Sparse linear manifolds relating shape to clinical outcome

Professor, Ph.D. Rasmus Larsen

Hven, August 20st, 2009

DTU Informatics
Technical University of Denmark

Purpose

- We can extract measurements from the human body with a rapidly increasing spatial, temporal and spectral resolution using modern imaging devices. This is particularly true in the field of biophotonics.
- Typically we have an outcome (e.g. blood-glucose, psoriasis severity) that we want to predict based on a set of features (e.g. IR absorption spectra and derived features)
- Having observed the outcome and features in a set of objects (a training set of data) we want to build a model that will allow us to predcit the outcome of unseen objects

Model

Outcome: Y

• Features: $X = (X_1, X_2, ..., X_p)$

- sampled spectrum
- set of spectra in an image

Two approaches

- The linear model:
 - Global

$$Y = X^T \hat{\beta}$$

- Nearest Neighbour model:
 - Local

$$Y(x) = \frac{1}{k} \sum_{i \in N_k(x)} y_i$$

Curse of dimensionality I

 Consider inputs uniformly distributed over a pdimensional hypercube [0,1]x[0,1]x...x[0,1]

2-dim hypercube:

- For the red neighbourhood to cover a fraction r of the observation it should have side length $s = r^{1/p}$
- For r=1% we get for p=2: s = 0.1, for p=10: s=0.63

Curse of dimensionality II

- For practical size problems locality in high dimensional spaces does not exist
- The majority of observations lie near the edges of the training sample, in the 10 dimensional hypercube, only 1% of the observations lie in a central hypercube of sidelength 0.63 – we must extrapolate our fits

In high dimensions the linear model is popular!

Linear Regression

$$f(X) = \beta_0 + \sum_{i=1}^p X_i \beta_i$$

Training set

$$(x_i, y_i), i = 1, 2, \dots, N$$
 $x_i = (x_{i1}, x_{i2}, \dots, x_{ip})$

$$x_i = (x_{i1}, x_{i2}, \dots, x_{ip})$$

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$$= \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{i=1}^{P} x_{ij} \beta_j)^2$$

Linear Regression – matrix-vector notation

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N1} & x_{N2} & \cdots & x_{Np} \end{bmatrix}$$

$$\boldsymbol{y}=(y_1,y_2,\ldots,y_N)$$

$$RSS = (\boldsymbol{y} - \boldsymbol{X}\beta)^T (\boldsymbol{y} - \boldsymbol{X}\beta)$$

The predictor $X\beta$ belongs to the column-space of X

Linear regression - geometrically

Choose β such that the residual is orthogonal to X, i.e.

$$\boldsymbol{X}^T(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) = 0$$

$$\hat{\beta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Linear regression – correlated inputs

$$E(\hat{\beta}) = E((\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}) = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{\beta}$$

$$V(\hat{\beta}) = V((\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}) = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \sigma^2$$

XTX/N is the ML estimator for the covariance matrix of the input

Consider 3 inputs X₁, X₂, X₃ with covariance

$$S = \begin{bmatrix} 1 & 0.99 & 0 \\ 0.99 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad S^{-1} = \begin{bmatrix} 50.25 & -49.75 & 0 \\ -49.75 & 50.25 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The parameters of the correlated inputs have high variance and high correlation

Linear regression – regularization

$$\hat{\beta}^{\text{ridge}} = \arg\min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \right\}, \text{ s.t. } \sum_{j=1}^{N} \beta_j^2 \le s$$

$$\hat{\beta}^{\text{ridge}} = \arg\min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{N} \beta_j^2 \right\}$$

$$PRSS(\lambda) = (\boldsymbol{y} - \boldsymbol{X}\beta)^T (\boldsymbol{y} - \boldsymbol{X}\beta) + \lambda \beta^T \beta$$

Ridge regression- geometrically

$$\|y - X\beta\|^2 = \|y - X\beta_0\|^2 + \|X\beta - X\beta_0\|^2$$

$$\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{X}\boldsymbol{\beta}_0\|^2 = (\boldsymbol{\beta} - \boldsymbol{\beta}_0)^T \boldsymbol{X}^T \boldsymbol{X} (\boldsymbol{\beta} - \boldsymbol{\beta}_0)$$

Ridge regression – geometrically II

$$\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{X}\boldsymbol{\beta}_0\|^2 = (\boldsymbol{\beta} - \boldsymbol{\beta}_0)^T \boldsymbol{X}^T \boldsymbol{X} (\boldsymbol{\beta} - \boldsymbol{\beta}_0)$$

Correllated inputs again

3 inputs
$$X_1$$
, X_2 , X_3 with covariance $S = \begin{bmatrix} 1 & 0.99 & 0 \\ 0.99 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$Y = X_1 + X_2 + X_3 + \varepsilon$$
, ε in N(0,1)

$$Cov(\beta) = \frac{1}{100} \begin{bmatrix} 55 & -55 & 0.56 \\ -55 & 55 & -0.56 \\ 0.56 & -.56 & 1.08 \end{bmatrix}$$

Ordinary LS

$$\beta = [-0.01 \quad 0.97 \quad 1.03 \quad 1.00]$$

Correllated inputs again - ridge

regression

(λ, RSS)

Ridge (
$$\lambda$$
=2.4)

$$Cov(\beta) = \frac{1}{100} \begin{bmatrix} 4.4 & -3.8 & 0.05 \\ -3.8 & 4.3 & -0.03 \\ 0.05 & -.03 & 1.02 \end{bmatrix}$$

$$\beta = [-0.00]$$

We want

- Prediction accuracy
- Easy Intepretation (simple model)

We tried

Regularization (ridge regression)

And got

Prediction accuracy

Prediction accuracy and easy interpretation

$$\hat{\beta}^{\text{lasso}} = \arg\min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \right\}, \text{ s.t. } \sum_{j=1}^{N} |\beta_j| \le s$$

many β 's will tend to be 0

Regularization and subset selection

LASSO Model Selection

LASSO

- Prediction accuracy ©
- Easy interpretation ©
- Computations ②
- p<N ☺
- Tend to select one of a group of correlated inputs ⊗

LARS-EN – elastic net

$$\hat{\beta} = \operatorname{argmin}_{\beta} \{ \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2} + \lambda_{1} \|\beta\|_{1} + \lambda_{2} \|\beta\|_{2}^{2} \}$$

- Prediction accuracy ©
- Easy interpretation ©
- Computations ©
- Handles p>N ②
- Tend to select groups of correlated inputs ©

LARS-EN – elastic net

$$\hat{\beta} = \operatorname{argmin}_{\beta} \{ \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2} + \lambda_{1} \|\beta\|_{1} + \lambda_{2} \|\beta\|_{2}^{2} \}$$

Ridge to OLS

$$\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \lambda_2 \|\boldsymbol{\beta}\|^2 = \|\begin{bmatrix} \boldsymbol{y} \\ \mathbf{0} \end{bmatrix} - \begin{bmatrix} \boldsymbol{X} \\ \lambda_2 \boldsymbol{I} \end{bmatrix} \boldsymbol{\beta}\|^2$$

LASSO problem remains!

Handling CoD

- Regularization
- Variable selection
- Subspace projection

Principal Components

 By rotating the coordinate system, the axes point in directions of maximum variance

Coordinates of data on new axes are in the *scores matrix*