Introduction to Differential and Riemannian Geometry

François Lauze

¹Department of Computer Science University of Copenhagen

Ven Summer School On Manifold Learning in Image and Signal Analysis August 19th, 2009

Outline

Motivation

- Non Linearity
- Statistics on Non Linear Data

Recalls

- Geometry
- Topology
- Calculus on \mathbb{R}^n

Differentiable Manifolds 3

- Definitions
- Building Manifolds
- Tangent Space

Riemannian Manifolds

- Metric
- Gradient Field
- Length of curves
- Geodesics
- Covariant derivatives

Outline

Motivation

Non Linearity

Statistics on Non Linear Data

2 Recalls

- Geometry
- Topology
- Calculus on \mathbb{R}^n

3 Differentiable Manifolds

- Definitions
- Building Manifolds
- Tangent Space

Riemannian Manifolds

- Metric
- Gradient Field
- Length of curves
- Geodesics
- Covariant derivatives

イロト イポト イヨト イヨト

Non Linear data

Many interesting /common objects behave non linearly.

Vector lines in \mathbb{R}^2

Right triangles with fixed hypotenuse

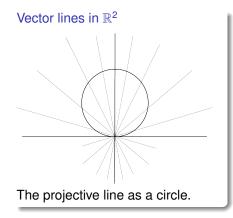
The projective line as a circle.

Right rectangles as half-circle (without endpoints).

イロト イヨト イヨト イヨト

Non Linear data

Many interesting /common objects behave non linearly.



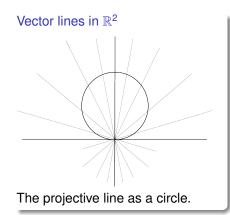
Right triangles with fixed hypotenuse

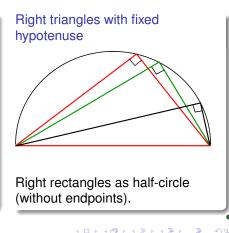
Right rectangles as half-circle (without endpoints).

Image: A math a math

Non Linear data

Many interesting /common objects behave non linearly.





Outline

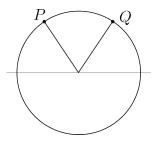
Motivation

- Non Linearity
- Statistics on Non Linear Data
- 2 Recalls
 - Geometry
 - Topology
 - Calculus on Rⁿ
- 3 Differentiable Manifolds
 - Definitions
 - Building Manifolds
 - Tangent Space
 - Riemannian Manifolds
 - Metric
 - Gradient Field
 - Length of curves
 - Geodesics
 - Covariant derivatives

Image: Image:

Averaging

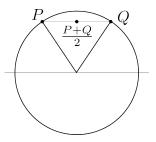
- How to average points on a circle?
- Hm... The linear way does not work!
- A better way: use the distance on the circle!



E

Averaging

- How to average points on a circle?
- Hm... The linear way does not work!
- A better way: use the distance on the circle!



E

Averaging

- How to average points on a circle?
- Hm... The linear way does not work!
- A better way: use the distance on the circle!

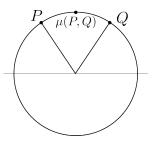


Image: A matrix

E

Outline

) Motiva

- Non Linearity
- Statistics on Non Linear Data

2 Recalls

Geometry

- Topology
- Calculus on Rⁿ

3 Differentiable Manifolds

- Definitions
- Building Manifolds
- Tangent Space

Riemannian Manifolds

- Metric
- Gradient Field
- Length of curves
- Geodesics
- Covariant derivatives

イロト イポト イヨト イヨト

• Inner Product: product $\langle \mathbf{x}, \mathbf{y} \rangle$ for column vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n

- linear in **x** and **y**,
- symmetric: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$
- $\bullet\,$ positive and definite: $\langle {\bm x}, {\bm x} \rangle \geq 0$ with equality if ${\bm x}=0.$

• Simplest example: usual dot-product $\mathbf{x} = (x_1, \dots, x_n)^t$, $\mathbf{y} = (y_1, \dots, y_n)^t$,

$$\mathbf{x} \cdot \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^t \, ld \, \mathbf{y}$$

Id is the *n*-order identity matrix.

 Every inner product is of the form x^tAy, A symmetric positive definite. Alternate notation: ⟨x, y⟩_A. Without subscript ⟨−, −⟩ will denote standard Euclidean dot-product (i.e A = Id).

イロト イヨト イヨト イヨト

Inner Product: product (x, y) for column vectors x and y in Rⁿ

- linear in **x** and **y**,
- symmetric: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$
- positive and definite: $\langle {\bm x}, {\bm x} \rangle \ge 0$ with equality if ${\bm x}=0.$

• Simplest example: usual dot-product $\mathbf{x} = (x_1, \dots, x_n)^t$, $\mathbf{y} = (y_1, \dots, y_n)^t$,

$$\mathbf{x} \cdot \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^t l d \mathbf{y}$$

Id is the *n*-order identity matrix.

 Every inner product is of the form x^tAy, A symmetric positive definite. Alternate notation: ⟨x,y⟩_A. Without subscript ⟨−,−⟩ will denote standard Euclidean dot-product (i.e A = Id).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Inner Product: product (x, y) for column vectors x and y in Rⁿ linear in x and y,

- symmetric: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$
- positive and definite: $\langle {\bm x}, {\bm x} \rangle \ge 0$ with equality if ${\bm x}=0.$

• Simplest example: usual dot-product $\mathbf{x} = (x_1, \dots, x_n)^t$, $\mathbf{y} = (y_1, \dots, y_n)^t$,

$$\mathbf{x} \cdot \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^t l d \mathbf{y}$$

Id is the *n*-order identity matrix.

 Every inner product is of the form x^tAy, A symmetric positive definite. Alternate notation: ⟨x,y⟩_A. Without subscript ⟨−,−⟩ will denote standard Euclidean dot-product (i.e A = Id).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• Inner Product: product $\langle \mathbf{x}, \mathbf{y} \rangle$ for column vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n

- linear in x and y,
- symmetric: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$
- positive and definite: $\langle {\bm x}, {\bm x} \rangle \ge 0$ with equality if ${\bm x} = 0$.

• Simplest example: usual dot-product $\mathbf{x} = (x_1, \dots, x_n)^t$, $\mathbf{y} = (y_1, \dots, y_n)^t$,

$$\mathbf{x} \cdot \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^t \, ld \, \mathbf{y}$$

Id is the *n*-order identity matrix.

 Every inner product is of the form x^tAy, A symmetric positive definite. Alternate notation: ⟨x, y⟩_A. Without subscript ⟨−, −⟩ will denote standard Euclidean dot-product (i.e A = Id).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Inner Products

Inner Product: product (x, y) for column vectors x and y in Rⁿ

- linear in x and y,
- symmetric: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$
- positive and definite: $\langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0$ with equality if $\boldsymbol{x} = 0$.

• Simplest example: usual dot-product $\mathbf{x} = (x_1, \dots, x_n)^t$, $\mathbf{y} = (y_1, \dots, y_n)^t$,

$$\mathbf{x} \cdot \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^t l d \mathbf{y}$$

Id is the *n*-order identity matrix.

 Every inner product is of the form x^tAy, A symmetric positive definite. Alternate notation: ⟨x,y⟩_A. Without subscript ⟨−, −⟩ will denote standard Euclidean dot-product (i.e A = Id).

・ロト ・回ト ・ヨト ・ヨト

Inner Products

Inner Product: product (x, y) for column vectors x and y in Rⁿ

- linear in x and y,
- symmetric: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$
- positive and definite: $\langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0$ with equality if $\boldsymbol{x} = 0$.

• Simplest example: usual dot-product $\mathbf{x} = (x_1, \dots, x_n)^t$, $\mathbf{y} = (y_1, \dots, y_n)^t$,

$$\mathbf{x} \cdot \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^t l d \mathbf{y}$$

Id is the *n*-order identity matrix.

 Every inner product is of the form x^tAy, A symmetric positive definite. Alternate notation: ⟨x,y⟩_A. Without subscript ⟨−, −⟩ will denote standard Euclidean dot-product (i.e A = Id).

・ロト ・回ト ・ヨト ・ヨト

Inner Products

- Inner Product: product (x, y) for column vectors x and y in Rⁿ
 - linear in x and y,
 - symmetric: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$
 - positive and definite: $\langle \bm{x}, \bm{x} \rangle \geq 0$ with equality if $\bm{x}=0.$
- Simplest example: usual dot-product $\mathbf{x} = (x_1, \dots, x_n)^t$, $\mathbf{y} = (y_1, \dots, y_n)^t$,

$$\mathbf{x} \cdot \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^t l d \mathbf{y}$$

Id is the n-order identity matrix.

