

Shape spaces and metrics in an application perspective

Mads Nielsen

eScience Centre, DIKU, University of Copenhagen

The application perspective:

- Data and task
- Which structure is needed on the models to subserve the task?

Disclaimer

Slides have been stolen from Mumford, Dam, Chennai, and many more

Degeneration

of cartilage

Osteoarthritis (OA)

OA is a degenerative joint disease in knees, hips, ...

Effect:

Pain, Reduced range of motion

- Rule of thumb: Age in years gives % chance of OA
- Treatment: Symptom control

Current golden standard: -Kellgren & Lawrence Index -Joint space width

Late stage of disease

(D)

Early stage of

osteoarthritis

www.chclibrary.org

Quantification Framework

Manifold Learning

Risk of vertebral fractures

Current standard of fracture grading: Bone Mineral Density based on dual x-ray

Our approach: Statistical shape analysis

Visualization

Blue: Mean spine shape

Red: Likely to fracture

Tasks

Classification Shape regression Marker regression Prior for segmentation S -> [L₁,L₂,...L_n] S(t): *R*ⁿ-> *S* t(S): *S* -> *R* p(S): dist. on *S*

In all cases, a metric on the space S of shapes S is essential

Finding usefull metrics is non-trivial

Shapes

Shape = Geometry \ Position

Shape is a qouotient manifold (mayby embedded in Geometry space)

Metric on the geometry space, may be inherited (projected) to the shape space

Kendall : Points in $\mathbb{R}^{2n} \setminus Similarity$

The set Σ of all smooth plane curves forms a manifold!

Start with a fixed curve $C \hat{I} S$ parametrized by $s \mapsto f(s)$ Define a local chart near f: $y_a(s) = f(s) + a(s).\vec{n}(s),$ $\vec{n}(s) =$ unit normal to C, $C_a =$ image of y_a

Manifold Learning

Think of Σ geometrically

- \bullet A curve on \varSigma is a warping of one shape to another.
- On Σ , the set of ellipses forms a surface:

- The geometric heat equation:
- is a <u>vector field</u> on \varSigma

Manifold Learning

Advantages of L² metrics

- Have simple notion of a gradient to form flows
- Have a beautiful theory of locally unique geodesics, thus a warping of one shape to another.
- Can define the Riemannian curvature tensor. If nonpositive, have a good theory of *means*.
- Can expect a theory of diffusion, of Brownian motion, hence Gaussian-type measures and their mixtures.

A geodesic in the simple L^2 metric

Manifold Learning

But distances collapse in this metric:

The line on the bottom is moved to the line on the top by growing "teeth" upwards and then shrinking them again.

Manifold Learning

Fixes of this bug:

Michor + Mumford: L₂ + curvature Yezzi: Sobolev metric Charpiat: Bounded curvature Sommer: Finite bandwith by resampling Trouve, Younes: Diffeomorphic

Others use Hausdorff metric

Michor+Mumford $||a||^2 = \int (1 + A\kappa^2) |a|^2 ds$

For small shapes, curvature is negative and the path nearly goes back to the circle (= the 'origin'). Angle sum = 102 degrees.

For large shapes, curvature is positive, 2 protrusions grow while 2 shrink. Angle sum = 207 degrees.

Hence construction depends on scale

- The shape space **S** is limited to shapes S where the curvature (the extrinsic curvature of the curve in R^2) is limited to k < k₀
- This is scale dependent and the ordinary $\rm L_2$ geodesic depends on $\rm k_0$

Yezzi:

Geometric Sobolev-type norms; We define

$$|h|^{2}_{\text{Sobolev}} := |h|^{2} + \lambda L^{2} |Ds h|^{2}_{2}$$

where $h: S_1 \rightarrow R^2$ is a perturbation of the curve c, L is the length of c, Ds is the arclength derivative,

This is a negatively curved space.

This construction is independent of scale

Later today

Define a sobolev type metric on flows on the embedding plane.

This introduces also a flow on embedded curves

This was introduced here by Tom Fletcher It is negatively curved

Manifold Learning

Negatively curved spaces

<u>Same metric</u>: a reflection of its negative curvature for small shapes: to get from any shape to any other *which is far* away, go via 'cigars' (in neg. curved space, to get from one city to another, everyone takes the same highway)

Manifold Learning

Hausdorff approaches

The distance depends on the largest smallest distance to the other curve

Geodesics seems not very informative?

Implementations via level sets and distance transform

Funny solutions

Conclusion

At best, we still have things to understand:

Informative statistics on negatively curved spaces?

Better L₂-like metrics? Problem dependent?

Questions?

Manifold Learning