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Purpose

= We can extract measurements from the human body
with a rapidly
using modern imaging devices. This Is
particularly true in the field of

= Typically we have an outcome (e.g. blood-glucose,
psoriasis severity) that we want to predict based on a
set of features (e.g. IR absorption spectra and derived
features)

= Having observed the outcome and features in a set of
objects (a training set of data) we want to build a model
that will allow us to predcit the outcome of unseen
objects



Model

= QOutcome: Y
= Features: X = (X, X, ...

sampled spectrum
set of spectra in an image

= Model: Y =f(X)+e




Two approaches

= The linear model: \' :XTI’B\
= Global
. 1
= Nearest Neighbour model: Y(x) — Zyi

= | ocal k ieN, (X)



Curse of dimensionality |

Consider inputs uniformly distributed over a p-
dimensional hypercube [0,1]x[0,1]x...x[0,1]

2-dim hypercube:

For the red neighbourhood to cover a fraction r of the
observation it should have side length s = rt/

For r=1% we get for p=2: s=0.1, for p=10: s=0.63 -



Curse of dimensionality Il

» For practical size problems locality in high dimensional
spaces does not exist

* The majority of observations lie near the edges of the
training sample, in the 10 dimensional hypercube, only
1% of the observations lie in a central hypercube of
sidelength 0.63 — we must extrapolate our fits

* |n high dimensions the linear model is popular!



Linear Regression




Linear Regression — matrix-vector
notation

Yy = (Y1, Y2, - -

RSS = (y — Xp)' (y — X73)

The predictor X5 belongs to the column-space of X



Linear regression - geometrically

Choose £ such that the
residual is orthogonal to
X, l.e.




Linear regression — correlated inputs

E(X'X)"'X'y)= (X" X)"' X" X3 =7

VI(XTX) X Ty) = (XTX)

XTX/N is the ML estimator for the covariance matrix of the input

Consider 3 inputs X;, X,, X5 with covariance

1 0.99 0]
S=/099 1 O
0 o 1

S =

' 50.25 -49.75 0O
~49.75 5025 O

O O 1

The parameters of the correlated inputs have high variance
and high correlation

“E'
Ly



Linear regression — regularization

ridee :
FUSY = argmin {
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Ridge regression- geometrically

ly — XBI° = |ly — XBy|I* + | XB — X8|

1XB—-XB,I°=PB-8)X"X(B-72,)




Ridge regression — geometrically |

1XB—-XB,°=B-8,)"X"X(B-2,)




Correllated inputs again

3 inputs X,, X,, X5 with covariance S =

Y=X+X,+X;+¢& ¢&in N(,1)

N=100, in 1000 trials

Ordinary LS
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Correllated inputs again —ridge
regression

(L, RSS)

4.4 -3.8 0.05
~3.8 4.3 -0.03

| Cov(B) = —
Ridge (A=2.4) 1091505 _.03 1.02

B=[-0.00 099 0.98 0.98 4



We want

* Prediction accuracy
= Easy Intepretation (simple model)

We tried
» Regularization (ridge regression)
And got

* Prediction accuracy



Prediction accuracy and easy
Interpretation
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many £'s will tend to be
0

Regularization and
subset selection




LASSO Model Selection
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LASSO

Prediction accuracy ©

Easy interpretation ©

Computations ©

P<N ®

Tend to select one of a group of correlated inputs ®



LARS-EN — elastic net

3 = argmin,{ ||y — X35 + A\ ||5]]1 + A2l 3]5)

= Prediction accuracy ©
= Easy interpretation ©
= Computations ©

= Handles p>N ©

= Tend to select groups of
correlated inputs ©




LARS-EN — elastic net

3 = argmin,{ ||y — X35 + A\ ||5]]1 + A2l 3]5)

Ridge to OLS

y— X/ s ‘quH“} = | {

LASSO problem remains!



Handling CoD

= Regularization
= Variable selection



Principal Components

= By rotating the coordinate system, the axes point in
directions of maximum variance

Coordinates of data on new axes
are in the scores matrix

S

The new axes are in the
loading matrix

= XL

data matrix
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