 Every inner product is of the form x^tAy, A symmetric positive definite. Alternate notation: ⟨x, y⟩_A. Without subscript ⟨−, −⟩ will denote standard Euclidean dot-product (i.e. A = Id).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Inner Products

- Inner Product: product (x, y) for column vectors x and y in Rⁿ
 - linear in x and y,
 - symmetric: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$
 - positive and definite: $\langle \bm{x}, \bm{x} \rangle \geq 0$ with equality if $\bm{x}=0.$
- Simplest example: usual dot-product $\mathbf{x} = (x_1, \dots, x_n)^t$, $\mathbf{y} = (y_1, \dots, y_n)^t$,

$$\mathbf{x} \cdot \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^t l d \mathbf{y}$$

Id is the *n*-order identity matrix.

 Every inner product is of the form x^tAy, A symmetric positive definite. Alternate notation: ⟨x, y⟩_A. Without subscript ⟨-, -⟩ will denote standard Euclidean dot-product (i.e. A = Id).

・ロン ・回 ・ ・ ヨン・

- A-orthogonality: $\mathbf{x} \perp_A \mathbf{y} \Leftrightarrow \langle \mathbf{x}, \mathbf{y} \rangle_A = \mathbf{0}$.
- *A*-norm of \mathbf{x} : $||\mathbf{x}||_A = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle_A}$.
- A-distance on \mathbb{R}^n : $d_A(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|_A$.
- Standard orthogonal transform on ℝⁿ: n × n matrix R satisfying R^tR = Id. They form the orthogonal group O(n). Matrices R with det = 1 form the special orthogonal group SO(n).
- for general inner product $\langle -, \rangle_A$: *R* is *A*-orthogonal if $R^t A R = A$.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

• A-orthogonality: $\mathbf{x} \perp_A \mathbf{y} \Leftrightarrow \langle \mathbf{x}, \mathbf{y} \rangle_A = \mathbf{0}$.

- *A*-norm of \mathbf{x} : $||\mathbf{x}||_A = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle_A}$.
- A-distance on \mathbb{R}^n : $d_A(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|_A$.
- Standard orthogonal transform on Rⁿ: n × n matrix R satisfying R^tR = Id. They form the orthogonal group O(n). Matrices R with det = 1 form the special orthogonal group SO(n).
- for general inner product $\langle -, \rangle_A$: *R* is *A*-orthogonal if $R^t A R = A$.

・ロト ・回 ト ・ ヨ ト ・ ヨ ト

- A-orthogonality: $\mathbf{x} \perp_{\mathcal{A}} \mathbf{y} \Leftrightarrow \langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{A}} = \mathbf{0}$.
- A-norm of \mathbf{x} : $\|\mathbf{x}\|_{A} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle_{A}}$.
- A-distance on \mathbb{R}^n : $d_A(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|_A$.
- Standard orthogonal transform on Rⁿ: n × n matrix R satisfying R^tR = Id. They form the orthogonal group O(n). Matrices R with det = 1 form the special orthogonal group SO(n).
- for general inner product $\langle -, \rangle_A$: *R* is *A*-orthogonal if $R^t A R = A$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- A-orthogonality: $\mathbf{x} \perp_{A} \mathbf{y} \Leftrightarrow \langle \mathbf{x}, \mathbf{y} \rangle_{A} = \mathbf{0}$.
- A-norm of \mathbf{x} : $\|\mathbf{x}\|_{A} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle_{A}}$.
- A-distance on \mathbb{R}^n : $d_A(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|_A$.
- Standard orthogonal transform on Rⁿ: n × n matrix R satisfying R^tR = Id. They form the orthogonal group O(n). Matrices R with det = 1 form the special orthogonal group SO(n).
- for general inner product $\langle -, \rangle_A$: *R* is *A*-orthogonal if $R^t A R = A$.

・ロト ・回ト ・ヨト ・ヨト

- A-orthogonality: $\mathbf{x} \perp_{A} \mathbf{y} \Leftrightarrow \langle \mathbf{x}, \mathbf{y} \rangle_{A} = \mathbf{0}$.
- A-norm of \mathbf{x} : $\|\mathbf{x}\|_{\mathcal{A}} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{A}}}$.
- A-distance on \mathbb{R}^n : $d_A(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|_A$.
- Standard orthogonal transform on \mathbb{R}^n : $n \times n$ matrix R satisfying $R^t R = Id$. They form the orthogonal group O(n). Matrices R with det = 1 form the special orthogonal group SO(n).
- for general inner product $\langle -, \rangle_A$: *R* is *A*-orthogonal if $R^t A R = A$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

- A-orthogonality: $\mathbf{x} \perp_{\mathcal{A}} \mathbf{y} \Leftrightarrow \langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{A}} = \mathbf{0}$.
- A-norm of \mathbf{x} : $\|\mathbf{x}\|_{\mathcal{A}} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{A}}}$.
- A-distance on \mathbb{R}^n : $d_A(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|_A$.
- Standard orthogonal transform on \mathbb{R}^n : $n \times n$ matrix R satisfying $R^t R = Id$. They form the orthogonal group O(n). Matrices R with det = 1 form the special orthogonal group SO(n).
- for general inner product $\langle -, \rangle_A$: *R* is *A*-orthogonal if $R^t A R = A$.

ヘロン 人間 とくほ とくほ とう

Recalls G

Geometry

Duality

- Linear form $h : \mathbb{R}^n \to \mathbb{R}$: $h(\mathbf{x}) = \sum_{i=1}^n h_i x_i$.
- Given an inner product (−, −)_A on ℝⁿ, h represented by a unique vector h_A s.t

$$h(\mathbf{x}) = \langle \mathbf{h}_A, \mathbf{x} \rangle_A$$

h_A is the dual of *h* (w.r.t $\langle -, - \rangle_A$).

• for standard dot product:

$$\mathbf{h} = \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}$$

• for general inner product $\langle -, - \rangle_A$

$$h_A = A^{-1}h$$

イロト イヨト イヨト イヨト

Geometry

Duality

- Linear form $h : \mathbb{R}^n \to \mathbb{R}$: $h(\mathbf{x}) = \sum_{i=1}^n h_i x_i$.
- Given an inner product (−, −)_A on ℝⁿ, h represented by a unique vector h_A s.t

$$h(\mathbf{x}) = \langle \mathbf{h}_A, \mathbf{x} \rangle_A$$

h_A is the dual of *h* (w.r.t $\langle -, - \rangle_A$).

• for standard dot product:

$$\mathbf{h} = \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}$$

• for general inner product $\langle -, - \rangle_A$

$$h_A = A^{-1}h$$

<ロ> <四> <四> <四> <日> <日> <日</p>

Geometry

Duality

- Linear form $h : \mathbb{R}^n \to \mathbb{R}$: $h(\mathbf{x}) = \sum_{i=1}^n h_i x_i$.
- Given an inner product (−, −)_A on ℝⁿ, *h* represented by a unique vector h_A s.t

$$h(\mathbf{x}) = \langle \mathbf{h}_A, \mathbf{x} \rangle_A$$

 \mathbf{h}_A is the dual of h (w.r.t $\langle -, - \rangle_A$).

• for standard dot product:

$$\mathbf{h} = \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} !$$

• for general inner product $\langle -, - \rangle_A$

$$h_A = A^{-1}h$$

Geometry

Duality

- Linear form $h : \mathbb{R}^n \to \mathbb{R}$: $h(\mathbf{x}) = \sum_{i=1}^n h_i x_i$.
- Given an inner product (−, −)_A on ℝⁿ, *h* represented by a unique vector h_A s.t

$$h(\mathbf{x}) = \langle \mathbf{h}_{\mathcal{A}}, \mathbf{x} \rangle_{\mathcal{A}}$$

h_A is the dual of *h* (w.r.t $\langle -, - \rangle_A$).

• for standard dot product:

$$\mathbf{h} = \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} !$$

• for general inner product $\langle -, - \rangle_A$

$$h_A = A^{-1}h$$

・ロン ・回 と ・ ヨン・

Geometry

Duality

- Linear form $h : \mathbb{R}^n \to \mathbb{R}$: $h(\mathbf{x}) = \sum_{i=1}^n h_i x_i$.
- Given an inner product (−, −)_A on ℝⁿ, *h* represented by a unique vector h_A s.t

$$h(\mathbf{x}) = \langle \mathbf{h}_{\mathcal{A}}, \mathbf{x} \rangle_{\mathcal{A}}$$

h_A is the dual of *h* (w.r.t $\langle -, - \rangle_A$).

• for standard dot product:

$$\mathbf{h} = \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} !$$

• for general inner product $\langle -, - \rangle_A$

$$h_A = A^{-1}h$$

・ロ・・ (日・・ 日・・ 日・・

Outline

- Non Linearity
- Statistics on Non Linear Data

Recalls

- Geometry
- Topology
- Calculus on \mathbb{R}^n

- ۲
- Tangent Space

- Length of curves
- Covariant derivatives

・ロト ・同ト ・ヨト ・ヨ

Topology on ℝⁿ. A open set of ℝⁿ is a union (not necessarily finite) of open balls. ℝ^N and the empty set Ø are open.

• A map $f: X \rightarrow Y$ between topological spaces is continuous if

$$V \subset Y$$
 open $\Rightarrow f^{-1}(V) \subset X$ open.

 A map h : X → Y between topological spaces is a homeomorphism is it is continuous, one-to-one and h⁻¹ is continuous.

