

In-network Monitoring and Control Policy for DVFS of CMP Networks-on-Chip and Last Level Caches

Xi Chen¹, Zheng Xu¹, Hyungjun Kim¹, Paul V. Gratz¹, Jiang Hu¹, Michael Kishinevsky² and Umit Ogras²

¹Computer Engineering and Systems Group, Department of ECE, Texas A&M University ²Strategic CAD Labs, Intel Corp.

Introduction – The Power/Performance Challenge

- VLSI Technology Trends
 - Continued transistor scaling
 - More transistors
 - Traditional VLSI gains stop
 - Power increasing and transistor performance stagnant
- Achieving performance in modern VLSI
 - Multi-core/CMP for performance
 - NoCs for communication
 - CMP power management to permit further performance gains and new challenges

Core Power Management

Typically power management covers only the core and lower-level caches

- Simpler problem (relatively speaking)
 - All performance information locally available
 - Instructions per cycle
 - Lower-level cache miss rates
 - Idle time
 - Each core can act independently
 - Performance scales approximately linearly with frequency
- Cores are only part of the problem
 - Power management in the uncore is a different domain...

Typical Chip-Multiprocessors

 Chip-multiprocessors (CMPs): Complexity moves from the cores up the memory system hierarchy.

- Multi-level hierarchies
 - Private lower levels
 - Shared last-level
- Networks-on-chip for:
 - Cache block transfers
 - Cache coherence

CMP Power Management Challenge

 Chip-multiprocessors (CMPs): Complexity moves from the cores up the memory system hierarchy.

- Multi-level hierarchies
 - Private lower levels
 - Shared last-level
- Networks-on-chip for:
 - Cache block transfers
 - Cache coherence
- Large fraction of the power outside of cores
 - LLC shared among many cores (distributed!)
 - Network-on-chip interconnects cores
 - 12 W on the Single Chip Cloud Computer!
- Indirect impact on system performance
 - Depends upon lower-level cache miss-rates

CMP DVFS Partitioning

Domains per tile

Uncore DVFS Domain

L3 Cache

Partition

Directory

L3 Cache

Partition

Directory

L3 Cache

Partition

Directory

CMP DVFS Partitioning

Domains per tile

Domains per core Separate domain for uncore

Project Goals

Develop a power management policy for a CMP uncore.

- Maximum savings with minimal impact on performance (< 5% IPC loss).
 - What to monitor?
 - How to propagate information to the central controller?
 - What policy to implement?

Outline

- Introduction
- Design Description
 - Uncore Power Management
 - Metrics
 - Information Propagation
 - PID Control
- Evaluation
- Conclusions and Future Work

Uncore Power Management

- Effective uncore power management
 - Inputs:
 - Current performance demand
 - Current power state (DVFS level)
 - Outputs:
 - Next power state
- Classic control problem
 - Constraints
 - High speed decisions
 - Low hardware overhead
 - Low impact on system from management overheads

Design Outline

Three major components to uncore power management:

- Uncore performance metric
 - Average memory access time (AMAT)
- Status propagation
 - In-network, unused header portion
- Control policy
 - PID Control over a fixed time window

Performance Metrics

Uncore: LLC + NoC

- Which performance metric?
 - NoC Centric?
 - Credits
 - Free VCs
 - Per-hop latency
 - LLC Centric?
 - LLC Access rate
 - LLC Miss rate

Performance Metrics

Uncore: LLC + NoC

- Which performance metric?
 - NoC Centric?
 - Credits
 - Free VCs
 - Per-hop latency
 - LLC Centric?
 - LLC Access rate
 - LLC Miss rate

Ultimately who cares about uncore performance?

- Need a metric that quantifies the memory system's effect on system performance!
- Average memory access time (AMAT)

Average Memory Access Time

AMAT = HitRateL1*AccTimeL1+(1-HitRateL1)* (HitRateL2*AccTimeL2+ ((1-HitRateL2) * LatencyUncore))

- Direct measurement memory system performance
- AMAT increase Xyields IPC loss of~1/2X for small X
 - Experimentally determined

AMAT vs Uncore clock rate for two cases: f0 - no private hits; f1 - all private hits.

Average Memory Access Time

AMAT = HitRateL1*AccTimeL1+(1-HitRateL1)* (HitRateL2*AccTimeL2+ ((1-HitRateL2) * LatencyUncore))

- Direct measurement memory system performance
- AMAT increase X
 yields IPC loss of
 ~1/2X for small X
 - Experimentally determined

AMAT vs Uncore clock rate for two cases: f0 - no private hits; f1 - all private hits.

