SYNTHESIS OF NOC INTERCONNECTS FOR CUSTOM MPSoC ARCHITECTURES

GUL N. KHAN AND ANITA TINO Department of Electrical and Computer Engineering

RYERSON UNIVERSITY

Toronto, ON Canada

NOCS 2012

OVERVIEW

- Introduction to NoCs Power and Performance
- NoC Topology Design Flow
- Concept Overviews
 - TABU Search
 - Layered Queuing Networks (LQN)
- Topology Generation Technique
 - Initial Solution
 - Successive Filter Strategy, neighborhood selection
 - Contention Analysis
- Experimental Results
- Final Remarks

NOC INTRODUCTION

- Network-on-Chips (NoC)
 - Application Specific
- Power
 - Automated Technique
 - Models: Static,
 Dynamic, Leakage
- Performance
 - Contention Modeling
 - Deadlock Avoidance
- Trade-offs

NOC DESIGN FLOW

Input Core Graph

Input directed graph G(V,E)

- Each vertex $v_i \in V$ represents a core within the graph.
- The communication between vertex *i* and *j* represent a directed edge (v_i, v_j) , expressed as $e_{i,j} \in E$.
- The weight found on an edge *e_{i,j}* denoted by *b(e_{i,j})* characterizes the bandwidth.
- A destination vertex (core) $d_{x'}$ where $d_x \in V$ may have 1 to many sources cores s_x .
- The source vertex s_x ∈ V, and x ={ 1...N}.
- *N* represents the number of cores in the core graph.

NOC DESIGN FLOW

Output : Topology & Floorplan

Core	Core Name
Num	
0	ARM
1	ROM
2	SWITCH
3	RAM2
4	USB2.0
5	EXT-IF
6	ASIC1
7	SDRAM-IF
8	TIMER
9	UART
10	RTC
11	ITC
12	RAM1
13	DMA
14	RAM3

TS: TABU SEARCH

- Meta-heuristic optimization method designed to escape the trap of local optimums.
- Start with initial feasible solution
- Iterates through a neighborhood of possible solutions until optimal solution is found.
- Tabu List *TL(s)* memory list of non-optimal/last optimal solution.
- Aspiration list AL(s)— list which will allow a Tabu move in list if results of a solution are better as compared to the current solution.

TS: TABU SEARCH

Two types of memory used to provide quality solution and multiple objectives:

- Explicit Memory Directs search towards influential/ quality-based solution
 - TL(s) and AL(s)
 - *Candidate List CL(s)* generates list of possible moves
- Attributive Memory Long term memory

(a.k.a FR-Memory)

- Diversification
- Recency of vertices, frequency of moves within each neighbourhood area

• Candidate List Strategies – Strategies which narrow the examination of solutions in the *CL(s)*

NOC Topology Generation

Simulated Annealing (SA): Min-cut Partitioning

- Limited to cost function
- Single objective
- Problems determining global optimums

Genetic Algorithms (GA): Chromosome Strings Generation

- Fitness function
- Random generations

Both GA and SA techniques invoke Pareto curve technique

- i.e. almost SINGLE OBJECTIVE MAPPING
- **ILP:** Single-objective Limitations
 - Experiments show it takes lot of time to converge
- **ANOC:** Recursive Slicing ree
 - Heuristic with low complexity
 - Limited to small design spaces (not suitable for MPSoCs)

TS & Topology Generation

- Supports multiple objectives by memory functions Not limited to cost function
- Base solutions are **priori information**
- Able to keep track of **optimal/non-optimal** solutions
 - Less computation to find global optimum solutions
 - Shorter runtimes
- Candidate list strategies narrow down the solution space
 - Search for solutions that fit various constraints

Limitation

Solved during topology synthesis

TS TOPOLOGY GENERATION

Algo	rithm 2 Tabu Search Topology Generation Algorithm
1:	Generate initial topology solution $N(s, f, P)$
2:	Evaluate $N(s, f, P)$ for initial frequency f and power P
3:	TL(s) = {} //ensure empty Tabu List
4:	WHILE performance and power constraints NOT met
	DO
5:	Identify $s' = N(s)$
б:	Move to the temporary solution s'
7:	Evaluate s' solution for f' and P' using Orion models
8:	ConstraintCheck(s', AL(s), TL(s))
9:	IF solution meets $AL(s)$, $TL(s)$, f' , and P' constraints
10:	Create LQN models for sub-networks
11:	Invoke LQNS tool for performance analysis
12:	Place solution as last optimal $TL(s)$ entry
13:	Update current solution, $N(s,f,P) = s'$
14:	Check for deadlock, contention, utilization
15:	VCInsertion(); (T _{arb})
16:	Determine f'' based on updated T_{arb}
17:	IF $f' \leq f_{max}$ THEN
18:	Run through system-level floorplanner
	ELSE
19:	Go to line 22
	END
20:	IF power/ perf constraints & router ports satisfied
21:	N(s, f, P) and EXIT
	END
	ELSE
22:	Place as a non-optimal <i>TL(s)</i> entry
23:	Refer to $AL(s)$ to restore last optimal $N(s)$
	END
	END NOCS-12

