THE MEANING OF CURVATURE A DISTANCE GEOMETRIC APPROACH

Manifold Learning

On the island of Hven

August 17-21, 2009

Steen Markvorsen

DTU Mathematics

3

(日) (周) (三) (三)

- 2

<ロ> (日) (日) (日) (日) (日)

Synopsis

- Ourvature sensitive geodesic sprays
- Structural results

(日) (周) (三) (三)

э

Synopsis

- Ourvature sensitive geodesic sprays
- Structural results
- Ourvature controlled comparison theory

3

(日) (周) (三) (三)

Synopsis

- Ourvature sensitive geodesic sprays
- Structural results
- Ourvature controlled comparison theory
- Length space analysis

3

- 4 同 6 4 日 6 4 日 6

General case

Definition (Geodesics in a Riemannian manifold (M, g))

With a given starting point p and a unit initial direction $\dot{\gamma}(0)$ in the tangent space to M at p:

$$\frac{D\dot{\gamma}(t)}{dt} = 0$$

Manifold Learning (On the island of Hven)

Sphere case

Geodesic spray on the sphere

Manifold Learning (On the island of Hven)

DTU Mathematics

August 17-21, 2009 4 / 47

(日) (四) (王) (王) (王)

Ellipsoid case, positive curvature

Geodesic spray on an ellipsoid

Manifold Learning (On the island of Hven)

DTU Mathematics

August 17-21, 2009 5 / 47

イロト 不得 トイヨト イヨト 二日

Hyperboloid of one sheet, negative curvature

Geodesic spray on an elliptic hyperboloid of one sheet

Manifold Learning (On the island of Hven)

DTU Mathematics

August 17-21, 2009 6 / 47

イロト 不得下 イヨト イヨト 二日

Geodesic sprays converge when the curvature is positive

Geodesic spray in a curvature-colored map of the ellipsoid

Manifold Learning (On the island of Hven)

DTU Mathematics

August 17-21, 2009 7 / 47

Geodesic sprays diverge when the curvature is negative

Geodesic spray in a curvature-colored map of the hyperboloid

Manifold Learning (On the island of Hven)

DTU Mathematics

August 17-21, 2009 8 / 47

イロト 不得下 イヨト イヨト 二日

Geodesic sprays

Special maps: Mercator map of the globe

The well known Mercator map from any atlas

Manifold Learning (On the island of Hven)

DTU Mathematics

August 17-21, 2009 9 / 47

3

イロト イヨト イヨト

Geodesic sprays

Conformally flat Mercator map of the sphere

The Mercator map with conformal factor coloring

Manifold Learning (On the island of Hven)

DTU Mathematics

August 17-21, 2009

10 / 47

(日) (同) (三) (三)

Conformal curvature example

Proposition

A conformally flat metric

$$g(u,v) = e^{-2\psi(u,v)}g_0(u,v)$$

has the Gaussian curvature

$$K(u,v) = e^{2\psi(u,v)} \Delta \psi(u,v)$$

Conformal positive curvature example

Example (Constant curvature K = 1)

With conformal factor

$$e^{-2\psi(u,v)} = \cosh^{-2}(v)$$

we have

$$\psi(u, v) = \log(\cosh(v))$$

 $\Delta \psi(u, v) = 1 - \tanh^2(v)$

so that

$$\mathcal{K}(u,v)=e^{2\psi(u,v)}\Delta\psi(u,v)=\cosh^2(v)\left(1- anh^2(v)
ight)=1$$

3

(日) (周) (三) (三)

Geodesics in the conformal Mercator map projection of the sphere

Two geodesics in conformally colored map of the sphere

Manifold Learning (On the island of Hven)

DTU Mathematics

August 17-21, 2009 13 / 47

Geodesics in the conformal Mercator map projection of the sphere

Two geodesics seemingly diverging?

