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e Visualization is an important aspect of

"scientific” applications of ML
— To abstract generalizable relations from data
— Robust visualization

e Unsupervised (explorative)
— Factor models - Linear hidden variable representations
— Independent component analysis (ICA)
— Kernel representations: kPCA

e Supervised models (detection)
— Visualization of non-linear kernel machines
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B rai n i mag i ng With fM R I (functional magnetic resonance imaging)

e Indirect measure of neural
activity - hemodynamics

e A cloudy window to the
human brain

e Challenges:

— Signals are multi-
dimensional mixtures

— No simple relation between
measures and brain state -
"what is signal and what is
noise”?

TR = 333 ms
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Mind reading software could record your dreams...

id-reading” software could record your dreams - tech - 12 December 2008 - New Sclientist - Windows Internet Explorer

— =] <]

i IE bt ffvewew newscientist.com farticle/dn 15 28 7-mindreading-software-could-record-wour-dreams .html?DCMP =0T C-rssRnsref=online-neaws

= | | *¥+|| x| |5oogle

o

File Edit WYiew Favorites Tools Help
Coogle |G~ ~|start - E% ~ | €% Bogmasrker- [E) 337 blokeret | % Kontroler ~ [ Send i~

) Indstlinger- &3~

A [H '™ind-reading' software could record your... | I

-

This Christmas, give a
New Scientist Gift Subscription
and make great sawings

More than all-wheel drive. Introducing Saab XWD.

Learn

More »

‘Search MNewy Scientist

SPACE pu=l= 8 ENVIRONMENT HEALTH LIFE PHYSICS&MATH SCIENCE IN
SOCIETY

Haome | Tech | Science in Society | MNews

'Mind-reading’' software could record your dreams

> 18:05 12 December 2003 by Celeste Biever
» For similar stories, visit the The Human Brain Topic Guide

S PRINT  EISEND
Pictures you are observing can now be recreated with software B SHARE oM 90 &r

that uses nothing but scans of your brain. It is the first "mind
reading” technology to create such images from scratch, rather
than picking them out from a pool of possible images

Earlier this year Jack Gallant and colleagues at the University of
California, Berkeley, showed that they could tell which of a set of
images someone was looking at from a brain scan

To do this, they created software that compared the subject's brain
activity while looking at an image with that captured while they were
looking at "training" photographs. The program then picked the
most lilkely match from a set of previousk unseen pictures

Mowy Yulkiyasu Kamitani at ATR Computational MNeuroscience
Laboratories in Kyoto, Japan has gone a step further: his team has
used an image of brain activity taken in a functional MR scanner to
recreate a hlack-and-white imaoe fraom scrafch
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Yukiyasu Kamitani: Y. Miyawaki et al. Neuron 60(5):915 - 929 (2008)
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BOLD fMRI1: Is hemodynamic de-convolution feasible?

LETTER C icated by Karl Friston

Bayesian Model Comparison in Nonlinear BOLD fMRI
Hemodynamics

Daniel J. Jacobsen
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physiology — described by four non-linear differential egs.
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Neural Computation 20, 738-755 (2008)
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Figure 3.1: Overview diagram of hemodynamic models.
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BOLD hemodynamics R-Bayes model selection

Model A: constant input vs Model B: Fading input
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Multivariate neuroimaging models

Neuroimaging aims at extracting the mutual
information between stimulus and response.

e Stimulus: Macroscopic variables, "design
matrix” ... s(t)

e Response: Micro/meso-scopic variables, the
neuroimage ... x(t)

e Mutual information is stored in the
joint distribution ... p(x,s).

Often s(t) is assumed known....unsupervised
methods consider s(t) or parts of s(t)

C mbi Lars Kai Hansen
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Multivariate neuroimaging models

e Univariate models -SPM, fMRI time series models etc.

p(x,5) = p(x|s)p(s) =] ] p(x; |s)- p(s) @

® M UItlva rlate mOdeIS _PCA, ICA, SVM, AN N (Lautrup et al., 1994, Mgrch et al. 1997)

p(x,s) = p(s|x)p(x)

e Modeling from data (D) w. parameterized function families
p(s[x) ~ p(s[x,D) ~ p(s|x,0),  &=06(D)

p(x) ~ p(x|D) ~ p(x]8),

C mbi Lars Kai Hansen
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Generalizability Do not multiply causes!

