
Reservation -based NoC timing models 
for large -scale architectural simulation

Javier Navaridas, Behram Khan, 
Salman Khan, Paolo Faraboschi, Mikel Luján



Introduction

� Existing electronic miniaturization technologies allow to 
integrate several processing cores into a single chip

� General purpose processors provide up to 16 cores

� Many-core processors such as Tilera provide up to 64 
cores

� Designing 1000-core processors is a current hot topic

� Rigel [Kelm et al], ATAC [Kurian et al], TERAFLUX [Portero et al]

A. Portero et al. “TERAFLUX: Exploiting tera-device computing challenges”

Kurian et al. “ATAC: a 1000-core cache- coherent processor with on chip optical network”

Kelm et al. “Rigel: an architecture and scalable programming interface for a 1000-core accelerator”



Evaluating large -scale systems

� Traditionally the micro-architecture community has 
disregarded on-chip communications when evaluating 
processor designs

� With the advent of such large-scale processors, NoC
behaviour needs to be taken into consideration

� Evaluate such large-scale systems requires a 
considerable amount of compute power

� NoC simulation has to be included in a lightweight 
manner usually in the form of a timing model



Modelling the NoC for Evaluation

� Full-system simulation

� Full computational model of the NoC

� Very high accuracy

� Expensive in terms of compute power

� Network agnostic timing models

� Network functionality is not considered

� Very low accuracy

� NoC modelling barely affects simulation speed



Modelling the NoC for Evaluation

� Statistical timing models [Papamichael et al]

� Estimate packet latency from an external analysis of the traffic

�Traffic analysis may be done concurrently or off-line

� Improves accuracy without exacerbating compute requirements 
when compared with network-agnostic models 

� Several limitations

�Latency distributions are case-specific

�Latency figures are difficult to estimate for variable traffic patterns

�Require tracking network load

Papamichael et al. “FIST: A fast, lightweight, FPGA-friendly packet latency estimator for noc modeling in full-system simulations”



Modelling the NoC for Evaluation

� Reservation-based timing models

� NoC is modelled in a simple way

�A collection of resources that need to be reserved to be used

� If a resource is reserved it can not be used until it is freed

� Good accuracy 

� Allow fast simulation

� Avoids the limitations of the statistical models

�Latency depends on actual state of the network 

�Do not require tracking network load

�External traffic analysis not needed



Our Implementation

� Base data-structure

� Resources are modelled as a sorted linked list which represents 
the periods in which it is reserved

� A ‘Reserve’ function to operate over the data-structure

�Searches for a free period of time that can accommodate a given 
reservation, reserves the resource and returns the ending timestamp

�Eliminates outdated reservations and merges existing reservations 
to keep data structure manageable



Operation of the Data Structure



Operation of the Data Structure



Operation of the Data Structure



System under Consideration

� Mesh topology

� XY routing

� Cut-through switching

� 1 virtual channel

Core

NoC

Core

NoC

Core

NoC

Core

NoC

Core

NoC

Core

NoC

Core

NoC

Core

NoC

Core

NoC

Core

NoC

Core

NoC

Core

NoC

Core

NoC

Core

NoC

Core

NoC

Core

NoC



Reservation Models

� NoC modelled at the hop level

� Each communication link is modelled as a resource

� Each packet reserves all the required links



Reservation Models

� NoC modelled at the direction level

� Each row and column of the topology are modelled as a resource 
per direction (positive/negative)

� Each packet reserves the required row and column resources 



Reservation Models

� Topology-agnostic model

� Network is modelled as a collection of ‘communication channels’

� Each packet reserves one of these channels randomly

� A distributed implementation is also considered



Other Models

� Network agnostic models

� Fixed model

�All network accesses requires the same amount of time

� No contention model

�Latency depends only on distance and packet size

� Statistical timing models

� Load-dependent estimation

�Tracks the load and models latency in a simple way 
• With low loads latency is barely affected 
• With high loads latency is very high