Topology on ℝⁿ. A open set of ℝⁿ is a union (not necessarily finite) of open balls. ℝ^N and the empty set Ø are open.

• A map $f: X \rightarrow Y$ between topological spaces is continuous if

$$V \subset Y$$
 open $\Rightarrow f^{-1}(V) \subset X$ open.

 A map h : X → Y between topological spaces is a homeomorphism is it is continuous, one-to-one and h⁻¹ is continuous.

Topology on ℝⁿ. A open set of ℝⁿ is a union (not necessarily finite) of open balls. ℝ^N and the empty set Ø are open.

• A map $f: X \to Y$ between topological spaces is continuous if

$$V \subset Y$$
 open $\Rightarrow f^{-1}(V) \subset X$ open.

 A map h : X → Y between topological spaces is a homeomorphism is it is continuous, one-to-one and h⁻¹ is continuous.

- Topology on ℝⁿ. A open set of ℝⁿ is a union (not necessarily finite) of open balls. ℝ^N and the empty set Ø are open.
- A map $f: X \to Y$ between topological spaces is continuous if

$$V \subset Y$$
 open $\Rightarrow f^{-1}(V) \subset X$ open.

 A map *h* : *X* → *Y* between topological spaces is a homeomorphism is it is continuous, one-to-one and *h*⁻¹ is continuous.

Outline

- Non Linearity
- Statistics on Non Linear Data

Recalls

- Geometry
- Topology
- Calculus on \mathbb{R}^n

- ۲
- Tangent Space

- Length of curves
- Covariant derivatives

- (E) (E)

• $f: U \text{ open} \subset \mathbb{R}^n \to \mathbb{R}^q \text{ continuous: write}$

$$(y_1,\ldots,y_1)=f(x_1,\ldots,x_n)$$

• f is of class C^r if f has continuous partial derivatives

$$\frac{\partial^{r_1+\cdots+r_n}y_k}{\partial x_1^{r_1}\dots\partial x_n^{r_n}}$$

• When $r = \infty$, I say that *f* is smooth. This is the main situation of interest.

• $f: U \text{ open} \subset \mathbb{R}^n \to \mathbb{R}^q \text{ continuous: write}$

$$(y_1,\ldots,y_1)=f(x_1,\ldots,x_n)$$

• f is of class C^r if f has continuous partial derivatives

$$\frac{\partial^{r_1+\cdots+r_n} y_k}{\partial x_1^{r_1} \dots \partial x_n^{r_n}}$$

 $k = 1 ... q, r_1 + ... r_n ≤ r.$ • When $r = \infty$, I say that *f* is smooth. This is the main situation of interest.

• $f: U \text{ open} \subset \mathbb{R}^n \to \mathbb{R}^q$ continuous: write

$$(y_1,\ldots,y_1)=f(x_1,\ldots,x_n)$$

• f is of class C^r if f has continuous partial derivatives

$$\frac{\partial^{r_1+\cdots+r_n} y_k}{\partial x_1^{r_1} \dots \partial x_n^{r_n}}$$

 $k=1\ldots q, r_1+\ldots r_n\leq r.$

• When $r = \infty$, I say that f is smooth. This is the main situation of interest.

• $f: U \text{ open} \subset \mathbb{R}^n \to \mathbb{R}^q$ continuous: write

$$(y_1,\ldots,y_1)=f(x_1,\ldots,x_n)$$

• f is of class C^r if f has continuous partial derivatives

$$\frac{\partial^{r_1+\cdots+r_n} y_k}{\partial x_1^{r_1} \dots \partial x_n^{r_n}}$$

 $k = 1 ... q, r_1 + ... r_n ≤ r.$ ● When $r = \infty$, I say that *f* is smooth. This is the main situation of interest.

• Differential of *f* in **x**: unique linear map (if exists) $d_x f : \mathbb{R}^n \to \mathbb{R}^q$ s.t.

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + d_{\mathsf{X}}f(\mathbf{h}) + o(\mathbf{h}).$$

• Jacobian matrix of f: matrix $q \times n$ of partial derivatives of f:

$$J_{\mathbf{x}}f = \begin{pmatrix} \frac{\partial y_1}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial y_1}{\partial x_n}(\mathbf{x}) \\ \vdots & & \vdots \\ \frac{\partial y_q}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial y_q}{\partial x_n}(\mathbf{x}) \end{pmatrix}$$

if n ≥ q and rank(J_xf) = q, f is a submersion at x.
if n ≤ q and rank(J_xf) = n, f is an immersion at x.

• Differential of *f* in **x**: unique linear map (if exists) $d_x f : \mathbb{R}^n \to \mathbb{R}^q$ s.t.

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + d_x f(\mathbf{h}) + o(\mathbf{h}).$$

• Jacobian matrix of f: matrix $q \times n$ of partial derivatives of f:

$$J_{\mathbf{x}}f = \begin{pmatrix} \frac{\partial y_1}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial y_1}{\partial x_n}(\mathbf{x}) \\ \vdots & & \vdots \\ \frac{\partial y_q}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial y_q}{\partial x_n}(\mathbf{x}) \end{pmatrix}$$

if n ≥ q and rank(J_xf) = q, f is a submersion at x.
if n ≤ q and rank(J_xf) = n, f is an immersion at x.

• Differential of *f* in **x**: unique linear map (if exists) $d_x f : \mathbb{R}^n \to \mathbb{R}^q$ s.t.

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + d_x f(\mathbf{h}) + o(\mathbf{h}).$$

• Jacobian matrix of f: matrix $q \times n$ of partial derivatives of f:

$$J_{\mathbf{x}}f = \begin{pmatrix} \frac{\partial y_1}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial y_1}{\partial x_n}(\mathbf{x}) \\ \vdots & & \vdots \\ \frac{\partial y_q}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial y_q}{\partial x_n}(\mathbf{x}) \end{pmatrix}$$

if n ≥ q and rank(J_xf) = q, f is a submersion at x.
if n ≤ q and rank(J_xf) = n, f is an immersion at x.

• Differential of *f* in **x**: unique linear map (if exists) $d_x f : \mathbb{R}^n \to \mathbb{R}^q$ s.t.

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + d_x f(\mathbf{h}) + o(\mathbf{h}).$$

• Jacobian matrix of f: matrix $q \times n$ of partial derivatives of f:

$$J_{\mathbf{x}}f = \begin{pmatrix} \frac{\partial y_1}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial y_1}{\partial x_n}(\mathbf{x}) \\ \vdots & & \vdots \\ \frac{\partial y_q}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial y_q}{\partial x_n}(\mathbf{x}) \end{pmatrix}$$

• if $n \ge q$ and rank $(J_{\mathbf{x}}f) = q$, f is a submersion at \mathbf{x} .

• if $n \le q$ and rank $(J_{\mathbf{x}}f) = n$, f is an immersion at \mathbf{x} .

• Differential of *f* in **x**: unique linear map (if exists) $d_x f : \mathbb{R}^n \to \mathbb{R}^q$ s.t.

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + d_x f(\mathbf{h}) + o(\mathbf{h}).$$

• Jacobian matrix of f: matrix $q \times n$ of partial derivatives of f:

$$J_{\mathbf{x}}f = \begin{pmatrix} \frac{\partial y_1}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial y_1}{\partial x_n}(\mathbf{x}) \\ \vdots & & \vdots \\ \frac{\partial y_q}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial y_q}{\partial x_n}(\mathbf{x}) \end{pmatrix}$$

• if $n \ge q$ and rank $(J_{\mathbf{x}}f) = q$, f is a submersion at \mathbf{x} .

• if $n \le q$ and rank $(J_{\mathbf{x}}f) = n$, f is an immersion at \mathbf{x} .

Calculus on \mathbb{R}^n

Diffeomorphism

- when n = q: if f is 1-1 C^r and its inverse is also C^r, f is a
 C^r-diffeomorphism. A smooth diffeomorphism is simply referred to as a diffeomorphism.
- If *f* is a diffeomorphism, $det(J_{\mathbf{x}}f) \neq 0$. Conversely, if $det(J_{\mathbf{x}}f) \neq 0$, by the **Inverse Function Theorem**, *f* is a **local** diffeomorphism in a neighborhood of **x**.
- *f* may be a local diffeomorphism everywhere but fail to be a global diffeomorphism. Example:

$$f: \mathbb{R}^2 \setminus 0 \to \mathbb{R}^2, \quad (x, y) \to (e^x \cos(y), e^x \sin(y)).$$

• if *f* is 1-1 and a local diffeomorphism everywhere, it is a global diffeomorphism.

Diffeomorphism

- when n = q: if f is 1-1 C^r and its inverse is also C^r, f is a
 C^r-diffeomorphism. A smooth diffeomorphism is simply referred to as a diffeomorphism.
- If *f* is a diffeomorphism, $det(J_{\mathbf{x}}f) \neq 0$. Conversely, if $det(J_{\mathbf{x}}f) \neq 0$, by the **Inverse Function Theorem**, *f* is a **local** diffeomorphism in a neighborhood of **x**.
- *f* may be a local diffeomorphism everywhere but fail to be a global diffeomorphism. Example:

$$f: \mathbb{R}^2 \setminus 0 \to \mathbb{R}^2, \quad (x, y) \to (e^x \cos(y), e^x \sin(y)).$$

• if *f* is 1-1 and a local diffeomorphism everywhere, it is a global diffeomorphism.