S

Generalizability is defined as the expected performance on a
random new sample

— A models mean performance on a "fresh” data set is an unbiased
estimate of generalization

Typical loss functions:

(—log p(s|x,D)), : <—Iog p(x | D)>

<(S—§(D))2>, <|Og p(S,XlD) >
p(s|D)p(x|D)
e Note: No problem to estimate generalization in hidden variable
models!

e Results can be presented as "bias-variance trade-off curves” or
"learning curves”
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. Bias-variance trade-off as function of PCA dimension
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Learning curves for multivariate brain state decoding
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Visualization of brain state decoder representations

e A brain map is a visualization of the
information captured by the model:

— The map should take on a high value in
voxels/regions involved in the response and a low
value in other regions...

e Statistical Parametric Maps
— voxel based hypothesis test
- Parameter maps for linear models (e.g. linear SVM’s)

e The saliency map
e The sentivity map
e Consensus maps
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Advances in Computational Mathematics 5{1996)260-280 269 e h i n tS fro m asym ptoti C th e O ry

Linear unlearning for cross-validation

Lars Kai Hansen and Jan Larsen

conNEcT, Electronics Institute 8349, Technical University of Denmark, DK-2300 Lyngby. Denmari k
E-mail: lkhansen jlarsen@ei.dtu.dk

e Asymptotic theory investigates the sampling
fluctuations in the limit N -> oo

e Cross-validation good news: The ensemble
average predictor is equivalent to training on all
data (Hansen & Larsen, 1996)

e Simple asymptotics for parametric and semi-
parametric models

e Some results for non-parametric e.g. kernel
machines

e In general: Asymptotic predictive performance
has bias and variance components, there is
proportionality between parameter fluctuation
and the variance component...
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The sensitivity map

Neurolmage 15, 7T72-786 (2002)
doi:10.1006/mimg.2001. 1033, available online at httpJfwww.idealibrary.com on |.E%|.
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The Quantitative Evaluation of Functional Neuroimaging Experiments: 100l
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FIG. 3. Plot of scan/label mutual information versus reproduc-
ibility signal/moise for the four data sets, for varying numbers of
subjects in the training set. There were 2 labels/4 scans per subject
(balanced data set; Setup 1, Table 1) corresponding to the dashed
solid line in Fig. 4. We see that both measures indicate improved
performance of the model as the number of subjects increases.

e The sensitivity map measures the impact of a specific
feature/location on the predictive distribution
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Joint work with Stephen Strother

NPAIRS: Reproducibility of parameters
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Reproducibility of internal representations

Sensitivity map (group 2)
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Unsupervised learning:

Factor analysis generative model

p(x[A,0) = | p(x| A,s, %)

0(x |A,s,X) =| 2725 V2

X = AS +E&, e~N(0,X)

ICA: ... other
RELLLLLLLITE : IFA: ... Gauss. Mixt.
P(s| O)Eds k-Means: .. binary

llllllllllll

—%(X—AS)T > (x-As) PCA: ¥

Source distribution:
PCA: ... normal

S known: GLM
(1-A)1 sparse: SEM
S,A positive: NMF

S binary, simplex  k-Means
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Factor models

uuuuuuuuuuuuuuuu

Represent a datamatrix by a low-dimensional approximation
fMRI: Identify spatio-temporal networks of activation

TIME (t) ME (0

- —_——— S

X

LOCATION (i)
LOCATION (i)

X (0,0~ AGK)S(K, 1)
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Matrix factorization: SVD/PCA, NMF, Clustering

NMF

Original

it
el

Cimbi

{Lenber for integrabed
Moleculis Besin i g

Lars Kai Hansen

IMM, Technical University of Denmark

Figure 1 Non-negative matrix factorization (NMF) leams a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) leam
holistic representations. The three learming methods were applied to a database of

m = 2.429 facial images, each consisting of n = 19 x 19 pixels, and constituting an
n » m matrix I All three find approaximate factorizations of the form V' == WH, but with
three different types of constraints on Wand H, as described maore fully in the main text
and methods. As shown in the 7 x 7 montages, each method has leamed a set of

r = 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 > 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces,

Leaming the parts of objects hy
non-negative matrix factorization

Daniel D. Lee* & H. Sebastian Seung*+

* Bell Laboratories, Lucent Technologies, Murray Hill,

Technology, Cambridge, Massachusetts 02139, USA

NATURE |V

New Jersey 07974, USA
t Department of Brain and Cognirive Sciences, Massachusetts Institute of
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ICA: Assume S(k,t), S(k’,t) statistically independent

