

Efficient Timing Channel Protection for On-Chip Networks

Yao Wang and G. Edward Suh
Cornell University

On-Chip Networks are Shared Resources

 Future large-scale multi-cores will be shared among multiple applications / virtual machines

NOCS 2012 2/21

Problem: Timing Channels

- Shared NoC causes interference
- Network interference introduces timing channels
 - Side channel
 - Covert channel
- High assurance systems requires security guarantee
 - Example: Corporate virtual machines on the cloud

NOCS 2012 3/21

RSA Example

- RSA: a public key cryptographic algorithm
 - Prone to timing channel attacks

NOCS 2012 4/21

RSA Example

- RSA: a public key cryptographic algorithm
 - Prone to timing channel attacks

NOCS 2012 5/21

Outline

- Objective: Eliminate timing channels through the shared on-chip networks
 - Completely eliminate information leakage
 - Low performance overhead
- Rest of the talk
 - Potential approaches
 - Our solution
 - Evaluation
 - Related work
 - Conclusion

NOCS 2012 6/21

Use Quality-of-Service?

- QoS techniques provide performance isolation to different network flows
- QoS techniques are not enough for security
 - A flow can use bandwidth beyond its allocation
 - · Bandwidth utilization reveals the flow demand

Bandwidth allocation

A: 50%

B: 50%

Flow A Demand	Flow B Demand	Flow A BW utilization
100%	100%	50%
100%	0%	100%

NOCS 2012 7/21

Static Partitioning

- To eliminate timing channels, resource allocation cannot depend on run-time demands
- Static partitioning
 - Spatial Network Partitioning (SNP)
 - Temporal Network Partitioning (TNP)

- Completely eliminate the timing channels
 - High performance overhead

NOCS 2012 8/21

One-Way Information Leak Protection

- Usually only one-way information protection is needed
 - Multi-level security (MLS) model

 One-way protection is the key for efficient timing channel protection

NOCS 2012 9/21

Timing Channel through NoC

NOCS 2012 10/21

Reversed Priority with Static Limits (RPSL)

Reversed Priority

- Assign high priority to low-security domain
- The behavior (throughput, latency) of low-security domain is not affected by high-security domain

Static Limits

- Low-security domain could initialize Denial-of-Service (DoS) attack
- Static limit controls the amount of traffic that low-security domain can send during a certain interval

NOCS 2012 11/21

Implementation: Avoid Interference

- Priority-based separable allocator
 - Input arbiter & Output arbiter
- Static virtual channel allocation
 - Avoid head-of-line blocking

NOCS 2012 12/21

Implementation: Avoid DoS

- Static limit control mechanism
 - Counter & Control logic

Apply to both input and output arbiter

NOCS 2012 13/21

Experimental Setup

- Goals of experiments
 - Timing channel protection
 - DoS protection
 - Performance overhead
- Darsim: cycle-level NoC simulator
- Comparison of three schemes
 - Round-robin allocator (ISLIP)
 - Temporal Network Partitioning (TNP)
 - Reversed Priority with Static Limits (RPSL)

NOCS 2012 15/21

Timing Channel: No Protection

Simple network

Round-robin allocator

NOCS 2012 16/21

Timing Channel: Two-way Protection

Simple network

Temporal Network Partitioning

NOCS 2012 17/21

Timing Channel: One-way Protection

Simple network

• Reversed Priority with Static Limits (Static limit = 0.8)

NOCS 2012 18/21

Performance

Applications show bursty traffic

RPSL is efficient for bursty traffic

NOCS 2012 19/21

Related Work

Side-channel protection

- Shared resources are prone to side-channel attacks, e.g. shared caches, branch prediction
- Cannot be applied to NoC

QoS schemes

- Allows resource usage beyond allocation
- Insufficient to prevent timing channel attacks

Composability

- Remove interference between applications for fast integration
- Require bi-directional non-interference, incur high performance overhead

NOCS 2012 20/21

Conclusion

- Shared on-chip networks introduce timing channels
 - Prevent effective sharing of large-scale NoC in high assurance systems
- One-way timing channel protection is sufficient in many situations
- RPSL provides efficient one-way timing channel protection
 - Incurs low performance overhead

NOCS 2012 21/21