In-network Monitoring and Control Policy for DVFS of CMP Networks-on-Chip and Last Level Caches

Xi Chen1, Zheng Xu1, Hyungjun Kim1, Paul V. Gratz1, Jiang Hu1, Michael Kishinevsky2 and Umit Ogras2

1Computer Engineering and Systems Group, Department of ECE, Texas A&M University
2Strategic CAD Labs, Intel Corp.
Introduction –
The Power/Performance Challenge

• VLSI Technology Trends
 • Continued transistor scaling
 – More transistors
 • Traditional VLSI gains stop
 – Power increasing and transistor performance stagnant

• Achieving performance in modern VLSI
 • Multi-core/CMP for performance
 – NoCs for communication
 • CMP power management to permit further performance gains and new challenges
Typically power management covers only the core and lower-level caches

• Simpler problem (relatively speaking)
 – All performance information locally available
 • Instructions per cycle
 • Lower-level cache miss rates
 • Idle time
 – Each core can act independently
 – Performance scales approximately linearly with frequency

• Cores are only part of the problem
 – Power management in the uncore is a different domain...
 Typical Chip-Multiprocessors

- Chip-multiprocessors (CMPs): Complexity moves from the cores up the memory system hierarchy.
 - Multi-level hierarchies
 - Private lower levels
 - Shared last-level
 - Networks-on-chip for:
 - Cache block transfers
 - Cache coherence
Chip-multiprocessors (CMPs): Complexity moves from the cores up the memory system hierarchy.

- Multi-level hierarchies
 - Private lower levels
 - Shared last-level
- Networks-on-chip for:
 - Cache block transfers
 - Cache coherence

Large fraction of the power outside of cores
- LLC shared among many cores (distributed!)
- Network-on-chip interconnects cores
 - 12 W on the Single Chip Cloud Computer!

Indirect impact on system performance
- Depends upon lower-level cache miss-rates
CMP DVFS Partitioning

Domains per tile
CMP DVFS Partitioning

Domains per tile

Separate domain for uncore

Domains per core
Project Goals

Develop a power management policy for a CMP uncore.

• Maximum savings with minimal impact on performance (< 5% IPC loss).
 – What to monitor?
 – How to propagate information to the central controller?
 – What policy to implement?
Outline

• Introduction

• Design Description
 – Uncore Power Management
 – Metrics
 – Information Propagation
 – PID Control

• Evaluation

• Conclusions and Future Work
Uncore Power Management

- Effective uncore power management
 - Inputs:
 - Current performance demand
 - Current power state (DVFS level)
 - Outputs:
 - Next power state
- Classic control problem
 - Constraints
 - High speed decisions
 - Low hardware overhead
 - Low impact on system from management overheads
Three major components to uncore power management:

• Uncore performance metric
 – Average memory access time (AMAT)

• Status propagation
 – In-network, unused header portion

• Control policy
 – PID Control over a fixed time window
Uncore: LLC + NoC

- Which performance metric?
 - NoC Centric?
 - Credits
 - Free VCs
 - Per-hop latency
 - LLC Centric?
 - LLC Access rate
 - LLC Miss rate
Performance Metrics

Uncore: LLC + NoC

• Which performance metric?
 - NoC Centric?
 • Credits
 • Free VCs
 • Per-hop latency
 - LLC Centric?
 • LLC Access rate
 • LLC Miss rate

Ultimately who cares about uncore performance?

• Need a metric that quantifies the memory system’s effect on system performance!
 • Average memory access time (AMAT)
Direct measurement memory system performance

AMAT increase X yields IPC loss of ~1/2X for small X
- Experimentally determined

\[
AMAT = HitRate_{L1} \times AccTime_{L1} + (1 - HitRate_{L1}) \times (HitRate_{L2} \times AccTime_{L2} + ((1 - HitRate_{L2}) \times Latency_{Uncore}))
\]

AMAT vs Uncore clock rate for two cases: f0 – no private hits; f1 – all private hits.
Average Memory Access Time

\[
AMAT = HitRateL1 \times AccTimeL1 + (1 - HitRateL1) \times
(\text{HitRateL2} \times AccTimeL2 +
((1 - \text{HitRateL2}) \times \text{LatencyUncore}))
\]

- Direct measurement memory system performance
- AMAT increase \(X \) yields IPC loss of \(\sim 1/2X \) for small \(X \)
 - Experimentally determined

Note: HitRateL1, HitRateL2, and LatencyUncore require information from each core to calculate weighted averages!
Information Propagation

