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Introduction

� Existing electronic miniaturization technologies allow to 
integrate several processing cores into a single chip

� General purpose processors provide up to 16 cores

� Many-core processors such as Tilera provide up to 64 
cores

� Designing 1000-core processors is a current hot topic

� Rigel [Kelm et al], ATAC [Kurian et al], TERAFLUX [Portero et al]

A. Portero et al. “TERAFLUX: Exploiting tera-device computing challenges”

Kurian et al. “ATAC: a 1000-core cache- coherent processor with on chip optical network”

Kelm et al. “Rigel: an architecture and scalable programming interface for a 1000-core accelerator”



Evaluating large -scale systems

� Traditionally the micro-architecture community has 
disregarded on-chip communications when evaluating 
processor designs

� With the advent of such large-scale processors, NoC
behaviour needs to be taken into consideration

� Evaluate such large-scale systems requires a 
considerable amount of compute power

� NoC simulation has to be included in a lightweight 
manner usually in the form of a timing model



Modelling the NoC for Evaluation

� Full-system simulation

� Full computational model of the NoC

� Very high accuracy

� Expensive in terms of compute power

� Network agnostic timing models

� Network functionality is not considered

� Very low accuracy

� NoC modelling barely affects simulation speed



Modelling the NoC for Evaluation

� Statistical timing models [Papamichael et al]

� Estimate packet latency from an external analysis of the traffic

�Traffic analysis may be done concurrently or off-line

� Improves accuracy without exacerbating compute requirements 
when compared with network-agnostic models 

� Several limitations

�Latency distributions are case-specific

�Latency figures are difficult to estimate for variable traffic patterns

�Require tracking network load

Papamichael et al. “FIST: A fast, lightweight, FPGA-friendly packet latency estimator for noc modeling in full-system simulations”



Modelling the NoC for Evaluation

� Reservation-based timing models

� NoC is modelled in a simple way

�A collection of resources that need to be reserved to be used

� If a resource is reserved it can not be used until it is freed

� Good accuracy 

� Allow fast simulation

� Avoids the limitations of the statistical models

�Latency depends on actual state of the network 

�Do not require tracking network load

�External traffic analysis not needed



Our Implementation

� Base data-structure

� Resources are modelled as a sorted linked list which represents 
the periods in which it is reserved

� A ‘Reserve’ function to operate over the data-structure

�Searches for a free period of time that can accommodate a given 
reservation, reserves the resource and returns the ending timestamp

�Eliminates outdated reservations and merges existing reservations 
to keep data structure manageable



Operation of the Data Structure



Operation of the Data Structure



Operation of the Data Structure



System under Consideration

� Mesh topology

� XY routing

� Cut-through switching

� 1 virtual channel
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Reservation Models

� NoC modelled at the hop level

� Each communication link is modelled as a resource

� Each packet reserves all the required links



Reservation Models

� NoC modelled at the direction level

� Each row and column of the topology are modelled as a resource 
per direction (positive/negative)

� Each packet reserves the required row and column resources 



Reservation Models

� Topology-agnostic model

� Network is modelled as a collection of ‘communication channels’

� Each packet reserves one of these channels randomly

� A distributed implementation is also considered



Other Models

� Network agnostic models

� Fixed model

�All network accesses requires the same amount of time

� No contention model

�Latency depends only on distance and packet size

� Statistical timing models

� Load-dependent estimation

�Tracks the load and models latency in a simple way 
• With low loads latency is barely affected 
• With high loads latency is very high

� Estimation from off-line simulation

�Estimate latency from packet distance and average latency



Evaluation

� Models implemented as stand-alone tools

� Trace-driven evaluation
� PARSEC: Directory-based cache coherency – 32 cores

� STAMP: Transactional memory – 32 cores

� NAS: Message passing – 64 cores

� Cache coherency-like synthetic traffic – 1024 cores

� Figures of merit
� Accuracy

�Simulated time to execute the benchmarks
�Similarity score metric

� Speed
�Execution time of the models



Normalized Running Speed

0

5

10

15

20

blackscholes bodytrack ferret fluidanimate swaptions

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

Similarity Score

0

500

1000

1500

2000

2500

blackscholes bodytrack ferret fluidanimate swaptions

fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

PARSEC – 32 cores

� Structured communication patterns

� Small messages

� Some degree of contention

� No long-lasting congestion



PARSEC – 32 cores
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PARSEC – 32 cores
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STAMP – 32 cores

� Unstructured communication patterns 

� Possibility of communication hot spots

� Small messages

� Some degree of contention

� No long-lasting congestion



STAMP – 32 cores
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STAMP – 32 cores
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Synthetic – 1024 cores

� Unstructured communication patterns (random)

� Small messages

� Some degree of contention

� No long-lasting congestion
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Synthetic – 1024 cores
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NAS – 64 cores

� Structured communication patterns

� Long messages

� States of high congestion
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Conclusions

� Novel reservation-based timing models for the NoC
� Provide reasonable accuracy at a fraction of the speed of a 

dedicated NoC simulator

� Topology-aware models
� Considering every link in the topology as a resource provides 

good accuracy but slows large-scale simulation

� Modelling a whole direction as a single resource is too restrictive

� An intermediate approach could be a good solution

� Topology agnostic models
� Seem to be reasonable models

�Can be used to discriminate communication-intensive 
implementations



Future Work

� Implement these models in COTSON

� Re-evaluate them in this context

� Develop new models for different network configurations 
based on the reservation data structure

� Topologies: rings, tori, butterfly, flattened butterfly

� Packet movement: wormhole, adaptive routing
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