Diffeomorphism

- when n = q: if f is 1-1 C^r and its inverse is also C^r, f is a
 C^r-diffeomorphism. A smooth diffeomorphism is simply referred to as a diffeomorphism.
- If *f* is a diffeomorphism, $det(J_{\mathbf{x}}f) \neq 0$. Conversely, if $det(J_{\mathbf{x}}f) \neq 0$, by the Inverse Function Theorem, *f* is a local diffeomorphism in a neighborhood of \mathbf{x} .
- *f* may be a local diffeomorphism everywhere but fail to be a global diffeomorphism. Example:

$$f: \mathbb{R}^2 \setminus 0 \to \mathbb{R}^2, \quad (x, y) \to (e^x \cos(y), e^x \sin(y)).$$

• if *f* is 1-1 and a local diffeomorphism everywhere, it is a global diffeomorphism.

Diffeomorphism

- when n = q: if f is 1-1 C^r and its inverse is also C^r, f is a
 C^r-diffeomorphism. A smooth diffeomorphism is simply referred to as a diffeomorphism.
- If *f* is a diffeomorphism, $det(J_{\mathbf{x}}f) \neq 0$. Conversely, if $det(J_{\mathbf{x}}f) \neq 0$, by the Inverse Function Theorem, *f* is a local diffeomorphism in a neighborhood of \mathbf{x} .
- *f* may be a local diffeomorphism everywhere but fail to be a global diffeomorphism. Example:

$$f: \mathbb{R}^2 \setminus 0 \to \mathbb{R}^2, \quad (x, y) \to (e^x \cos(y), e^x \sin(y)).$$

• if *f* is 1-1 and a local diffeomorphism everywhere, it is a global diffeomorphism.

Diffeomorphism

- when n = q: if f is 1-1 C^r and its inverse is also C^r, f is a
 C^r-diffeomorphism. A smooth diffeomorphism is simply referred to as a diffeomorphism.
- If *f* is a diffeomorphism, $det(J_{\mathbf{x}}f) \neq 0$. Conversely, if $det(J_{\mathbf{x}}f) \neq 0$, by the Inverse Function Theorem, *f* is a local diffeomorphism in a neighborhood of \mathbf{x} .
- *f* may be a local diffeomorphism everywhere but fail to be a global diffeomorphism. Example:

$$f: \mathbb{R}^2 \setminus 0 \to \mathbb{R}^2, \quad (x, y) \to (e^x \cos(y), e^x \sin(y)).$$

• if *f* is 1-1 and a local diffeomorphism everywhere, it is a global diffeomorphism.

- $f: U \subset \mathbb{R}^n \to \mathbb{R}, d_{\mathbf{x}}f$ it differential at $\mathbf{x} \in U$.
- *d*_x*f* is represented by a unique vector, the gradient of *f* for the standard inner product:

 $d_{\mathbf{x}}f(\mathbf{h}) = \nabla f_{\mathbf{x}} \cdot \mathbf{h}$

- If one changes the inner product, the gradient changes too, but not the differential.
- The gradient indicates the direction of largest change (by Cauchy-Schwarz).

• $f: U \subset \mathbb{R}^n \to \mathbb{R}, d_{\mathbf{x}}f$ it differential at $\mathbf{x} \in U$.

 d_xf is represented by a unique vector, the gradient of f for the standard inner product:

 $d_{\mathbf{x}}f(\mathbf{h}) = \nabla f_{\mathbf{x}} \cdot \mathbf{h}$

- If one changes the inner product, the gradient changes too, but not the differential.
- The gradient indicates the direction of largest change (by Cauchy-Schwarz).

- $f: U \subset \mathbb{R}^n \to \mathbb{R}, d_{\mathbf{x}}f$ it differential at $\mathbf{x} \in U$.
- d_x f is represented by a unique vector, the gradient of f for the standard inner product:

$$d_{\mathbf{x}}f(\mathbf{h}) = \nabla f_{\mathbf{x}} \cdot \mathbf{h}$$

- If one changes the inner product, the gradient changes too, but not the differential.
- The gradient indicates the direction of largest change (by Cauchy-Schwarz).

- $f: U \subset \mathbb{R}^n \to \mathbb{R}, d_{\mathbf{x}}f$ it differential at $\mathbf{x} \in U$.
- d_x f is represented by a unique vector, the gradient of f for the standard inner product:

$$d_{\mathbf{x}}f(\mathbf{h}) = \nabla f_{\mathbf{x}} \cdot \mathbf{h}$$

- If one changes the inner product, the gradient changes too, but not the differential.
- The gradient indicates the direction of largest change (by Cauchy-Schwarz).

- $f: U \subset \mathbb{R}^n \to \mathbb{R}, d_{\mathbf{x}}f$ it differential at $\mathbf{x} \in U$.
- d_x f is represented by a unique vector, the gradient of f for the standard inner product:

$$d_{\mathbf{x}}f(\mathbf{h}) = \nabla f_{\mathbf{x}} \cdot \mathbf{h}$$

- If one changes the inner product, the gradient changes too, but not the differential.
- The gradient indicates the direction of largest change (by Cauchy-Schwarz).

Outline

- Non Linearity
- Statistics on Non Linear Data

3

Geometry

- Topology
- Calculus on \mathbb{R}^n

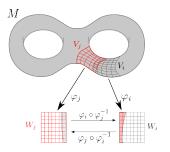
Differentiable Manifolds

Definitions

- ۲
- Tangent Space

- Length of curves
- Covariant derivatives

- (E) (E)



• Differential manifold *M* of dim *n*:

- smoothly glued open pieces of Euclidean space ℝⁿ via M = ∪_iV_i, homeomorphisms φ_i: V_i → W_i ⊂ ℝⁿ,
- $\varphi_i(P) = (x_1(P), \dots, x_n(P))$ Charts or local coordinates

 Smoothness in gluing: the changes of coordinates

 $\varphi_j \circ \varphi_i^{-1} : \varphi_i(V_i \cap V_j) \to \varphi_j(V_i \cap V_j)$

are smooth.

Set

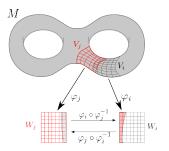
$$\varphi_j(\boldsymbol{P}) = (\boldsymbol{y}^1(\boldsymbol{P}), \ldots, \boldsymbol{y}^n(\boldsymbol{P})),$$

then

$$\varphi_j \circ \varphi_i^{-1}(x_1,\ldots,x_n) = (y_1,\ldots,y_n)$$

and the $n \times n$ Jacobian matrices $\left(\frac{\partial y^k}{\partial x^h}\right)_{k,h}$ are invertible.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・



- Differential manifold *M* of dim *n*:
- smoothly glued open pieces of Euclidean space ℝⁿ via M = ∪_iV_i, homeomorphisms φ_i: V_i → W_i ⊂ ℝⁿ,
- $\varphi_i(P) = (x_1(P), \dots, x_n(P))$ Charts or local coordinates

 Smoothness in gluing: the changes of coordinates

 $\varphi_j \circ \varphi_i^{-1} : \varphi_i(V_i \cap V_j) \to \varphi_j(V_i \cap V_j)$

are smooth.

Set

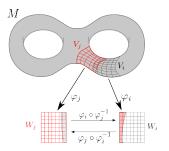
$$\varphi_j(P) = (y^1(P), \ldots, y^n(P)),$$

then

$$\varphi_j \circ \varphi_i^{-1}(x_1,\ldots,x_n) = (y_1,\ldots,y_n)$$

and the $n \times n$ Jacobian matrices $\left(\frac{\partial y^k}{\partial x^h}\right)_{k,h}$ are invertible.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・



- Differential manifold *M* of dim *n*:
- smoothly glued open pieces of Euclidean space ℝⁿ via M = ∪_iV_i, homeomorphisms φ_i: V_i → W_i ⊂ ℝⁿ,
- $\varphi_i(P) = (x_1(P), \dots, x_n(P))$ Charts or local coordinates

 Smoothness in gluing: the changes of coordinates

 $\varphi_j \circ \varphi_i^{-1} : \varphi_i(V_i \cap V_j) \to \varphi_j(V_i \cap V_j)$

are smooth.

Set

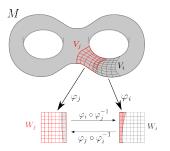
$$\varphi_j(P) = (y^1(P), \ldots, y^n(P)),$$

then

$$\varphi_j \circ \varphi_i^{-1}(x_1,\ldots,x_n) = (y_1,\ldots,y_n)$$

and the $n \times n$ Jacobian matrices $\left(\frac{\partial y^k}{\partial x^h}\right)_{k,h}$ are invertible.

