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Agenda 

 The IP integration problem 
 Why flow regulation?  
 Online flow characterization 
 Dynamic regulation  
 Experiments and results 
 Conclusion and future work 
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SoC Design 

 Design of IPs  
 Separate concerns, e.g. in computation and 

communication;  
 A divide-conquer approach to manage complexity; 
 by IP vendors 

 Integration of IPs 
 via a common interface (AHB, AXI, etc.);  
 by SoC integrators 
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The IP integration problem 
 Separating concerns helps to manage complexity and 

reuse expert knowledge. However this creates 
performance (uncertainty, quality) problem for the IP 
integration phase. 

 Can we control the performance?  
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Flow regulation 
 Do not inject traffic as soon as possible 

 As-soon-as-possible traffic injection creates congestion 
problem as-soon-as-possible 

 Disciplined traffic helps to alleviate network contention 

 A formal foundation: network calculus 
 Abstract flow with arrival curve 
 Abstract server with service curve 

 Can be viewed as a proactive (vs. reactive) 
congestion control scheme  

You have the horse.  
You have the rein! 
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Linear arrival curve 
 An arrival curve α(t) provides an upper bound on 

the cumulative amount of traffic over time. 
 A linear arrival curve has the form  

    where σ bounds traffic burstiness, ρ average rate.                
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Closed form results  

Assume: F: Linear arrival curve 
 
                     S: Latency-rate server 
 
 The delay bound is 
                                                      
 The backlog bound is 
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Why regulation helps? 

 Reduce the traffic burstiness 
 It in turn reduces contention and buffering 

requirements in the interconnect. 
 Example 

 Flow without regulation (σ=6.6, ρ=0.2)  
 

 Flow with strongest regulation (σ=1, ρ=0.2)  
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Online flow characterization 

 Purpose: Characterize flow’s (σ, ρ) values 
 How: through a sliding window mechanism  

 Calculate previous-window,  current-window (σ, 
ρ) values  

 Predict next-window (σ, ρ) values 
 The (σ, ρ) values are updated window by window 
 The sampling window slides with overlapping, 

ensuring continuity of predicted values   
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Online flow characterization 
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• Sampling window: 750 
• Predication window: 250 
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Sliding window 

(σ, ρ) updates 
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Sliding window 

(σ, ρ) updates 

Sampling Window Lsw=Lw 

Prediction Window Lpw=Lw/N 
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Sliding window 

(σ, ρ) updates 
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Sliding window 

(σ, ρ) updates 
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Rate ρ characterization 
 Characterize:  

 
 

 Predict: 
 base value + offset value 

 
 
 Use history information 
 exploit the continuity brought by the sliding 

window mechanism to avoid abrupt change 
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Burstiness σ characterization 

 Characterize: 
 
 
 Critical instant,    ,to calculate a σ bound per 

window  

 Predict: 
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Characterizer in hardware 
 Main components: Sampling 

+ Characterize + Predict 
 Sampling (t, f(t))  
 Characterize for current 

profile (σ, ρ) 
 Predict for regulator 

parameter 
 Delay 

 Release the resets with 
interval of Lpw 

 Overlapping execution => 
overlapping windows 

 MUX 
 Select results and feed 

them into “Predict” 
2 GHz,12 K NAND gates (45 nm) 
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Dynamic regulator 
 Leaky-bucket 

regulation mechanism 
 Incoming flow is 

served only when 
token is available. 

 Token generate 
follows a linear curve  

 Regulator’s (σ, ρ) 
parameters are fed 
by the characterizer 

1.4GHz, 2.2K NAND gates (45 nm) 

Server
(1 unit data 
per token)

regulated flowInput flow

σ

Token rate ρ

),( ρσ

B
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Experiments 

 Experiment 1: Fidelity of the sliding window 
based online flow characterization 

 Experiment 2: Effect of dynamic flow 
regulation vs. static regulation vs. no regulation 
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Experiment 1:  
Fidelity of characterization 

 Build a model for the online characterizer in 
Matlab 

 Use a two-state (on/off) MMP (Markov 
Modulated Process) as the traffic source 

6th Symposium on NoCS, Denmark May 9-11, 2012 



21 

Effectiveness 

 Sampling window 8192 cycles, prediction window 
2048 cycles. 