- N(s, f, P) current feasible
 NoC Topology solution s
 consuming power P at a
 frequency f
- N(s) new possible solution s' within the neighbourhood set.
- *TL(s)* Tabu List contains non-optimal solutions
- AL(s) Aspiration List responsible for consulting *TL(s)* to ensure that s' is optimal and more desirable than the previous encountered solutions.

Initial NoC Topology

Initial topological solution

- × Crossbar approach
- × Poor solution
 - **×** Power
 - × Performance

NoC Solution Evaluation

Core Graph

TSG

VC Insertion

NOCS-12

NoC Solution Evaluation

$$T_{lat} = T_{pk} + \sum_{i=0}^{y} T_{arb} + \sum_{i=0}^{y} T_{blck} + T_{dpk}$$

$$\Gamma_{r,p} = \sum_{\forall s_x} \sum_{\forall d_x} \Lambda(sx, dx, r, p)$$

$$T_{arb_r} = \sum_{r=0}^{\forall R} \left[\sum_{p=0}^{\forall P,r} \Gamma_{r,p} \left(\frac{\theta(\Lambda(sx, dx, r, p), i, j)}{\sum_{p=0}^{\forall P,r} \Gamma_{r,p}} \right) T_{arb_init} \right]$$

 $\theta(\Lambda(sx, dx, r, p), i, j) = \begin{cases} N_{i \to j} & \text{if } \exists \Lambda \text{ from port } i \text{ to port } j \\ 0 & \text{otherwise} \end{cases}$

Deadlock
$$E = \{(l_i, l_j) | CNX(l_i, V) = l_j, v \in V\}$$

$$\sigma_{l_i} = \sum_{k=0}^{E_{l_i}} e_k \qquad Max^\circ = max(\sigma_{l_i}) \quad \forall i \in L$$

Contention
$$\mu_{r_{p_z}} = \max(\theta(\Lambda(sx, dx, r, p), i, j))$$

$$\delta = \{Max^\circ \cup \mu_{rp_z} \cup l_i\}$$

Term	Definition
TDG	Topology Dot Graph is a directed graph G where TDG =
	G(V,L), V is a set of vertices which represent the resources
	(cores and routers) and L is a set of edges denoting the links
	within the topology
CNX	Connection function, which connects the link l _i to the next
	communicating link l_i in order for s_x to reach d_x
LRG	Link Reliance Graph is a directed graph G where LRG =
	G(L, E), L is now a set of vertices signifying links, and E is a
	set of edges denoting the pairs of links connected through CNX
5 _x	A source core, or source vertex in the TDG
d_x	A destination core, which source s_x in the TDG
Tarb	Arbitration delay
T _{lat}	Overall latency delay
$T_{pk/dpk}$	Packing or de-packing delay of the NIs
Γ _{εσ}	Number of transactions expected in/out port p of router r
$\theta(\Lambda(sx, dx, r, p), i, j)$	Overall traffic flow from port i to j
ø	Deadlock communication link
σ_{l_i}	Degree of a vertex link <mark>l</mark>
Max°	Heavily utilized links of LRG
$Trans_{r_{yp_x}}$	Amount of transactions incurred by router r_y port p_z
$\mu_{r_{p_z}}$	Highly utilized ports of TDG
8	An expected contention point within the topology
Ω[]	1D array which holds all contention and deadlock points to be
	modeled with LQNs

Neighborhood Selection

Successive Filter Strategy (SFS):

- N is the total number of vertices/cores in the core graph, where n = {1,2,...,N}
- \star $\pi \in \Pi$, where Π is a set of positions in the search space.
- ***** $\pi(j)$ represent core *j* attaining the head candidate position.
- × $\Omega(s)$ denote the set of possible moves that core *j* can have, when core *j* has occupied the position $\pi(j)$.
- *m* signify all possible combination of moves formed by the SFS.
- * $\Omega(s)$ be divided into subsets $\Omega(1,s)$, $\Omega(2,s)$, ... $\Omega(m,s)$, where $\Omega(1,s)$ denotes the 1st subset move in the possible set of total moves generated by the topology generator etc.