Note: HitRateL1, HitRateL2, and LatencyUncore require information from each core to calculate weighted averages!

Information Propagation

- In-network status packets too costly
 - Bursts of status would impact performance
 - Increased dynamic energy
- Dedicated status network would be overkill
 - Somewhat low data rate:~8 bytes per core per50000-cycle time window
 - Constant power drain

Information Propagation

- In-network status packets too costly
 - Bursts of status would impact performance
 - Increased dynamic energy
- Dedicated status network would be overkill
 - Somewhat low data rate:~8 bytes per core per50000-cycle time window
 - Constant power drain

"Piggieback" info in packet headers

- Link width often an even divisor of cache line size – unused space in header
- No congestion or power impact
- Status info timeliness?

Information Propagation

- One power controller node
 - Node 6 in figure
- Status opportunistically sent
- Info harvested as packet pass through controller node
- However, per-core info not received at the end of every window...

Uncore NoC, grey tile contains perf. monitor. Dashed arrows represent packet paths.

Extrapolation

- AMAT calculation requires information from all nodes at the end of each time window
- Opportunistic piggy-backing provides no guarantees on information timeliness
 - Naïvely using last-packet received leads to bias in weighted average of AMAT
- Extrapolate packet counts to the end of the time window
 - More accurate weights for AMAT calculation
 - Nodes for which no data is received are excluded from AMAT

Power Management Controller

- · PID (Proportional-Integral-Derivative) Control
 - Computationally simpler than computer learning techniques
 - More readily and quickly adapts to many different workloads than rule based approaches
 - Theoretical grounds for stability
 - (proof in paper)

Outline

- Introduction
- Design Description
- Evaluation
 - Methodology
 - Power and Performance
 - Estimated AMAT + PID
 - Vs. Perfect AMAT + PID
 - Vs. Rule-based
 - Analysis
 - Tracking ideal DVFS ratio selection
- Conclusions and Future Work

Methodology

- Memory system traces
 - PARSEC applications
 - M5 trace generation
 - First 250M memory operations
- Custom Simulator:
 - L1 + L2 + NoC + LLC+ Directory
- Energy savings calculated based on dynamic power
 - Some benefit to static power as well, future work

Parameter	Values
#processing cores	16
L1 data cache	2-way 32Kb, 1 core cycle latency
L2 cache	8-way 256Kb, 13 core cycle latency
L3 cache (LLC)	16-way, 2MB/bank, 32MB/total, 15 uncore cycle latency
Directory cache	MESI, 4 uncore cycle latency
Memory access latency	100 core cycles
NoC	4 × 4 2D mesh, X-Y DOR, 2VCs/port 4flits deep
Voltage/Frequency	10 levels, voltage: 0.5V-1V, frequency: 250MHz-1GHz

Power and Performance

■Est. AMAT+PID 18% 16% 14% Percentage AMAT Increase 12% 10% 8% 6% 4% 2% 0% Facesim

Normalized dynamic energy consumption

Normalized performance loss

- Average of 33% energy savings versus baseline
- Average of \sim 5% AMAT loss (<2.5% IPC)

Comparison vs. Perfect AMAT

Normalized dynamic energy consumption

Normalized performance loss

- Virtually identical power savings vs. perfect AMAT
- Slight loss in performance vs. perfect AMAT

Comparison vs. Rule-Based

Normalized dynamic energy consumption

Normalized performance loss

- · Virtually identical power savings vs. Rule-Based
- 50% less performance loss

Analysis: PID tracking vs. ideal

- Generally PID is slightly conservative
- · Reacts quickly and accurately to spikes in need

Conclusions and Future Work

- We introduce a power management system for the CMP Uncore
 - Performance metric: estimated AMAT
 - Information propagation: In-network, piggy-backed
 - Control Algorithm: PID
- 33% energy savings with insignificant performance loss
 - Near ideal AMAT estimation
 - Outperforms rule-based techniques

Conclusions and Future Work

- Just scratched the surface here
 - Dynamic cache footprint analysis for LLC power gating
 - Are cycles of uncore utilization predictable?
 - Neural net approaches to control
 - Other predictive techniques
 - Not all misses are equally important
 - Load criticality analysis to improve control

Backup

DVFS Background

$$P = \alpha \cdot C \cdot V^2 \cdot f$$

- Reduce frequency to allow voltage reduction
 - Dynamic power reduces exponentially
 - Static power reduction as well
 - Obvious performance impacts
- Power management algorithm:
 - Choose best power-performance tradeoff