- In-network status packets too costly
 - Bursts of status would impact performance
 - Increased dynamic energy
- Dedicated status network would be overkill
 - Somewhat low data rate:
 ~8 bytes per core per 50000-cycle time window
 - Constant power drain
Information Propagation

- In-network status packets too costly
 - Bursts of status would impact performance
 - Increased dynamic energy
- Dedicated status network would be overkill
 - Somewhat low data rate: \(~8\) bytes per core per 50000-cycle time window
 - Constant power drain

“Piggyback” info in packet headers
- Link width often an even divisor of cache line size – unused space in header
- No congestion or power impact
- Status info timeliness?
Information Propagation

- One power controller node
 - Node 6 in figure
- Status opportunistically sent
- Info harvested as packet pass through controller node
- However, per-core info not received at the end of every window…

Uncore NoC, grey tile contains perf. monitor. Dashed arrows represent packet paths.
Extrapolation

- AMAT calculation requires information from all nodes at the end of each time window
- Opportunistic piggy-backing provides no guarantees on information timeliness
 - Naïvely using last-packet received leads to bias in weighted average of AMAT
- Extrapolate packet counts to the end of the time window
 - More accurate weights for AMAT calculation
 - Nodes for which no data is received are excluded from AMAT
Power Management Controller

- PID (Proportional-Integral-Derivative) Control
 - Computationally simpler than computer learning techniques
 - More readily and quickly adapts to many different workloads than rule based approaches
 - Theoretical grounds for stability
 - (proof in paper)
Outline

- Introduction
- Design Description
- Evaluation
 - Methodology
 - Power and Performance
 - Estimated AMAT + PID
 - Vs. Perfect AMAT + PID
 - Vs. Rule-based
 - Analysis
 - Tracking ideal DVFS ratio selection
- Conclusions and Future Work
Methodology

- Memory system traces
 - PARSEC applications
 - M5 trace generation
 - First 250M memory operations
- Custom Simulator:
 - L1 + L2 + NoC + LLC + Directory
- Energy savings calculated based on dynamic power
 - Some benefit to static power as well, future work

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>#processing cores</td>
<td>16</td>
</tr>
<tr>
<td>L1 data cache</td>
<td>2-way 32Kb, 1 core cycle latency</td>
</tr>
<tr>
<td>L2 cache</td>
<td>8-way 256Kb, 13 core cycle latency</td>
</tr>
<tr>
<td>L3 cache (LLC)</td>
<td>16-way, 2MB/bank, 32MB/total, 15 uncore cycle latency</td>
</tr>
<tr>
<td>Directory cache</td>
<td>MESI, 4 uncore cycle latency</td>
</tr>
<tr>
<td>Memory access latency</td>
<td>100 core cycles</td>
</tr>
<tr>
<td>NoC</td>
<td>4 × 4 2D mesh, X-Y DOR, 2VCs/port 4flits deep</td>
</tr>
<tr>
<td>Voltage/Frequency</td>
<td>10 levels, voltage: 0.5V–1V, frequency: 250MHz–1GHz</td>
</tr>
</tbody>
</table>
Power and Performance

- Average of 33% energy savings versus baseline
- Average of ~5% AMAT loss (<2.5% IPC)
Comparison vs. Perfect AMAT

- Virtually identical power savings vs. perfect AMAT
- Slight loss in performance vs. perfect AMAT
Comparison vs. Rule-Based

- Virtually identical power savings vs. Rule-Based
- 50% less performance loss
Analysis: PID tracking vs. ideal

- Generally PID is slightly conservative
- Reacts quickly and accurately to spikes in need
Conclusions and Future Work

- We introduce a power management system for the CMP Uncore
 - Performance metric: estimated AMAT
 - Information propagation: In-network, piggy-backed
 - Control Algorithm: PID

- 33% energy savings with insignificant performance loss
 - Near ideal AMAT estimation
 - Outperforms rule-based techniques
Conclusions and Future Work

• Just scratched the surface here
 - Dynamic cache footprint analysis for LLC power gating
 - Are cycles of uncore utilization predictable?
 • Neural net approaches to control
 • Other predictive techniques
 - Not all misses are equally important
 • Load criticality analysis to improve control
Backup
• Reduce frequency to allow voltage reduction
 - Dynamic power reduces exponentially
 - Static power reduction as well
 - Obvious performance impacts
• Power management algorithm:
 - Choose best power-performance tradeoff

\[P = \alpha \cdot C \cdot V^2 \cdot f \]