Manifold Learning (On the island of Hven)

DTU Mathematics

August 17-21, 2009 14 / 47

Geodesics in the conformal Mercator map projection of the sphere

Geodesic spray in the Mercator map

Manifold Learning (On the island of Hven)

DTU Mathematics

Gravitational lensing

Gravitational lens principle

Manifold Learning (On the island of Hven)

DTU Mathematics

- < ∃ → August 17-21, 2009 16 / 47

▲ @ ▶ < ∃ ▶</p>

Gravitational lensing

A specific gravitational lens as seen by the Hubble telescope

Manifold Learning (On the island of Hven)

3

(日) (同) (三) (三)

Black holes everywhere

A black hole resides at the center of every galaxy

Manifold Learning (On the island of Hven)

August 17-21, 2009 18 / 47

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Rotating black holes

The structure of a Kerr solution

Manifold Learning (On the island of Hven)

DTU Mathematics

August 17-21, 2009 1

<ロ> (日) (日) (日) (日) (日)

19 / 47

3

Equations for gravity

Field equations (A. Einstein, 1915)

$$\operatorname{Ric} -\frac{1}{2} \operatorname{S} g = 8\pi\kappa T$$

Manifold Learning (On the island of Hven)

3

(日) (同) (三) (三)

Lines and nonnegative curvature

Theorem (Cohn-Vossen, 1935)

Let F be a surface which satisfies the following conditions:

- F is geodesically complete.
- F has nonnegative Gauss curvature everywhere.
- F contains a geodesic line.

Then F is a generalized CYLINDER.

Flat standard cylinder $\mathbb{S}^1\times\mathbb{R}^1$

Manifold Learning (On the island of Hven)

DTU Mathematics

August 17-21, 2009 22 / 47

3

<ロ> (日) (日) (日) (日) (日)

Cosmologies

Theorem (Cheeger-Gromoll 1971, Yau 1982, ---, Newman 1990)

Let M be a space time which satisfies the following conditions:

- *M* is timelike geodesically complete.
- M has nonnegative timelike Ricci curvature everywhere.
- M contains a timelike line.

Then M is a generalized CYLINDER.

Distance Geometric Analysis

Geodesic distance contact to 1D submanifold in a 2D 'ambient' surface

Manifold Learning (On the island of Hven)

DTU Mathematics

August 17-21, 2009 24 / 47

3

(日) (周) (三) (三)

Distance Geometric Analysis

Geodesic distance contact to a 2D submanifold in 3D flat space

Manifold Learning (On the island of Hven)

< □ > < ---->

Large scale structural results

Extrinsic disk of submanifold

Extrinsic disk of a surface

DTU Mathematics

August 17-21, 2009 26 / 47

・ロン ・四 ・ ・ ヨン ・ ヨン

Distance Geometric Analysis

Proposition (Laplacian comparison technique)

$$egin{aligned} \Delta^P\psi(r(x)) &\leq ig(\psi''(r(x)) - \psi'(r(x))\eta_w(r(x))ig) \|
abla^P r\|^2 \ &+ m\psi'(r(x))ig(\eta_w(r(x)) - h(r(x))ig) \ &\leq \mathsf{L}\,\psi(r(x)) &= -1 &= \Delta^P \mathsf{E}(x) \quad, \end{aligned}$$

where

$$L f(r) = f''(r) g^{2}(r) + f'(r) \left((m - g^{2}(r)) \eta_{w}(r) - m h(r) \right)$$

is a special tailor made rotationally symmetric Poisson solution in a suitably chosen warped product comparison space.