(McKeown, Hansen, Sejnowski, Curr. Op. in Neurobiology (2003)
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Modeling the generalizability of SVD manifold learning

e Rich physics literature on “retarded” learning

e Universality
— @Generalization for a ”sing|e symmetry . SINGLE SYMMETRY BREAKING DIRECTION (D=104)

breaking direction” is a function of ratio 1 e & © & oo o— o—o——%

of N/D and signal to noise S

— For subspace models-- a bit more
complicated -- depends on the
component SNR's and eigenvalue
separation

— For a single direction, the mean squared
overlap R? =<(u',;*u,)?> is computed
for N,D -> oo

o
o
L)

Q
o»
T

o
~

OVERLAP W. SYMMETRY BREAKING DIR

OO
o M 5.3 Em ¥

n? _ (xS*-1)/SQ+aS) a>1/5? 0.2}
0 a<1/S? | | |
100 150 200 250 = 300
a=N/D S=1/0° |\|C:[)/s2 TRAINING SET SIZE (N)

Hoyle, Rattray: Phys Rev E 75 016101 (2007) N, = (0.0001, 0.2, 2, 9, 27, 64, 128, 234, 400, 625)
o = (0.01, 0.06, 0.12, 0.17, 0.23, 0.28, 0.34, 0.39, 0.45, 0.5)
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Universality in PCA, NMF, Kmeans

NMF PCA KMEANS

e Looking for universality by
simulation

— learning two clusters in
white noise.

OVERLAP

e Train K=2 component factor
models.

e Measure overlap between line

0.8f
of sigth and plane spanned by
the two factors. s ost
i
3 0.4}
Experiment
Variable: N, D 0.2
Fixed: SNR
0

C mbl Lars Kai Hansen
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Restoring the generalizability of SVD

e Now what happens if you are on the slope

of generalization, i.e., N/D is just beyond
the transition to retarded learning ?

SUBSAMBLING MOVIE-ACTOR NETWORK
1 T .

o
Jos)
T

1'st EIGENVECTOR \

o
o)

2 EJGENVECTOR

MEDIAN R?

o
>

o
)

0 —ma ‘
10™ 107 10°
N/D

e The estimated projection is offset, hence,
future projections will be too small!

e ...problem if discriminant is optimized for
unbalanced classes in the training data!

Lars Kai Hansen
IMM, Technical University of Denmark
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Heuristic: Leave-one-out re-scaling of SVD test projections

200 Conventional 8VD Generalizable VD
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Re-scaling the component variances

2.00

Ll | — — — SVD training set projection stdev
| | —— GenSVD training set proj. stdev
m—— Test set projection stdev

e Possible to compute the R
new scales by leave-one-
out doing N SVD’s of size

N <<D oso \ _

Compute Uy AV, =svd(X) and Q, = [Qj] = AV,
foreach j = 1...N

_ 1
q_; = w1 2jizi 4y _
Compute B.A_ V| =svd(Q, - Q)
i = B—jB—;r(qj —4q_;)

2 1 2
A= N Zj “ij

100} e

Standard deviation

Kjems, Hansen, Strother: NIPS (2001)
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Joint work with Trine Abrahamsen (2009)

Non-linear manifolds: kPCA

e Kernel PCA is based on non-linear mapping of data to

x, >o(x,)=¢,, n=1..,N

e Aim is to locate maximum variance directions in the feature

space, i.e. )
1, =arg max<(lT -(ﬂ) > o(x,) = Zlksk,n
k

=2

N
e The principal direction is in the span of data: 1, = Zal,n(ﬂn
n=1

| I
Xn — Xn.

alzargmax<aT-K-a>, K, . =0, ¢, =exp| -

e 2¢

TJ Abrahamsen and LK Hansen. “Input Space Regularization Stabilizes Pre-image for Kernel
PCA De-noising”. To appear in Proc. of Int. Workshop on Machine Learning for Signal Processing, Grenoble, France

(2009).
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Manifold de-noising The pre-image problem

e Now, assume that we have a point of interest in feature
space, e.g. a certain projection on to a principal direction “"®”,
can we find its position “z” in measurement space?

z =¢ (¢)

e Problems: (1) Such a point need not exist, and (2) if it does
there is no reason that it should be unique!

e Mika et al. (1999): Find the closest match.