Given a vertex/core n :

- x N is the total number of vertices/cores in the core
 graph, where n = {1,2,...,N}
- × N_{tr} is the number of source, s_x , and/or destination, d_x , transactions that the vertex V_n is expected to incur.
- X is the total amount of sources or destinations for the respective core n, where x = {1,2,...,X}.
- V_n(f) represents vertex n and its expected total number of transactions f.

Neighborhood Selection

Successive Filter Strategy (SFS):

- N is the total number of vertices/cores in the core graph, where n = {1,2,...,N}
- \times $\pi \in \Pi$, where Π is a set of positions in the search space.
- **x** $\pi(j)$ represent core *j* attaining the head candidate position.
- × $\Omega(s)$ denote the set of possible moves that core *j* can have, when core *j* has occupied the position $\pi(j)$.
- *m* signify all possible combination of moves formed by the SFS.
- * $\Omega(s)$ be divided into subsets $\Omega(1,s)$, $\Omega(2,s)$, ... $\Omega(m,s)$, where $\Omega(1,s)$ denotes the 1st subset move in the possible set of total moves generated by the topology generator etc.

Layered Queuing Network

LQN and NoC Contetion in NoC

Table 1: LQN/Contention Model Conversion			
LQN Element	Contention Model Element		
Reference Task	Source Core		
Non-Reference Task	Router/ Destination Core		
Thinking Time (Z)	Packetization Delay		
Execution Time of Task	Reference Task Packetization Delay		
	Non-Reference Task De-packetization Delay		
	Router Arbitration Delays		
Number of Transactions	Number of packets sent from component i to j		

CONTENTION ALLEVIATION

Different methods include:

- Adaptive routing
- Task rescheduling
- Router buffer space allocation
- Virtual Channel (VC) insertion

VC Insertion

- Power
- Performance

Contention Analysis

- The performance improvement $\boldsymbol{\phi}_j$ is greater than the extra power dissipation \boldsymbol{P}_j that the on-chip network will experience.
- There are enough VC resources for the insertion to take place.
 - The new frequency of operation will not exceed the maximum allowable frequency.

Complexity Analysis

A Solution Space of **N** Cores

- For a move within the TS given the constraints imposed by the SFS yields N(N-1)/2 moves = O(N²)
- Swaps needed to place the cores in the new topological arrangement results in a complexity of *O(1)*
- **O(N)** time is needed to evaluate the **N** cores.
- For a total of **k** iterations within the search
- Average *TL(s)* search time of *i*
- Overall Complexity of the method can be expressed as:
 O(k*[N²+N+i])

It can be further simplified as $O(N^2 + N)$, assuming **k** and **i** are much smaller than N

---- EXPERIMENTAL RESULTS ----

BENCHMARKS

BENCHMARKS

- MPEG4 Decoder 12 cores
- Network Communication
 System (NCS) 15 cores
- Multi-Window Display (MWD) – 15 cores
- × Set Top Box 25 cores
- ✗ Audio Video (A/V) − 21 cores
- × D26_media 26 cores
- × Layer-3 Switch 12 cores

TEST SET UP

- * 1 GB RAM, 1.66 GHz Pentium based Linux System
- Network Interfaces = 0.2 mm²
- Routers modeled as individual components in floorplanner (VCs also considered)
- * Fully specified temporal pattern traffic generation
- Buffer sizes = 4 flits per port, max 6 ports/router and frequency of 2 GHz

Experimental Results

Method	Normalized	Benchmark						
	Metric	B1	B2	B3	B4	B5	B6	B 7
Tabu w/o VC	Power	0.7277	0.6999	0.7299	0.71822	0.6936	0.796	0.6895
	Throughput	0.612	1.120	0.871	1.453	0.393	0.967	1.113
Tabu w/ VC	Power	0.7813	0.7391	0.807	0.7827	0.7711	0.851	0.723
	Throughput	1.594	1.323	1.215	1.891	0.532	1.476	1.213
Application-	Power	0.88737	0.84749	0.7299	0.77137	0.8292		0.9551
Specific	Throughput	1.557	1.122	0.979	0.95	0.423		0.949
Mesh	Power	1.60356	1.71335	1.735	1.7276	1.6846	1.3527	1.708
	Throughput	0.0611	0.0921	0.1855	0.711	0.1457	0.557	0.721