 Compared to static characterization, dynamic 
characterization closely reflects the traffic dynamics. 
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Window overlapping impact 
 The Y axis gives the ratio of violation (occasions 

when real traffic surpasses the projected bound) 
 A performance/cost tradeoff:  Higher overlapping, 

lower violation ratio but higher implementation cost.  
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Experiment 1I:  
Effect of dynamic regulation 

 Use RTL models for characterizers, regulators 
and the network 

 The network is a deflection network as it is 
more challenging to control 

 Use both synthetic traffic and Splash2 
benchmark traces 

6th Symposium on NoCS, Denmark May 9-11, 2012 



24 

Experimental setup 
 56 masters, 8 slaves. 
 Measure regulation delay and network delay.  
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Experimental configuration  

 Three configurations: 
 No regulation: Characterizer is disabled, regulator 

provides a bypass. 
 Static regulation: Regulators are configured once 

with offline profiled (σ, ρ) values. 
 Dynamic regulation: Characterizers are enabled. 

Regulators are dynamically configured.  
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Synthetic traffic 

 56 masters inject the on-off traffic to 8 slaves with 
equal probability, creating a hot spot traffic pattern 
which mimics memory access scenarios.  

 Each master generates 8 flows, each targeting a slave. 
The 8 flows from the same master are treated as 1 
aggregate. 
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Maximum packet delay 
 Dynamic regulation outperforms static regulation for 34 (61%) of the 56 

aggregates, with the maximum and average reduction of 452 cycles (16%) 
and 146.8 cycles (5.8%). 

 Dynamic regulation outperforms no-regulation for 46 (82%) of the 56 
aggregates. The maximum and average improvement is 435 cycles (17.4%) 
and 167.5 cycles (6.3%). 
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Average packet delay 
 Dynamic regulation outperforms static regulation for all 56 aggregates, 

with the maximum and average reduction of 186 cycles (13.8%) and 108.6 
cycles (14.5%), resp.   

 Dynamic regulation outperforms no-regulation for 45 (80%) of the 56 
aggregates. The maximum and average improvement is 332.8 cycles (54.6%) 
and 147.8 cycles (17.7%), resp. 
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Splash2 benchmark traces 
 Full-system simulator SIMICS together with GEMS (for the 

memory system). 
 According to the figure, we configured a CMP system with 56 

cores (masters) and 8 slaves.  
 Each core has L1 I/D Caches: 64KB, 4 way set-associative;  L2 

Cache: 256KB, 4 way set associative, 64 Byte lines.  
 Total off-chip memory size is 4 GB with each memory being 

500 MB (4G/8).  
 Directory-based MOESI protocol.  
 The configured CMP system runs Solaris 9 OS.  
 After being compiled, the benchmark programs ran on the OS 

and traces were recorded.  
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Splash2 benchmark traces 
 Compared to static regulation, the improvement in overall average 

packet delay ranges from 12 to 90 cycles, from 10% to 26% in 
percentage.  

 Compared to no-regulation, it is from 53 to 190 cycles, from 22% 
to 41% in percentage. 
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Conclusion 

 Online traffic profiling through a sliding window 
presents good fidelity and enables efficient hardware 
implementation.  

 Integrating the online characterization into flow 
regulation enables dynamic proper adjustment of 
regulation strength. 

 Compared to static and no regulation, dynamic 
regulation is more powerful in improving maximum 
and average packet delay. 
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When delay is reduced? 

 Delay reduction of dynamic vs. static regulation for FFT 
 
 
 
 
 
 
 
 

 Future work: include network status into the control loop.   
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