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MANCHESTER Introduction

= EXxisting electronic miniaturization technologies allow to
Integrate several processing cores into a single chip

= General purpose processors provide up to 16 cores

= Many-core processors such as Tilera provide up to 64
cores

= Designing 1000-core processors Is a current hot topic
Q> ngel [Kelm et al]’ ATAC [Kurian et al]’ TERAFLUX [Portero et al]

Kelm et al. “Rigel: an architecture and scalable programming interface for a 1000-core accelerator”

Kurian et al. “ATAC: a 1000-core cache- coherent processor with on chip optical network”

A. Portero et al. “TERAFLUX: Exploiting tera-device computing challenges”



MANCHESTER Evaluating large -scale systems

= Traditionally the micro-architecture community has
disregarded on-chip communications when evaluating
processor designs

= With the advent of such large-scale processors, NoC
behaviour needs to be taken into consideration

= Evaluate such large-scale systems requires a
considerable amount of compute power

= NoC simulation has to be included in a lightweight
manner usually in the form of a timing model




MANCHESTER Modelling the NoC for Evaluation

= Full-system simulation
% Full computational model of the NoC
%, Very high accuracy

& Expensive in terms of compute power

= Network agnostic timing models
% Network functionality is not considered
%, Very low accuracy

& NoC modelling barely affects simulation speed




MANCHESTER Modelling the NoC for Evaluation

= Statistical timing models [Papamichael et al]

& Estimate packet latency from an external analysis of the traffic
& Traffic analysis may be done concurrently or off-line

& Improves accuracy without exacerbating compute requirements
when compared with network-agnostic models

& Several limitations

& Latency distributions are case-specific
& Latency figures are difficult to estimate for variable traffic patterns
% Require tracking network load

Papamichael et al. “FIST: A fast, lightweight, FPGA-friendly packet latency estimator for noc modeling in full-system simulations”




MANCHESTER Modelling the NoC for Evaluation

= Reservation-based timing models

& NoC is modelled in a simple way

& A collection of resources that need to be reserved to be used
s If a resource is reserved it can not be used until it is freed

% Good accuracy
& Allow fast simulation

L Avoids the limitations of the statistical models

& Latency depends on actual state of the network
& Do not require tracking network load
& External traffic analysis not needed




MANCHESTER Our Implementation

= Base data-structure

& Resources are modelled as a sorted linked list which represents
the periods in which it is reserved

& A ‘Reserve’ function to operate over the data-structure

& Searches for a free period of time that can accommodate a given
reservation, reserves the resource and returns the ending timestamp

& Eliminates outdated reservations and merges existing reservations
to keep data structure manageable




MANCHESTER Operation of the Data Structure

resource —p

start:13 start:47 start:78
end: 29 end: 55 end: 91
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resource —p

timestamp=5 :
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Operation of the Data Structure
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MANCHESTER System under Consideration

= Mesh topology

= XY routing

= Cut-through switching

= 1 virtual channel




MANCHESTER Reservation Models

= NoC modelled at the hop level

L Each communication link is modelled as a resource

& Each packet reserves all the required links




MANCHESTER Reservation Models

= NoC modelled at the direction level

& Each row and column of the topology are modelled as a resource
per direction (positive/negative)

& Each packet reserves the required row and column resources

Resource -->
| | | |

<-- Resource

ooInosey -->
| |
<-- °9DINOSaY




MANCHESTER Reservation Models

= Topology-agnostic model

L Network is modelled as a collection of ‘communication channels’

& Each packet reserves one of these channels randomly

& A distributed implementation is also considered

| Resource| |Resource|

| Resource| [Resource|

|l Resource | | Resource | | Resource |

| Resource | | Resource | | Resource | [Resource] |Resource]

| Resource| [Resource|




MANCHESTER Other Models

= Network agnostic models
%, Fixed model

& All network accesses requires the same amount of time
% No contention model
& Latency depends only on distance and packet size

= Statistical timing models

% Load-dependent estimation

& Tracks the load and models latency in a simple way

« With low loads latency is barely affected
« With high loads latency is very high

& Estimation from off-line simulation
& Estimate latency from packet distance and average latency




MANCHESTER Evaluation

= Models implemented as stand-alone tools

= Trace-driven evaluation
& PARSEC: Directory-based cache coherency — 32 cores
% STAMP: Transactional memory — 32 cores
& NAS: Message passing — 64 cores
& Cache coherency-like synthetic traffic — 1024 cores

= Figures of merit

%, Accuracy

U Simulated time to execute the benchmarks
% Similarity score metric

%, Speed
L, Execution time of the models




MANCHESTER PARSEC — 32 cores

= Structured communication patterns
= Small messages
= Some degree of contention

= No long-lasting congestion




MANCHESTER PARSEC — 32 cores
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MANCHESTER STAMP — 32 cores

= Unstructured communication patterns

& Possibility of communication hot spots

= Small messages
= Some degree of contention

= No long-lasting congestion
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MANCHESTER Synthetic — 1024 cores

= Unstructured communication patterns (random)
= Small messages
= Some degree of contention

= No long-lasting congestion




MANCHESTER Synthetic — 1024 cores
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MANCHESTER NAS — 64 cores

= Structured communication patterns
= Long messages

= States of high congestion




MANCHESIER NAS — 64 cores
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MANCHESTER NAS — 64 cores
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MANCHESTER Conclusions

= Novel reservation-based timing models for the NoC

% Provide reasonable accuracy at a fraction of the speed of a
dedicated NoC simulator

= Topology-aware models

& Considering every link in the topology as a resource provides
good accuracy but slows large-scale simulation

% Modelling a whole direction as a single resource is too restrictive
& An intermediate approach could be a good solution

= Topology agnostic models

L Seem to be reasonable models

L Can be used to discriminate communication-intensive
implementations




MANCHESTER Future Work

= Implement these models in COTSON

L Re-evaluate them in this context

= Develop new models for different network configurations
based on the reservation data structure

& Topologies: rings, tori, butterfly, flattened butterfly
& Packet movement: wormhole, adaptive routing
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