Benchmark	Graph ID	Cores	App-Specific
D26_media	B1	26	[53]
Set-Top Box	B2	25	[21]
MWD	B3	15	[6]
Audio/Video (A/V)	B4	21	[6]
Layer-3 Switch	B5	12	[48]
NCS1	B6	21	[21]
MPEG4 Decoder	B7	12	[6]

Benchmark	Area (mm ²)				
	Tabu	Mesh	App-Specific		
B1	8.89	14.93	18.22		
B2	6.41	13.4	6.54		
B3	3.07	22.03	10.87		
B4	11.19	32.35	22.92		
B5	2.35	16.3	9.129		
B6	4.00	32.35			
B7	5.05	16.3	22.1		

[6] Dimitriu V., and Khan G. N., "Throughput-Oriented NoC Topology Generation and Analysis for High Performance SoCs," *IEEE Trans. VLSI Sys.*, vol. 17, no. 10, pp. 1433-1446, 2009.

[21] Leary G., Chatha K., Srinivasa, Mehta, K., "Design of Network-on-Chip

Architectures with a Genetic Algorithm-Based Technique," *IEEE Trans. VLSI Systems*, vol 17, no. 5, pp. 674-687, 2009.

[48] Dumitriu V., "Network-on-Chip Topology Generation and Analysis for Transaction-Based Systems-on-Chip", *MASc Thesis, Ryerson University*, 2008.

[53] Rahmati D., Murali S., Benini L., Angiolini F., De Micheli G., Sarbazi-Azad H., "A Method for Calculating Hard QoS Guarantees for Networks-on-Chip," *IEEE/ACM Int'l Conf. ICCAD*, pp.579-586, 2009.

- All topologies redesigned using 65 nm technology
- **x** Comparable on-chip area overhead
- × < 50 sec to generate and analyze topologies
- 33.1% less power with 33.6% increase in throughput (flits/sec)

Experimental Results

Tabu search based

Genetic Algorithm based Topology [21]

Mesh based

NOCS-12

Experimental Results

Topology	Sub-Network	Performance (%)	Power (%)	Total VCs				
MPEG4	SDRAM2	0.3215	6.37	0				
	SDRAM	11.5646	6.37	1				
	DIGG	12.01	14.57	-				
	RISC		1.19	0				
	Actual Performance/Power Increase: 9.0 / 3.2 (%)							
	ne	12.24	10.46					
		20.89	20.79	2*				
	ARM926	4.18	4.70	0*				
NCS		5.877	4.71					
	Router 0 to	9.04	8.47	2				
	Router 5	12.65	16.54					
	Actual Pe	rformance/Power In	crease: 32.6 / 10	0.1 (%)				
	DMA_1	5.7	2.00	1.4				
	Master	6.38	7.814	1-				
	DMA 2	36.157	6.390					
Layer-3	Master	36.851	18.269	2*				
Switch		37.023	37.54					
	MEM1	1.483	8.945	0				
	Actual Pe	rformance/Power In	crease: 24.8 / 7	.8 (%)				
	CPU	30.00	12.70	1				
		31.2	30.9					
	CMEM2	0.6	12.7	0				
	ASIC2 Slave	18.2	13.99					
A/V		22.47	19.77	2				
		24.52	27.35					
	CMEM3	19.48	12.70	1*				
		20.95	-					
	Actual Peri	formance/Power Inc	rease: 30.14 / 10	0.01 (%)				
	MEM1	18.9 32.7	12.1 59.1	1*				
	ASICI	49.0	26.16	1				
Set-Top Box	ASICI	52.3	59.1	1				
	CPU2	21.99	12.1	1				
		26.98	26.16	-				
	Actual Performance/Power Increase: 18.3 / 9.3 (%)							
D26_Media	DMA	23.4 25.1	13.22 24.9	1*				
	ARM CPU	15.2	13.22	1				
		A sized Barrier and Barrier Towners 16 5 (10 60 000)						
	Actual Per	Actual Performance/Power Increase: 10.7 / 13.68 (%)						

- Deadlock/ Contention Analyzer accurate within a 19.8% error margin
- Many contention points also occurred at deadlock cycles
- Deadlock comparison to resource ordering technique of Dally: able to save 84.8% resource saving, in turn using 9.35 times less power with a slight performance improvement of 4%

- Proposed a methodology to produce efficient performance and power optimization in NoC design using Tabu Search optimization method
- New approach to contention relief using Layered Queuing Networks (LQN) and a power and performance tradeoff
- 33.1 % less power dissipation (on average) as compared to previous works
- Average performance improvement (including contention relief) of 33.6% (flits/cycle)
- Deadlock and Contention VC insertion technique allowing upto 84.8% resource savings with lower power