・ロト ・回ト ・ヨト ・ヨト



- Differential manifold *M* of dim *n*:
- smoothly glued open pieces of Euclidean space ℝⁿ via M = ∪_iV_i, homeomorphisms φ_i: V_i → W_i ⊂ ℝⁿ,
- $\varphi_i(P) = (x_1(P), \dots, x_n(P))$ Charts or local coordinates

 Smoothness in gluing: the changes of coordinates

$$\varphi_j \circ \varphi_i^{-1} : \varphi_i(V_i \cap V_j) \to \varphi_j(V_i \cap V_j)$$

are smooth.

Set

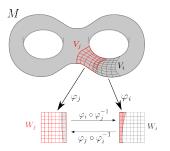
$$\varphi_j(P) = (y^1(P), \ldots, y^n(P)),$$

then

$$\varphi_j \circ \varphi_i^{-1}(x_1,\ldots,x_n) = (y_1,\ldots,y_n)$$

and the $n \times n$ Jacobian matrices $\left(\frac{\partial y^k}{\partial x^h}\right)_{k,h}$ are invertible.

・ロト ・回ト ・ヨト ・ヨト



- Differential manifold *M* of dim *n*:
- smoothly glued open pieces of Euclidean space ℝⁿ via M = ∪_iV_i, homeomorphisms φ_i: V_i → W_i ⊂ ℝⁿ,
- $\varphi_i(P) = (x_1(P), \dots, x_n(P))$ Charts or local coordinates

 Smoothness in gluing: the changes of coordinates

$$\varphi_j \circ \varphi_i^{-1} : \varphi_i(V_i \cap V_j) \to \varphi_j(V_i \cap V_j)$$

are smooth.

Set

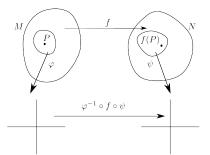
$$\varphi_j(P) = (y^1(P), \ldots, y^n(P)),$$

then

$$\varphi_j \circ \varphi_i^{-1}(x_1,\ldots,x_n) = (y_1,\ldots,y_n)$$

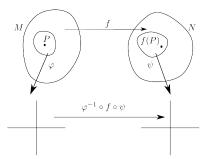
and the $n \times n$ Jacobian matrices $\left(\frac{\partial y^k}{\partial x^h}\right)_{k,h}$ are invertible.

イロト イヨト イヨト イヨト



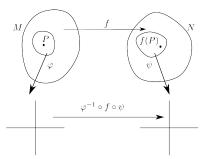
- *f* : *M* → *N* is differentiable if its expression in any coordinates for *M* and *N* is.
- φ local coordinates at $P \in M$, ψ local coordinates at $f(P) \in N$

 $\varphi^{-1} \circ f \circ \psi$ differentiable.



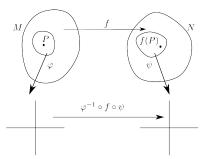
- *f* : *M* → *N* is differentiable if its expression in any coordinates for *M* and *N* is.
- φ local coordinates at $P \in M$, ψ local coordinates at $f(P) \in N$

 $\varphi^{-1} \circ f \circ \psi$ differentiable.



- *f* : *M* → *N* is differentiable if its expression in any coordinates for *M* and *N* is.
- φ local coordinates at $P \in M$, ψ local coordinates at $f(P) \in N$

 $\varphi^{-1} \circ f \circ \psi$ differentiable



- *f* : *M* → *N* is differentiable if its expression in any coordinates for *M* and *N* is.
- φ local coordinates at $P \in M$, ψ local coordinates at $f(P) \in N$

 $\varphi^{-1} \circ f \circ \psi$ differentiable.

The Euclidean space Rⁿ is a manifold: take φ = Id as global coordinate system!

• The sphere
$$S^2 = \{(x, y, z), x^2 + y^2 + z^2 = 1\}$$

For instance the projection from North Pole, given, for a point $P = (x, y, z) \neq N$ of the sphere, by

$$\varphi_N(P) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$$

is a (large) local coordinate system (around the south pole)

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

- The Euclidean space Rⁿ is a manifold: take φ = Id as global coordinate system!
- The sphere $\mathbb{S}^2 = \{(x, y, z), x^2 + y^2 + z^2 = 1\}$

For instance the projection from North Pole, given, for a point $P = (x, y, z) \neq N$ of the sphere, by

$$\varphi_N(P) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$$

is a (large) local coordinate system (around the south pole)

・ロン ・回 ・ ・ ヨン・

The Euclidean space Rⁿ is a manifold: take φ = Id as global coordinate system!

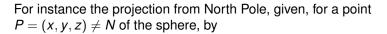
• The sphere
$$\mathbb{S}^2 = \{(x, y, z), x^2 + y^2 + z^2 = 1\}$$

For instance the projection from North Pole, given, for a point $P = (x, y, z) \neq N$ of the sphere, by

$$\varphi_N(P) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$$

is a (large) local coordinate system (around the south pole)

- The Euclidean space Rⁿ is a manifold: take φ = Id as global coordinate system!
- The sphere $S^2 = \{(x, y, z), x^2 + y^2 + z^2 = 1\}$



$$\varphi_N(P) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$$

S

 $\varphi_N(P$

イロン イヨン イヨン イヨ

is a (large) local coordinate system (around the south pole).

Examples

The Moebius strip

The 2D-torus

 $u \in [0, 2\pi], v \in [\frac{1}{2}, \frac{1}{2}]$ $(\cos(u) \left(1 + \frac{1}{2}v\cos(\frac{u}{2})\right) \\ \sin(u) \left(1 + \frac{1}{2}v\cos(\frac{u}{2})\right) \\ \frac{1}{2}v\sin(\frac{u}{2})$

 $(u, v) \in [0, 2-]^2 R \propto r < 0$

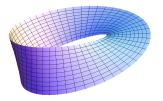
 $(\cos(u)(R+r\cos(v)))$ $\sin(u)(R+r\cos(v))$ $r\sin(v)$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

E

Examples

The Moebius strip



$$u \in [0, 2\pi], v \in [\frac{1}{2}, \frac{1}{2}]$$
$$\begin{pmatrix} \cos(u) \left(1 + \frac{1}{2}v\cos(\frac{u}{2})\right) \\ \sin(u) \left(1 + \frac{1}{2}v\cos(\frac{u}{2})\right) \\ \frac{1}{2}v\sin(\frac{u}{2}) \end{pmatrix}$$

The 2D-torus

 $(u,v)\in [0,2\pi]^2, R\gg r>0$

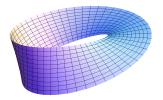
 $\begin{pmatrix} \cos(u) \left(R + r \cos(v) \right) \\ \sin(u) \left(R + r \cos(v) \right) \\ r \sin(v) \end{pmatrix}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

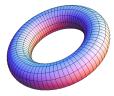
э

Examples

The Moebius strip



The 2D-torus



・ロト ・回ト ・ヨト ・ヨト

$$u \in [0, 2\pi], v \in [\frac{1}{2}, \frac{1}{2}] \qquad (u, v) \in [0, 2\pi]^2, R \gg r > 0$$

$$\begin{pmatrix} \cos(u) \left(1 + \frac{1}{2}v\cos(\frac{u}{2})\right) \\ \sin(u) \left(1 + \frac{1}{2}v\cos(\frac{u}{2})\right) \\ \frac{1}{2}v\sin(\frac{u}{2}) \end{pmatrix} \qquad \begin{pmatrix} \cos(u) \left(R + r\cos(v)\right) \\ \sin(u) \left(R + r\cos(v)\right) \\ r\sin(v) \end{pmatrix}$$

E

Outline

- Non Linearity
- Statistics on Non Linear Data
- - Geometry
 - Topology
 - Calculus on \mathbb{R}^n

Differentiable Manifolds

- Definitions
- Building Manifolds
- Tangent Space

- Length of curves
- Covariant derivatives

- (E) (E)

- Take $f: U \in \mathbb{R}^n \to \mathbb{R}^q$, $q \leq n$ smooth.
- Set $M = f^{-1}(0)$.
- If for all $\mathbf{x} \in M$, *f* is a submersion at \mathbf{x} , *M* is a manifold of dimension n q.
- Example:

$$f(x_1,...,x_n) = 1 - \sum_{i=1}^n x_i^2$$
:

 $f^{-1}(0)$ is the (n-1)-dimensional unit sphere \mathbb{S}^{n-1} .

• Many common examples of manifolds in practice are of that type.

Building Manifolds

Submanifolds of \mathbb{R}^n

• Take $f: U \in \mathbb{R}^n \to \mathbb{R}^q$, $q \leq n$ smooth.

• Set $M = f^{-1}(0)$.

• If for all $\mathbf{x} \in M$, *f* is a submersion at \mathbf{x} , *M* is a manifold of dimension n - q.

• Example:

$$f(x_1,...,x_n) = 1 - \sum_{i=1}^n x_i^2$$
:

- Take $f: U \in \mathbb{R}^n \to \mathbb{R}^q$, $q \leq n$ smooth.
- Set $M = f^{-1}(0)$.
- If for all x ∈ M, f is a submersion at x, M is a manifold of dimension n − q.
 Example:

$$f(x_1,...,x_n) = 1 - \sum_{i=1}^n x_i^2$$
:

 $f^{-1}(0)$ is the (n-1)-dimensional unit sphere \mathbb{S}^{n-1} .