� Estimation from off-line simulation

�Estimate latency from packet distance and average latency



Evaluation

� Models implemented as stand-alone tools

� Trace-driven evaluation
� PARSEC: Directory-based cache coherency – 32 cores

� STAMP: Transactional memory – 32 cores

� NAS: Message passing – 64 cores

� Cache coherency-like synthetic traffic – 1024 cores

� Figures of merit
� Accuracy

�Simulated time to execute the benchmarks
�Similarity score metric

� Speed
�Execution time of the models



Normalized Running Speed

0

5

10

15

20

blackscholes bodytrack ferret fluidanimate swaptions

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

Similarity Score

0

500

1000

1500

2000

2500

blackscholes bodytrack ferret fluidanimate swaptions

fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

PARSEC – 32 cores

� Structured communication patterns

� Small messages

� Some degree of contention

� No long-lasting congestion



PARSEC – 32 cores

Normalized Running Speed

0

5

10

15

20

blackscholes bodytrack ferret fluidanimate swaptions

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

Similarity Score

0

500

1000

1500

2000

2500

blackscholes bodytrack ferret fluidanimate swaptions

fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist



PARSEC – 32 cores

Similarity Score

0

500

1000

1500

2000

2500

blackscholes bodytrack ferret fluidanimate swaptions

fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

Normalized Running Speed

0

5

10

15

20

blackscholes bodytrack ferret fluidanimate swaptions

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist



Normalized Running Speed

0

10

20

30

genome intruder kmeans vacation

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

Similarity Score

0

2000

4000

6000

8000

genome intruder kmeans vacation

fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

STAMP – 32 cores

� Unstructured communication patterns 

� Possibility of communication hot spots

� Small messages

� Some degree of contention

� No long-lasting congestion



STAMP – 32 cores

Normalized Running Speed

0

10

20

30

genome intruder kmeans vacation

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

Similarity Score

0

2000

4000

6000

8000

genome intruder kmeans vacation

fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist



STAMP – 32 cores

Similarity Score

0

2000

4000

6000

8000

genome intruder kmeans vacation

fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

Normalized Running Speed

0

10

20

30

genome intruder kmeans vacation

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist



Normalized Running Speed

0

100

200

300

400

rnd1 rnd2 rnd3 rnd4 rnd5

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

Similarity Score

0

30000

60000

90000

120000

rnd1 rnd2 rnd3 rnd4 rnd5

fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

Synthetic – 1024 cores

� Unstructured communication patterns (random)

� Small messages

� Some degree of contention

� No long-lasting congestion



Normalized Running Speed

0

100

200

300

400

rnd1 rnd2 rnd3 rnd4 rnd5

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

Synthetic – 1024 cores

Similarity Score

0

30000

60000

90000

120000

rnd1 rnd2 rnd3 rnd4 rnd5

fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist



Synthetic – 1024 cores

Similarity Score

0

30000

60000

90000

120000

rnd1 rnd2 rnd3 rnd4 rnd5

fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

Normalized Running Speed

0

100

200

300

400

rnd1 rnd2 rnd3 rnd4 rnd5

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist



Normalized Running Speed

0

100

200

300

400

bt cg is lu mg sp

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

Simulated Time

1

2

3

4

5

6

7

8

bt cg is lu mg sp

T
im

es
 S

lo
w

er

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

8

7

6

5

4

3

2

1

T
im

es
 F

as
te

r
NAS – 64 cores

� Structured communication patterns

� Long messages

� States of high congestion



Normalized Running Speed

0

100

200

300

400

bt cg is lu mg sp

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

NAS – 64 cores

Simulated Time

1

2

3

4

5

6

7

8

bt cg is lu mg sp

T
im

es
 S

lo
w

er

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

8

7

6

5

4

3

2

1

T
im

es
 F

as
te

r



Simulated Time

1

2

3

4

5

6

7

8

bt cg is lu mg sp

T
im

es
 S

lo
w

er

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

8

7

6

5

4

3

2

1

T
im

es
 F

as
te

r
NAS – 64 cores

Normalized Running Speed

0

100

200

300

400

bt cg is lu mg sp

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist



Conclusions

� Novel reservation-based timing models for the NoC
� Provide reasonable accuracy at a fraction of the speed of a 

dedicated NoC simulator

� Topology-aware models
� Considering every link in the topology as a resource provides 

good accuracy but slows large-scale simulation

� Modelling a whole direction as a single resource is too restrictive

� An intermediate approach could be a good solution

� Topology agnostic models
� Seem to be reasonable models

�Can be used to discriminate communication-intensive 
implementations



Future Work

� Implement these models in COTSON

� Re-evaluate them in this context

� Develop new models for different network configurations 
based on the reservation data structure

� Topologies: rings, tori, butterfly, flattened butterfly

� Packet movement: wormhole, adaptive routing





Other traces results

Simulated Time

1.0

1.2

1.4

1.6

1.8

2.0

bl
ac

k
sc

ho
le

s

bo
dy

tr
ac

k

fe
rr

et

flu
id

an
im

at
e

sw
ap

tio
ns

ge
no

m
e

in
tr

ud
er

km
ea

ns

va
ca

tio
n

rn
d1

rn
d2

rn
d3

rn
d4

rn
d5

PARSEC STAMP synthetic

T
im

es
 S

lo
w

er

2.0

1.8

1.6

1.4

1.2

1.0

T
im

es
 F

as
te

r