Solutions to Laplacian processes on manifolds

$$H(x,y,t) = \sum_{i=0}^{\infty} e^{-\lambda_i t} \phi_i(x) \phi_i(y)$$

$$G(x,y) = \int_0^\infty H(x,y,t) \, dt$$

$$E(x) = \int_P G(x, y) \, dy$$

$$\mathcal{A} = \int_{P} E(x) \, dx$$

Manifold Learning (On the island of Hven)

August 17-21, 2009 28 / 47

Equations of Laplacian processes on manifolds

$$\left(\Delta_x^P - \frac{\partial}{\partial t}\right) H(x, y, t) = 0$$

$$\Delta_x^P G(x,y) = 0$$

$$\Delta_x^P E(x) = -1$$

Manifold Learning (On the island of Hven)

August 17-21, 2009 29 / 47

イロト 不得下 イヨト イヨト 二日

Theorem (SM and V. Palmer, GAFA, 2003)

Let P^m be a complete minimally immersed submanifold of an Hadamard–Cartan manifold N^n with sectional curvatures bounded from above by $b \le 0$. Suppose that either $(b < 0 \text{ and } m \ge 2)$ or $(b = 0 \text{ and } m \ge 3)$.

Then P^m is transient.

- ・ 伺 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Minimality

Extrinsic disks of minimal surfaces in \mathbb{R}^3

3

<ロ> (日) (日) (日) (日) (日)

Minimality

Scherk's doubly periodic minimal surface in \mathbb{R}^3 and a corresponding minimal web

(日) (同) (三) (三)

Intrinsic mean exit time expansion

Theorem (A. Gray and M. Pinsky, 1983)

Let $B_r^m(p)$ denote an intrinsic geodesic ball of small radius r and center p in a Riemannian manifold (M^m, g) which has scalar curvature $\tau(p)$ at the center point p.

Then the mean exit time from $B_r(p)$ for Brownian particles starting at p is

$$E_r(p) = rac{r^2}{2m} + rac{ au(p) r^4}{12m^2(m+2)} + r^5 \, arepsilon(r) \quad ,$$

where $\varepsilon(r) \rightarrow 0$ when $r \rightarrow 0$.

Extrinsic mean exit time expansion

Theorem (A. Gray, L. Karp, and M. Pinsky, 1986)

Let P^2 be a 2D surface in \mathbb{R}^3 . For a point p in P we let $D_r(p)$ denote the extrinsic geodesic disk of small radius r and center p.

Then the mean exit time from $D_r(p)$ for Brownian particles starting at p is

$$E_r(p) = rac{r^2}{4} + rac{r^4}{6}(H^2 - K) + r^5 arepsilon(r)$$
 ,

where $\varepsilon(r) \rightarrow 0$ when $r \rightarrow 0$.

Slim, normal, and fat triangles

Theorem (Alexandrov, Toponogov, 60)

The (sectional) curvatures of a Riemannian manifold M^n satisfy $\operatorname{curv}(M) \geq 1$ if and only if every geodesic triangle Δ in M^n and comparison triangle Δ^* (with same edge lengths as Δ) in the unit sphere \mathbb{S}^2_1 satisfy the fatness condition:

$$\alpha_i \geq \alpha_i^*, \qquad i=1,2,3$$

Manifold Learning (On the island of Hven)

2

<ロ> (日) (日) (日) (日) (日)

э

・ロン ・四 ・ ・ ヨン ・ ヨン

э

<ロ> (日) (日) (日) (日) (日)

Negative, zero, and positive curvature

Manifold Learning (On the island of Hven)

DTU Mathematics

August 17-21, 2009 36 / 47

Length spaces

Objects admitting geodesic distances

Length spaces

Manifold Learning (On the island of Hven)

DTU Mathematics

 → August 17-21, 2009 37 / 47

3

Image: A math a math

Length spaces

Objects admitting geodesic distances

< 🗇 🕨

Graphene landscape

Manifold Learning (On the island of Hven)

DTU Mathematics

∃ → August 17-21, 2009 38 / 47

Other measures of size and shape

Definition

Let X denote a compact metric space.

For any *q*-tuple $\{x_1, ..., x_q\}$ of points in X we let xt_q denote the average total distance

$$\operatorname{xt}_q(x_1, ..., x_q) = \binom{q}{2}^{-1} \sum_{i < j}^n \operatorname{dist}(x_i, x_j)$$

Consider the maximum, the q- extent of X:

$$\operatorname{xt}_q(X) = \max_{x_1, \dots, x_q} \operatorname{xt}_q(x_1, \dots, x_q)$$

Other measures of size

Theorem (O. Gross, 1964)

Let X be a compact connected metric space.

