Oticon

NOCs in highly optimized commercial chipsets for hearing aids.

Mogens Cash Balsby

Sr. Director Silicon Engines

the introduction the challenges the design choices the implementation

Agenda

the introduction

your presenter

your Hearing Aid manufacturer

the hearing aid

Introduction

Your presenter

- Sr. Director Silicon Engines in Oticon
- B.Sc.E.E
- PCB → ASIC designer
- Networking
- MIPS processors
- Hearing Instruments

Oticon

Your hearing aid manufacturer

- Oticon part of William Demant
- World leading manufacturer
- > 1,5 B\$
- > 5.000 people
 - > 1.400 in Denmark
- > 400 in R&D
 - In Demark and Switzerland

The Oticon history

- > Founded in 1904 by Hans Demant
- > Hans wanted to help his deaf wife
- > H.D. died in 1910
- > His son, William, took over the business
- ➤ The 20's and 30's: Sales in Europe

H. Demant,
Symaskine- & Cyklefabrik,
57, Kongensgade 57,
Odense.

The Oticon story

- ➤ The 40's
 Own production
- The 60'sOwn distribution network in Europe
- ➤ The 70's
 The world's leading hearing aid
 producer with a market share of 15%

Oticon Product Breakthroughs

- > MultiFocus, 1991, world's first fully automatic
- ➤ DigiFocus, 1996, world's first fully digital at ear-level
- > Adapto, 2001, world's first with voice recognition
- > Oticon Syncro, 2004, world's first with artificial intelligence
- > Oticon Delta, 2006, revolutionary design
- > Oticon Epoq, 2007, world's first truly binaural with spatial sound
- > Oticon Dual, 2008, outstanding beauty & brains
- > Oticon ConnectLine, 2009, world's first low-latency high quality audio streaming
- > Oticon Agil, 2010, world's first cognitive friendly hearing system

Oticon Product Breakthrough 2011

World smallest fully wireless HI

The hearing aid industry

Characterized by...

- Small market size ~10M units/y
- 6 big players
- No standardization
- High degree of design optimizations

the challenges

Discreteness

Power

Sound

One chipset

multiple brands, products, styles

Few Chipsets

The mechanical challenge

The mechanical challenge

discreetness

The power challenge

we save on everything

Battery type	Capacity	Consumption in 1 week
13	~260 mAh	2,0 mA
312	~130 mAh	1,0 mA
10A	~70mAh	0,5 mA

- > Always on
- Wireless streaming

The sound processing challenge

lots of compute power

The sound processing challenge

lots of compute power

No surrounding noise, aided

The sound processing challenge

frequency transposition

The connectivity challenge

wireless connection

- Audio streaming
- > Ear to ear
- > Phone
- > TV
- Partner microphone

the design choices

Voltage²

Multiprocessor

NOC

Voltage²

The best way to save power

- \triangleright Switching power follows P = V²/R
- Lower operating voltage -> lower power

Switching Power

The 2Vt wall

Approaching 2 Vt (NVt + PVt) the cell delay becomes very non linear

26

Optimal operating voltage

Sweet spot between speed and power

Delay range

over Voltage, Silicon and Temperature

- > Foundry range:
 - ➤ Factor ~2
- Oticon range:
 - ➤ Factor ~10

Oticon

Constraint scenarios

- > Functional modes : 3
- > Silicon: 3
- ➤ Voltage : 5
- > Temperature : 3
- > Parasitic R + C : 5
 - Sample Scenario : mode_normal_ss_0v95_n20c_rcmin
- Number of Scenarios to signoff: 5 * 3 * 3 * 5 * 3
- Some can be excluded reducing the 675 to appr. = 250
- Applying human judgment, no. of scenarios = 24

The design choices

the implementation

the processors

the NOC

the chipset

Low-power Multi-processor design

- Scalability
 - Scalable solution to easily change number of DSP processors in future designs

DSP 1 DSP 2 DSP n

- > Algorithm development
 - Current algorithms "easily" distributed onto parallel DSP processors
 - Algorithms running on each processor can be developed and verified independently
 - Well-defined algorithm interfaces, which separate processing from communication

Multi-processor system

- Multi-processor platform
 - Platform based on set of DSP processors
 - Each DSP processors individually tailored for specific algorithms:
 - Same base processor (ISA) extended with different set of custom hardware accelerators
 - Different amount of dedicated data and program memory
- Control processor
 - Handles system setup and control
 - Select algorithms to be run on DSPs
 - Handles wired/wireless communication

Low-power DSP processors design

- DSP Processor requirements:
 - High efficiency "Compute power / Watt"
 - Real-time requirements
 - High code density
- Created from algorithm C source code
- DSP Processor features:
 - Vector processing datapath
 - Custom hardware accelerators
 - Parallel instructions
 - Variable instruction length

Hardware acceleration for DSP processing

- Reduce power and cycle count
 - Accelerating commonly used functionality using hardware accelerators
 - Identifying control-intense code
 - > Identifying compute-intense code
- Hardware accelerators
 - Implemented as extensions to the instruction set for the base DSP core
 - Single-cycle accelerators (small)
 - Complex valued arithmetic, wide accumulators, data normalization etc
 - Multi-cycle accelerators (large)
 - > FFT, FIR, CORDIC, LOG/EXP, Decoders etc

Hardware accelerators (ISA extension)

Hardware accelerators (ISA extension)

Hardware accelerators (ISA extension)

Hardware accelerators (ISA extension)

Multi-processor software development

- All algorithms developed in C
 - Great advantage for developing and debugging platform/architecture independent code
- Software optimizations
 - Vector processing
 - Requires consideration about data alignment, data storage, data permutations, and memory access patterns
 - Pragmas to guide the compiler
 - Restricted data areas, software pipelining, annotated loop iteration and branch probability
- Software challenges
 - Algorithm partitioning (manual)

15X

the NOC

- Switch is asynchronous
- Bridge is synchronous
- Best effort, with prioritization
- No guaranteed service

 Processor has direct connection to RAM

the connection

- The Control Processor can configure the routes directly
- "Connect cells" can establish route

the DMA

- DMA 2 DMA streams
- Reuse of DMA setup
- Interrupt on completion

error handling

- Timeout of stalled transactions
- Debug information stored
- Different recovery options
 - Fail gracefully

long connections

NOC between chips

The chipset

 $2,75 \times 3,74 = 10,2$ mm²

35M transistors

81/₂M gates

1,3M wires

52m total wire length

summary

Summary

- So much room for improvement
- > So much more to learn
- Keep researching
- > We need talent

the end

thanks for listening

