RELIABILITY
- Permanent errors
 - > E.g. due to defective components (links, routers)
 - ➤ Solution based on fault-tolerant routing → Logic-based Distributed Routing (LBDR)
- Transient errors
 - ➤ E.g. due to particle strike
 - ➤ Solution based on error control coding → Inherent information redundancy (IIR)

It could be a good solution for addressing both permanent and transient errors in NoCs

Introduction & Motivation

 Problem: both LBDR and IIR methods cannot be applied to topologies and configurations for advanced NoC topologies

- LBDR approach
 - ➤ Designed for 2D meshes
 - ➤ Routers connected to 1 router neighbour on each dimension and direction
 - ➤ Not ready for transient errors
- IIR approach
 - ➤ Designed for XY routing
 - ► Not suitable for more advanced routing solutions
 - Not ready for permanent faults

Advanced Topologies

Diagonal mesh

2D-mesh with express channels

Flattened butterfly

1-hop links2-hop diagonal links

1-hop links2-hop straight links

1-hop links2-hop straight links3-hop links

The initial 2D-mesh is the underlying topology!!!

Proposed Ideas

- To address fault tolerance for advanced topologies:
- Redesign the LBDR mechanism: LBDRhr (LBDR for high-radix networks)
 - Adaptive routing algorithm supported
 - ≥ 2 Virtual Channels
 - ➤ Deadlock-free for the high-radix topologies defined
- Develop a new method to detect transient errors in LBDRhr logic
 - Exploits the inherent information redundancy in LBDRhr to significantly reduce the error control overhead

NoC Router Functionality

- Compute routing direction for next hop
- Pass the packet to its intended output port

Note: 24 is the maximum number of routing ports for each router, but not all need to be implemented, depends on the topology

Permanent Error Management

- Previous method: Logic-Based Distributed Routing (LBDR)
- Four routing ports per switch (North, South, East, West)
- Two sets of bits: Routing bits (Rxy, 2 per output port) and Connectivity bits (Cx, 1 per output port)
- Minimal path support

Permanent Error Management

LBDRhr

- Tolerates permanent link and router failures
- Implemented with three basic logic blocks
 - ►1-hop, 2-hop and 3-hop ports
- Uses a few configuration bits to store local information about the neighboring routers
 - ➤8 configuration bits for routing purposes → Rxy
 - ▶2 bits for two deroute options (special cases) at every input port → DRx
 - \geq 1 connectivity bit per output port \rightarrow Cx

LBDRhr logic (common part)

LBDRhr logic (adaptive part)

LBDRhr logic (escape part)

Permanent Error Management

Deadlock-free routing example

VC0: Faulty 2D-mesh with express channels

VC1: Faulty 2D-mesh

Prevision Transient Error Control Methods

- Limitation of Previous Methods
- Need knowledge of error locations
- Consume large link switching power
- Increase area overhead or
- Limited to XY routing

[1] R. Mărculescu, ISVLSI'03. [2] A. Yanamandra, et al. ASP-DAC' 10.[3] Q. Yu, et al. NOCS'11.

Triple modular redundancy^[2]

New Inherent Information Redundancy Extraction

- Forbidden signal patterns in routers are regarded as inherent information redundancy (IIR)
- More IIR are found in LBDRhr-based router

Error Detection for Multi-hop Logic

Err_{2-hops} = (NN & SS) | (EE & WW) | (NE & SW) | (SE & NW)| (NE & SE) | (SW & SE) (2)NNE--SSW ■ (3)NE--SW (4)EEN--SSW ◆ (5)EEE--WWW (6)EES--WWN (7)SE--NW

(8)SSE--NNW

Err_{3-hops} = (NNE & SSW) | (EEN & SSW) | (EES & WWN) | (SSE & NNW) | (NNN & SSS) | (EEE & WWW) | (NNE & NNW) | (SSW & SSE) | (EEN & EES) | (EES & EEW) | (WWN & WWS)

Experimental Results

- Error Detection Rate
- Reliability
- Flit Throughput and Latency
- Area, Power and Delay

Experimental Results: Setup

- Multiple NoC topologies
- LBDRhr Routing
- 8-bit address
- Synthesized with a TSMC 65nm technology

Error Detection Rate in CMP

- No matter how the NoC size changes, the error detection rate for E' and W' is 100% because of the use of the internal node.
- The error detection rate for EE', WW', EEE' and WWW' is less than 1.
- Only the occurrence of opposite direction pairs helps to detect errors in EE',
 WW', EEE' and WWW' (the non-zero substraction output does not contribute to detect the errors causing wrong EE', WW', EEE', WWW').

Error Detection Rate in Multi-hop Logic

• 3-hop path

2-hop path

- Achieve minor variation on the error detection rate for different topologies.
- Improve the error detection rate of 2-hops logic as the number of error injected to the logic increases, because of more IIR

Residual Error Rate Comparison

- The proposed method
- Reduce the residual error rate by two orders of magnitude over TMR
- Slightly vary the error detection rate

Flit Throughput and Latency

 The number of faulty links in each topology increases up to obtain the underlying 2D-mesh

Area, Power and Delay

		LBDRhr without Error Detection	LBDRhr with Proposed Error Detection	LBDRhr with TMR
Area (μm²)		342 (100%)	363 (106.1%)	806 (235.7%)
Delay (ns)		0.495 (100%)	0.54 (109.1%)	0.51 (103%)
Power	Dyn.(μW)	199.97 (100%)	207.27 (103.7%)	267.39 (133.7%)
	Leak(μW)	1.8084 (100%)	1.8405 (101.8%)	4.0969 (226.5%)

Conclusions

• For transient errors, our method reduces the residual error rate and the average power consumption by up to 200x and 30%, respectively, over triple modular redundancy.

• For **permanent errors**, the proposed method is able to cover permanent failures of all the long-range links and 80% of the failure combinations of the 2D-mesh links.

Thank you!

Transient and Permanent Error Control for High-End Multiprocessor Systems-on-Chip

Qiaoyan Yu¹, José Cano², José Flich², Paul Ampadu³

¹University of New Hampshire, USA ²Universitat Politècnica de València, Spain ³University of Rochester, USA

Error Detection for Deroute Logic

 Four directions are exclusive is regarded as a new inherent information redundancy

$$N_{deroute}$$
= \sim DR[0] & \sim DR[1]

$$E_{deroute} = ^DR[0] \& DR[1]$$

$$W_{deroute} = DR[0] \& DR[1]$$

$$S_{deroute} = DR[0] \& DR[1]$$