• Many common examples of manifolds in practice are of that type.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Take $f: U \in \mathbb{R}^n \to \mathbb{R}^q$, $q \leq n$ smooth.
- Set $M = f^{-1}(0)$.
- If for all $\mathbf{x} \in M$, *f* is a submersion at \mathbf{x} , *M* is a manifold of dimension n q.
- Example:

$$f(x_1,...,x_n) = 1 - \sum_{i=1}^n x_i^2$$
:

 $f^{-1}(0)$ is the (n-1)-dimensional unit sphere \mathbb{S}^{n-1} .

• Many common examples of manifolds in practice are of that type.

- Take $f: U \in \mathbb{R}^n \to \mathbb{R}^q$, $q \leq n$ smooth.
- Set $M = f^{-1}(0)$.
- If for all $\mathbf{x} \in M$, *f* is a submersion at \mathbf{x} , *M* is a manifold of dimension n q.
- Example:

$$f(x_1,...,x_n) = 1 - \sum_{i=1}^n x_i^2$$
:

 $f^{-1}(0)$ is the (n-1)-dimensional unit sphere \mathbb{S}^{n-1} .

• Many common examples of manifolds in practice are of that type.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- Take $f: U \in \mathbb{R}^n \to \mathbb{R}^q$, $q \leq n$ smooth.
- Set $M = f^{-1}(0)$.
- If for all $\mathbf{x} \in M$, *f* is a submersion at \mathbf{x} , *M* is a manifold of dimension n q.
- Example:

$$f(x_1,...,x_n) = 1 - \sum_{i=1}^n x_i^2$$
:

 $f^{-1}(0)$ is the (n-1)-dimensional unit sphere \mathbb{S}^{n-1} .

• Many common examples of manifolds in practice are of that type.

・ロ・・ (日・・ 日・・ 日・・

- *M* and *N* manifolds, so is $M \times N$.
- Just consider the products of charts of M and N!
- Example: $M = \mathbb{S}^1$, $N = \mathbb{R}$: cylinder.
- Example: $M = N = \mathbb{S}^1$: the torus!

• *M* and *N* manifolds, so is $M \times N$.

- Just consider the products of charts of M and N!
- Example: $M = \mathbb{S}^1$, $N = \mathbb{R}$: cylinder.
- Example: $M = N = S^1$: the torus!

- *M* and *N* manifolds, so is $M \times N$.
- Just consider the products of charts of M and N!
- Example: $M = \mathbb{S}^1$, $N = \mathbb{R}$: cylinder.
- Example: $M = N = S^1$: the torus!

- *M* and *N* manifolds, so is $M \times N$.
- Just consider the products of charts of M and N!
- Example: $M = \mathbb{S}^1$, $N = \mathbb{R}$: cylinder.
- Example: $M = N = S^1$: the torus!

(日)

- *M* and *N* manifolds, so is $M \times N$.
- Just consider the products of charts of M and N!
- Example: $M = \mathbb{S}^1$, $N = \mathbb{R}$: cylinder.
- Example: $M = N = \mathbb{S}^1$: the torus!

(日)

Outline

- Non Linearity
- Statistics on Non Linear Data
- - Geometry
 - Topology
 - Calculus on \mathbb{R}^n

Differentiable Manifolds

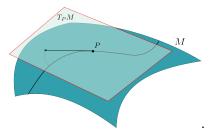
- Definitions
- ۲

Tangent Space

- Length of curves
- Covariant derivatives

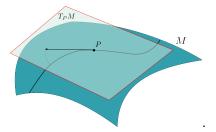
・ロト ・同ト ・ヨト ・ヨ

Tangent vectors informally



• Informally: a tangent vector at $P \in M$: draw a curve $c : (-\epsilon, \epsilon) \to M$, c(0) = P, then $\dot{c}(0)$ is a tangent vector.

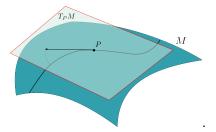
Tangent vectors informally



• Informally: a tangent vector at $P \in M$: draw a curve $c : (-\epsilon, \epsilon) \to M$, c(0) = P, then $\dot{c}(0)$ is a tangent vector.

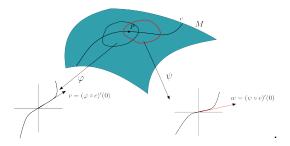
Image: A matrix

Tangent vectors informally



• Informally: a tangent vector at $P \in M$: draw a curve $c : (-\epsilon, \epsilon) \to M$, c(0) = P, then $\dot{c}(0)$ is a tangent vector.

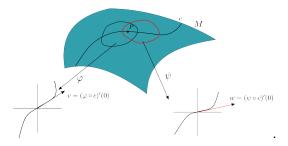
Image: A matrix



- $c : c : (-\epsilon, \epsilon) \to M$, c(0) = P. In chart φ , the map $t \mapsto \varphi \circ c(t)$ is a curve in Euclidean space, and so is $t \mapsto \psi \circ c(t)$.
- set $v = \frac{d}{dt}(\varphi \circ c)|_0$, $w = \frac{d}{dt}(\psi \circ c)|_0$ then

$$W = J_0 \left(\varphi^{-1} \circ \psi \right) V.$$

• Use this relation to identify vectors in different coordinate systems!



• $c : c : (-\epsilon, \epsilon) \to M$, c(0) = P. In chart φ , the map $t \mapsto \varphi \circ c(t)$ is a curve in Euclidean space, and so is $t \mapsto \psi \circ c(t)$.

• set $v = \frac{d}{dt}(\varphi \circ c)|_0$, $w = \frac{d}{dt}(\psi \circ c)|_0$ then

$$W = J_0 \left(\varphi^{-1} \circ \psi \right) V.$$

• Use this relation to identify vectors in different coordinate systems!



- c: c: (-ε, ε) → M, c(0) = P. In chart φ, the map t → φ ∘ c(t) is a curve in Euclidean space, and so is t → ψ ∘ c(t).
- set $v = \frac{d}{dt}(\varphi \circ c)|_0$, $w = \frac{d}{dt}(\psi \circ c)|_0$ then

$$\boldsymbol{w} = \boldsymbol{J}_0 \left(\varphi^{-1} \circ \psi \right) \boldsymbol{v}.$$

Use this relation to identify vectors in different coordinate systems!



- c: c: (-ε, ε) → M, c(0) = P. In chart φ, the map t → φ ∘ c(t) is a curve in Euclidean space, and so is t → ψ ∘ c(t).
- set $v = \frac{d}{dt}(\varphi \circ c)|_0$, $w = \frac{d}{dt}(\psi \circ c)|_0$ then

$$\boldsymbol{w} = \boldsymbol{J}_0 \left(\varphi^{-1} \circ \psi \right) \boldsymbol{v}.$$

• Use this relation to identify vectors in different coordinate systems!

- The set of tangent vectors to the n-dimensional manifold M at point P is the tangent space of M at P denoted T_PM .
- It is a vector space of dimension *n*: let θ a local parametrization of *M*, $\theta(x_1, \ldots, x_n) \in M$ with $\theta(0) = P$. Define curves

$$x_i: t \mapsto \theta(0,\ldots,0,t,0,0)$$

• They go through *P* when t = 0 and follow the axes. Their derivative at 0 are denoted ∂_{x_i} . They form a basis of $T_P M$.

- The set of tangent vectors to the n-dimensional manifold M at point P is the tangent space of M at P denoted T_PM .
- It is a vector space of dimension *n*: let θ a local parametrization of *M*, $\theta(x_1, \ldots, x_n) \in M$ with $\theta(0) = P$. Define curves

 $x_i: t \mapsto \theta(0,\ldots,0,t,0,0)$

• They go through *P* when t = 0 and follow the axes. Their derivative at 0 are denoted ∂_{x_i} . They form a basis of $T_P M$.

.

- The set of tangent vectors to the n-dimensional manifold M at point P is the tangent space of M at P denoted T_PM .
- It is a vector space of dimension *n*: let θ a local parametrization of *M*, $\theta(x_1, \ldots, x_n) \in M$ with $\theta(0) = P$. Define curves

$$x_i: t \mapsto \theta(0,\ldots,0,t,0,0)$$

• They go through *P* when t = 0 and follow the axes. Their derivative at 0 are denoted ∂_{x_i} . They form a basis of $T_P M$.

- The set of tangent vectors to the n-dimensional manifold M at point P is the tangent space of M at P denoted T_PM .
- It is a vector space of dimension *n*: let θ a local parametrization of *M*, $\theta(x_1, \ldots, x_n) \in M$ with $\theta(0) = P$. Define curves

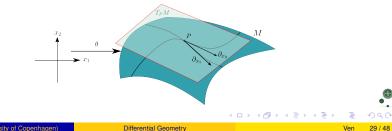
$$x_i: t \mapsto \theta(0,\ldots,0,t,0,0)$$

• They go through *P* when t = 0 and follow the axes. Their derivative at 0 are denoted ∂_{x_i} . They form a basis of $T_P M$.

