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Purpose

� We can extract measurements from the human body
with a rapidly increasing spatial, temporal and spectral
resolution using modern imaging devices. This is 
particularly true in the field of biophotonics.

� Typically we have an outcome (e.g. blood-glucose, 
psoriasis severity) that we want to predict based on a 
set of features (e.g. IR absorption spectra and derived
features)  

� Having observed the outcome and features in a set of 
objects (a training set of data) we want to build a model 
that will allow us to predcit the outcome of unseen
objects



Model

� Outcome: Y
� Features:     X = (X1, X2, … , Xp)

� sampled spectrum
� set of spectra in an image
� .
� .
� . 

� Model: Y = f(X) + ε

Y



Two approaches

� The linear model:
� Global

� Nearest Neighbour model:
� Local
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Curse of dimensionality I

� Consider inputs uniformly distributed over a p-
dimensional hypercube [0,1]x[0,1]x…x[0,1]

� 2-dim hypercube:

� For the red neighbourhood to cover a fraction r of the 
observation it should have side length s = r1/p

� For r=1% we get for  p=2:  s = 0.1, for p=10: s=0.63



Curse of dimensionality II

� For practical size problems locality in high dimensional 
spaces does not exist

� The majority of observations lie near the edges of the 
training sample, in the 10 dimensional hypercube, only
1% of the observations lie in a central hypercube of 
sidelength 0.63 – we must extrapolate our fits

� In high dimensions the linear model is popular!



Linear Regression

Training set



Linear Regression – matrix-vector 
notation

The predictor Xβ belongs to the column-space of X



Linear regression - geometrically

Choose β such that the 
residual is orthogonal to 
X, i.e.



Linear regression – correlated inputs

XTX/N is the ML estimator for the covariance matrix of the inputs

Consider 3 inputs X1 , X2 , X3 with covariance
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The parameters of the correlated inputs have high variance 
and high correlation



Linear regression – regularization



Ridge regression- geometrically



Ridge regression – geometrically II

β1

β2

β1

β2



Correllated inputs again

3 inputs X1 , X2 , X3 with covariance

Y = X1 + X2 + X3 + ε,   ε
 

in  N(0,1)

N=100 , in 1000 trials

Ordinary LS
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= [-0.01    0.97    1.03    1.00



Correllated inputs again – ridge 
regression

(λ, RSS)
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We want

� Prediction accuracy
� Easy Intepretation (simple model)

We tried

� Regularization (ridge regression)

And got

� Prediction accuracy



Prediction accuracy and easy 
interpretation

many β’s will tend to be 
0

Regularization and 
subset selection

β1

β2



LASSO Model Selection
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LASSO

� Prediction accuracy ☺
� Easy interpretation ☺
� Computations ☺
� p<N /
� Tend to select one of a group of correlated inputs /



LARS-EN – elastic net

� Prediction accuracy ☺
� Easy interpretation ☺
� Computations ☺
� Handles p>N ☺
� Tend to select groups of 

correlated inputs ☺



LARS-EN – elastic net

Ridge to OLS

LASSO problem remains!



Handling CoD

� Regularization
� Variable selection
� Subspace projection



Principal Components

� By rotating the coordinate system, the axes point in 
directions of maximum variance

22/34

XLS =

The new axes are in the
loading matrix

Coordinates of data on new axes
are in the scores matrix

data matrix
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