Then there is a unique positive real number rv(X) – the rendez vous value of X – with the following property:

For each finite collection of points $x_1, ..., x_q$ in X there exists a point y in X such that

$$(1/q)\sum_{i=1}^q \operatorname{dist}(x_i, y) = \operatorname{rv}(X)$$
.

Large scale results for extents and rendez vous values

Theorem (K. Grove and SM, 1997) Let X^n be an Alexandrov space with

 $\operatorname{curv}(X) \ge 1$.

Then

$$\operatorname{xt}_{\infty}(X) \leq \pi/2$$
 and $\operatorname{rv}(X) \leq \pi/2$.

One (and thence both) equality occurs if and only if X^n is a spherical suspension over an "equatorial" Alexandrov space Θ^{n-1} with $\operatorname{curv}(\Theta) \geq 1$.

Manifold Learning (On the island of Hven)

- ∢ 🗇 እ

Large scale recognition stability

Theorem (G. Perelman and T. Yamaguchi, 1991)

Let X^n be a compact Alexandrov space with $\operatorname{curv}(X) \geq k$.

Then there exists a positive real number $\varepsilon = \varepsilon(X)$ such that every other compact Alexandrov space Y^n with $\operatorname{curv}(Y) \ge k$ and Gromov–Hausdorff distance $d_{GH}(X, Y) \le \varepsilon$ is homeomorphic to the given space X^n .

Reference: F. Memoli, Gromov-Hausdorff distances in Euclidean spaces.

イロト 不得下 イヨト イヨト

ACM Transactions on Graphics, Vol. 27, Article 77, No. 3, August 2008:

Definition

Two discrete metrics \mathcal{L} and $\overline{\mathcal{L}}$ on M are (discretely) conformally equivalent if, for some assignment of numbers ψ_i to the vertices v_i , the metrics are related by

$$\mathcal{L}_{ij} = e^{-(\psi(i) + \psi(j))} ar{\mathcal{L}}_{ij}$$

ACM Transactions on Graphics, Vol. 27, Article 77, No. 3, August 2008: Definition

Two discrete metrics \mathcal{L} and $\overline{\mathcal{L}}$ on M are (discretely) conformally equivalent if, for some assignment of numbers ψ_i to the vertices v_i , the metrics are related by

$$\mathcal{L}_{ij} = e^{-(\psi(i) + \psi(j))} ar{\mathcal{L}}_{ij}$$

Compare with the smooth definition of conformal maps

$$g(u, v) = e^{-2\psi(u, v)}g_0(u, v)$$

ACM Transactions on Graphics, Vol. 27, Article 77, No. 3, August 2008

Conformal representation

Manifold Learning (On the island of Hven)

DTU Mathematics

August 17-21, 2009 44 / 47

ACM Transactions on Graphics, Vol. 27, Article 77, No. 3, August 2008

Conformal representation

Manifold Learning (On the island of Hven)

DTU Mathematics

August 17-21, 2009 45 / 47

Relaxing curvature along the image boundary

Conformal representation with cone singularities

Manifold Learning (On the island of Hven)

DTU Mathematics

August 17-21, 2009 46 / 47

Curvature matters on all scales:

Manifold Learning (On the island of Hven)

3

<ロ> (日) (日) (日) (日) (日)

Curvature matters on all scales:

Globally, locally, and micro-locally

3

(日) (同) (三) (三)

Curvature matters on all scales:

- Globally, locally, and micro-locally
- In smooth and in discrete geometry

3

→ Ξ →

< 一型

Curvature matters on all scales:

- Globally, locally, and micro-locally
- In smooth and in discrete geometry

Thank you for your attention!