- The set of tangent vectors to the n-dimensional manifold M at point P is the tangent space of M at P denoted T_PM .
- It is a vector space of dimension *n*: let θ a local parametrization of *M*, $\theta(x_1, \ldots, x_n) \in M$ with $\theta(0) = P$. Define curves

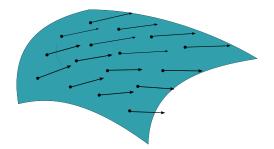
$$x_i: t \mapsto \theta(0,\ldots,0,t,0,0)$$

• They go through *P* when t = 0 and follow the axes. Their derivative at 0 are denoted ∂_{x_i} . They form a basis of $T_P M$.



Vector fields

• A vector field is a smooth map that send $P \in M$ to a vector $v(P) \in T_P M$.



Differential of a differentiable map

• $f: M \rightarrow N$ differentiable, $P \in M$, $f(P) \in N$

- *d_Pf* : *T_PM* → *T_{f(P)}N* linear map corresponding to the Jacobian matrix of *f* in local coordinates.
- When $N = \mathbb{R}$, $d_P f$ is a linear form $T_P M \to \mathbb{R}$.

Differential of a differentiable map

- $f: M \rightarrow N$ differentiable, $P \in M$, $f(P) \in N$
- *d_Pf* : *T_PM* → *T_{f(P)}N* linear map corresponding to the Jacobian matrix of *f* in local coordinates.
- When $N = \mathbb{R}$, $d_P f$ is a linear form $T_P M \to \mathbb{R}$.

Differential of a differentiable map

- $f: M \rightarrow N$ differentiable, $P \in M$, $f(P) \in N$
- *d_Pf* : *T_PM* → *T_{f(P)}N* linear map corresponding to the Jacobian matrix of *f* in local coordinates.
- When $N = \mathbb{R}$, $d_P f$ is a linear form $T_P M \to \mathbb{R}$.

Outline

- Non Linearity
- Statistics on Non Linear Data
- - Geometry
 - Topology
 - Calculus on \mathbb{R}^n
- - ۲
 - Tangent Space

Riemannian Manifolds Metric

- Length of curves
- Covariant derivatives

・ロト ・同ト ・ヨト ・ヨ

Riemannian Metric

- A Riemannian metric on a *n*-dimensional manifold is a smooth family *g_P* of inner products on the tangent spaces *T_PM* of *M*,
 u, *v* ∈ *T_PM* → *g_p(u, v)* := ⟨*u*, *v*⟩_{*P*} ∈ ℝ. With it, one can compute length of vectors in tangent spaces, check orthogonality of them...
- With a local parametrization θ(**x**) = (x₁,...,x_n) → M, it corresponds to a smooth family of positive definite matrices:

$$g_{\mathbf{x}} = \begin{pmatrix} g_{\mathbf{x}11} & \cdots & g_{\mathbf{x}1n} \\ \vdots & & \vdots \\ g_{\mathbf{x}n1} & \cdots & g_{\mathbf{x}nn} \end{pmatrix}$$

• $u = \sum_{i=1}^{n} u_i \partial_{x_i}, v = \sum_{i=1}^{n} v_i \partial_{x_i} \langle u, v \rangle_{\mathbf{x}} = (u_1, \dots, u_n) g_{\mathbf{x}}(v_1, \dots, v_n)^t$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Riemannian Metric

- A Riemannian metric on a *n*-dimensional manifold is a smooth family *g_P* of inner products on the tangent spaces *T_PM* of *M*,
 u, *v* ∈ *T_PM* → *g_p(u, v)* := ⟨*u*, *v*⟩_{*P*} ∈ ℝ. With it, one can compute length of vectors in tangent spaces, check orthogonality of them...
- With a local parametrization θ(**x**) = (x₁,...,x_n) → M, it corresponds to a smooth family of positive definite matrices:

$$g_{\mathbf{x}} = \begin{pmatrix} g_{\mathbf{x}11} & \cdots & g_{\mathbf{x}1n} \\ \vdots & & \vdots \\ g_{\mathbf{x}n1} & \cdots & g_{\mathbf{x}nn} \end{pmatrix}$$

• $u = \sum_{i=1}^{n} u_i \partial_{x_i}, v = \sum_{i=1}^{n} v_i \partial_{x_i} \langle u, v \rangle_{\mathbf{x}} = (u_1, \dots, u_n) g_{\mathbf{x}}(v_1, \dots, v_n)^t$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

Riemannian Metric

- A Riemannian metric on a *n*-dimensional manifold is a smooth family *g_P* of inner products on the tangent spaces *T_PM* of *M*,
 u, *v* ∈ *T_PM* → *g_p(u, v)* := ⟨*u*, *v*⟩_{*P*} ∈ ℝ. With it, one can compute length of vectors in tangent spaces, check orthogonality of them...
- With a local parametrization θ(**x**) = (x₁,...,x_n) → M, it corresponds to a smooth family of positive definite matrices:

$$g_{\mathbf{x}} = \begin{pmatrix} g_{\mathbf{x}11} & \cdots & g_{\mathbf{x}1n} \\ \vdots & & \vdots \\ g_{\mathbf{x}n1} & \cdots & g_{\mathbf{x}nn} \end{pmatrix}$$

• $u = \sum_{i=1}^{n} u_i \partial_{x_i}, v = \sum_{i=1}^{n} v_i \partial_{x_i} \langle u, v \rangle_{\mathbf{x}} = (u_1, \ldots, u_n) g_{\mathbf{x}}(v_1, \ldots, v_n)^t$

・ロト ・回 ト ・ ヨ ト ・ ヨ ト

Riemannian Manifold

A differential manifold with a Riemannian metric is a Riemannian manifold.

Outline

- Non Linearity
- Statistics on Non Linear Data
- - Geometry
 - Topology
 - Calculus on \mathbb{R}^n

- ۲
- Tangent Space

Riemannian Manifolds

Metric

Gradient Field

- Length of curves
- Covariant derivatives

・ロト ・同ト ・ヨト ・ヨ

Gradient, Gradient vector field.

• *M* Riemannian, $f: M \to \mathbb{R}$ differentiable. Then

 $d_P f(h) = \langle v, h \rangle_P$, for a unique v.

- $v := \nabla f_P$ is the gradient of f at P.
- $P \mapsto \nabla f_P$ is the gradient vector field of f.
- One can thus make gradient descent/ascent... Not possible without Riemannian structure.

• *M* Riemannian, $f: M \to \mathbb{R}$ differentiable. Then

 $d_P f(h) = \langle v, h \rangle_P$, for a unique v.

- $v := \nabla f_P$ is the gradient of f at P.
- $P \mapsto \nabla f_P$ is the gradient vector field of f.
- One can thus make gradient descent/ascent... Not possible without Riemannian structure.

• *M* Riemannian, $f: M \to \mathbb{R}$ differentiable. Then

 $d_P f(h) = \langle v, h \rangle_P$, for a unique v.

• $v := \nabla f_P$ is the gradient of f at P.

- $P \mapsto \nabla f_P$ is the gradient vector field of f.
- One can thus make gradient descent/ascent... Not possible without Riemannian structure.

• *M* Riemannian, $f: M \to \mathbb{R}$ differentiable. Then

 $d_P f(h) = \langle v, h \rangle_P$, for a unique v.

- $v := \nabla f_P$ is the gradient of f at P.
- $P \mapsto \nabla f_P$ is the gradient vector field of f.
- One can thus make gradient descent/ascent... Not possible without Riemannian structure.

• *M* Riemannian, $f: M \to \mathbb{R}$ differentiable. Then

 $d_P f(h) = \langle v, h \rangle_P$, for a unique v.

- $v := \nabla f_P$ is the gradient of f at P.
- $P \mapsto \nabla f_P$ is the gradient vector field of f.
- One can thus make gradient descent/ascent... Not possible without Riemannian structure.

Outline

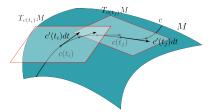
- Non Linearity
- Statistics on Non Linear Data
- - Geometry
 - Topology
 - Calculus on \mathbb{R}^n

- ۲
- Tangent Space

Riemannian Manifolds

- Metric
- Gradient Field
- Length of curves
- Covariant derivatives

- E

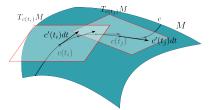


- Curve $c : [a, b] \to M$, *M* Riemannian. For all $t, c'(t) \in T_{c(t)}M$ is the velocity of c at time t.
- It has length $\|\dot{c}(t)\| = \sqrt{\langle c'(t), c'(t)
 angle_{c(t)}}$
- Define the length of c as

$$\ell(c) = \int_a^b \|\dot{c}(t)\| \, dt$$

as in the Euclidean case, by now with variable inner products.

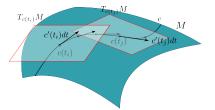
・ロト ・同ト ・ヨト ・ヨ



- Curve $c : [a, b] \to M$, M Riemannian. For all $t, c'(t) \in T_{c(t)}M$ is the velocity of c at time t.
- It has length $\|\dot{c}(t)\| = \sqrt{\langle c'(t), c'(t) \rangle_{c(t)}}$

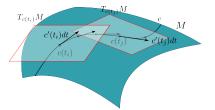
$$\ell(c) = \int_a^b \|\dot{c}(t)\| \, dt$$

• □ ▶ • □ ▶ • □ ▶



- Curve $c : [a, b] \to M$, M Riemannian. For all $t, c'(t) \in T_{c(t)}M$ is the velocity of c at time t.
- It has length $\|\dot{c}(t)\| = \sqrt{\langle c'(t), c'(t) \rangle_{c(t)}}$

$$\ell(c) = \int_a^b \|\dot{c}(t)\| \, dt$$



- Curve $c : [a, b] \to M$, M Riemannian. For all $t, c'(t) \in T_{c(t)}M$ is the velocity of c at time t.
- It has length $\|\dot{c}(t)\| = \sqrt{\langle c'(t), c'(t) \rangle_{c(t)}}$
- Define the length of c as ٠

$$\ell(c) = \int_a^b \|\dot{c}(t)\|\,dt$$

as in the Euclidean case, by now with variable inner products.

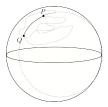
Outline

- Non Linearity
- Statistics on Non Linear Data
- 2 Recalls
 - Geometry
 - Topology
 - Calculus on \mathbb{R}^n
- 3 Differentiable Manifolds
 - Definitions
 - Building Manifolds
 - Tangent Space

Riemannian Manifolds

- Metric
- Gradient Field
- Length of curves
- Geodesics
- Covariant derivatives

・ロト ・同ト ・ヨト ・ヨ

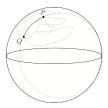


- Restricted definition: Riemannian Geodesics are curves of (locally) minimal length among curves with fixed endpoints say *P* and *Q*.
- They are also minimizers of the curve energy:

$$E(c) = \int_a^b \|\dot{c}(t)\|^2 dt$$

• The shortest length of a curve joining *P* and *Q* is the geodesic distance d(P, Q).

• □ ▶ • □ ▶ • □ ▶

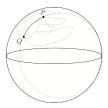


• Restricted definition: Riemannian Geodesics are curves of (locally) minimal length among curves with fixed endpoints say *P* and *Q*.

• They are also minimizers of the curve energy:

$$E(c) = \int_a^b \|\dot{c}(t)\|^2 dt$$

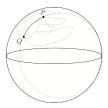
• The shortest length of a curve joining *P* and *Q* is the geodesic distance d(P, Q).



- Restricted definition: Riemannian Geodesics are curves of (locally) minimal length among curves with fixed endpoints say *P* and *Q*.
- They are also minimizers of the curve energy:

$$E(c) = \int_a^b \|\dot{c}(t)\|^2 dt$$

• The shortest length of a curve joining *P* and *Q* is the geodesic distance d(P, Q).



- Restricted definition: Riemannian Geodesics are curves of (locally) minimal length among curves with fixed endpoints say *P* and *Q*.
- They are also minimizers of the curve energy:

$$E(c) = \int_a^b \|\dot{c}(t)\|^2 dt$$

• The shortest length of a curve joining *P* and *Q* is the geodesic distance d(P, Q).

How to characterize geodesics?

- In \mathbb{R}^n , The calculus of variations for curve energy gives : $\ddot{c} = 0$.
- In a general manifold: problem to define c:

$$\ddot{c}(0) = \lim_{t \to 0} \frac{\dot{c}(t) - \dot{c}(0)}{t}$$

Need for a "device" that "connects" tangent spaces of close enough

- In \mathbb{R}^n , The calculus of variations for curve energy gives : $\ddot{c} = 0$.
- In a general manifold: problem to define \ddot{c} :

$$\ddot{c}(0) = \lim_{t \to 0} rac{\dot{c}(t) - \dot{c}(0)}{t}$$

 $\dot{c}(t) \in T_{c(t)}M$ and $\dot{c}(0) \in T_{c(0)}M$: these tangent spaces are distinct!

 Need for a "device" that "connects" tangent spaces of close enough points. Such a device is called an affine connection.

- In \mathbb{R}^n , The calculus of variations for curve energy gives : $\ddot{c} = 0$.
- In a general manifold: problem to define \ddot{c} :

$$\ddot{c}(0) = \lim_{t \to 0} rac{\dot{c}(t) - \dot{c}(0)}{t}$$

 $\dot{c}(t) \in T_{c(t)}M$ and $\dot{c}(0) \in T_{c(0)}M$: these tangent spaces are distinct!

• Need for a "device" that "connects" tangent spaces of close enough points. Such a device is called an affine connection.

- In \mathbb{R}^n , The calculus of variations for curve energy gives : $\ddot{c} = 0$.
- In a general manifold: problem to define \ddot{c} :

$$\ddot{c}(0) = \lim_{t \to 0} \frac{\dot{c}(t) - \dot{c}(0)}{t}$$

 $\dot{c}(t) \in T_{c(t)}M$ and $\dot{c}(0) \in T_{c(0)}M$: these tangent spaces are distinct!

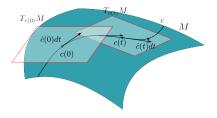


• Need for a "device" that "connects" tangent spaces of close enough points. Such a device is called an affine connection.

- In \mathbb{R}^n , The calculus of variations for curve energy gives : $\ddot{c} = 0$.
- In a general manifold: problem to define \ddot{c} :

$$\ddot{c}(0) = \lim_{t \to 0} \frac{\dot{c}(t) - \dot{c}(0)}{t}$$

 $\dot{c}(t) \in T_{c(t)}M$ and $\dot{c}(0) \in T_{c(0)}M$: these tangent spaces are distinct!



• Need for a "device" that "connects" tangent spaces of close enough points. Such a device is called an affine connection.

Ven 41 / 48

Outline

- Non Linearity
- Statistics on Non Linear Data
- - Geometry
 - Topology
 - Calculus on \mathbb{R}^n

- ۲
- Tangent Space

Riemannian Manifolds

- Metric
- Length of curves
- Covariant derivatives

・ロト ・同ト ・ヨト ・ヨ

Covariant derivatives

Covariant Derivative

• Allows to differentiate a vector field along a curve: given a curve $\gamma(t) \in M$, X a vector field,

$$rac{D}{dt}X(t)=\dot{X}(t)\in \mathcal{T}_{\gamma(t)}$$

We ask that $\frac{D}{dt}$ depends only on the value $\dot{\gamma}(t)$ and not on the behaviour of γ around $\gamma(t)$. The computation $\frac{D}{dt}X(t)$ depends on values of X around $\gamma(t)$.

• Many choices are possible, but exactly one is compatible with the Riemannian structure in the sense that

$$rac{d}{dt}\langle X,Y
angle = \langle rac{DX}{dt},Y
angle + \langle X,rac{DY}{dt}
angle$$

plus another property. Levi-Cività connexion.

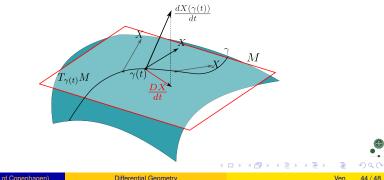
Concrete construction

• Assume $M \subset \mathbb{R}^n$. A vector field X on M can be seen as a vector field on \mathbb{R}^n and a curve γ on *M* can be seen as a curve in \mathbb{R}^n . Then

Compute the usual derivative

$$X(t) = \frac{d}{dt}X(\gamma(t))$$

its a vector field on \mathbb{R}^n but not a tangent vector field on *M* in general. Project X(t) orthogonally on $T_{\gamma(t)}M \subset \mathbb{R}^3$. The result is DX/dt!



Covariant derivatives

Characterization of Geodesics

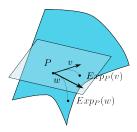
A curve γ is geodesic if its covariant is acceleration 0.

$$\ddot{\gamma}(t) = rac{D\dot{\gamma}(t)}{dt} = 0!$$

This is in fact a second order ODE: given initial position $\gamma(0)$ and velocity $\dot{\gamma}(0)$ there is a unique solution.

Exponential map

 The uniqueness above leads to the following definition: given P ∈ M, v ∈ T_PM, the exponential map Exp_P(v) is the solution at time 1 of the previous ODE. For small enough v: diffeomorphism.



• The curve $t \to Exp_P(tv), t \in [0, 1]$ is geodesic, its length is ||v||.

• □ ▶ • □ ▶ • □ ▶ •

Log map

- The inverse map of the exponential map is called the Log map! For $Q \in M$ "not too far from P", $Log_P(Q)$ is the vector v of T_PM s.t. $Exp_P(v) = Q$.
- The exponential map is relatively easy to compute. The Log map is generally much more complicated, but badly needed in many optimization problems!

Bibliography

- Boothby: Introduction to Differential Manifolds and Riemannian Geometry, Wiley
- do Carmo: Riemannian Geometry, Birkhäuser.
- Hulin-Lafontaine: Riemannian Geometry, Springer
- Small: The statistical theory of shapes, Springer.