Xoe,

. Z
Iz — %ol <

C mbi Lars Kai Hansen
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De-noising based on manifold learning

Y
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De-noising hand written digits

Comparing MSE confidence
intervals for

(a) Mika et al. (1999)
(b) Kwok et al.(2004)
(c) Dambreville et al. (2006)

(d) distance regularized pre-
image estimation
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Generalizable supervised models

e Non-linear sparse kernel machines SVM
kernel regression, Gaussian processes

e Parameters to be optimized wrt
generalizability and reproducibility
— Non-linearity, sparsity

SPM

I/

y
M, Model Parameters SPM
including SPM @

| P, Prediction Accuracy Estimate

C mbi Lars Kai Hansen
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Dimensional reduction

using Laplacian eigenmaps

) .
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Generalizable supervised models

e Non-linear kernel machines, SVM

s(n") = Z:':la(n)K(xn, X_.)

K (X, X,) = exp {— ot }
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Visualization of SVM learning from fMRI

e \/isualization of kernel machines
— How to create an SPM for a kernel machine?
— The sensitivity map for kernels

s(n) = > " a(nK(x,,x,)

K(X,X.)= exp{ (X‘ﬁ)}

C mbi Lars Kai Hansen

............. ted IMM, Technical University of Denmark

uuuuuuuuuuuuuuuuuu

=
—
=

i



Visualization of kernel machine internal
representations

e EXxisting visualization methods
— Pre-image (Mika et al., NIPS 1998, Schdlkopf et al., 1999)
Basically an ill-defined objective, useful for denoising

— Multi-dimensional scaling (Kwok & Tsang, ICML 2003)

Interpolates nearest neighbors, suffers in high dimensions,
has a non-intuitive weighting of neighbors

Problem: Existing methods provide local visualization, which
point should be visualized? —-non linearity makes this issue
non-trivial.
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The sensitivity map

Neurolmage 15, 7T72-786 (2002)
doi:10.1006/mimg.2001. 1033, available online at httpJfwww.idealibrary.com on |.E%|.
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0.25

Mutual Information

m. = olog p(s|x) : 0.00

J OX - 000 010 020 030 040 050
J Pattern reproducibility

FIG. 3. Plot of scan/label mutual information versus reproduc-
ibility signal/moise for the four data sets, for varying numbers of
subjects in the training set. There were 2 labels/4 scans per subject
(balanced data set; Setup 1, Table 1) corresponding to the dashed
solid line in Fig. 4. We see that both measures indicate improved
performance of the model as the number of subjects increases.

e The sensitivity map measures the impact of a specific feature/location
on the predictive distribution

e Kernel machine is manipulated to produce posterior probabilities.
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Sensitivity maps for non-linear kernel regression

SENSITIVITY MAP, SPARSITY =02 Foc

EXAMPLE SCAN S8R = 1

ge set define by four activated reg L

set with N = Qi ex: tio is SNt =1,
e, the additive noise is unit variance. The target function has in addition been
contaminated by 1090 random label noise. The four subplots show: The sensitivity

uples. The image signal-to-nose

wap (upper left), the nea

wfect receiver operating eurve (ROC, upper right ),
the true activation map (lower left), and a random example of the simulated brain

im - We modeled the data set using the kernel regression method. The Ti

mondel was estimated using the so-called least angle elastic net method (LARSEN)

with a degree of sparsity of 0.2, Le., using N = 0.2 x 400 = 80 support vectors,

0 20 40 60 80 100

TIME

SENSITIITY MAP, SPARSITY = 0.5

a8

Fig. 1. XOR-image set define by four activated regions (AB.C.DD). Initially we let ::
ms (AB.D) be activated by random sequence taking valnes £1, as shown in 2

example in the bottom panel (full curve). The target signal, also taking values ju
t, = pml, and is also indicated in the bottom panel (dashed line). The region (C) is m
activated with an XOR-sequence relative to (A) and £, so that €7, An #tyn, henee, W w0
i the active state the two regions (A.C) are randomly, but identically activated, - ALE SCAN S1e 0 1
while in the resting condition, they are random, but opposite

08

06

04

02

20 a0 &0 80

Fiz. 4. XOR-image set define by four activated regions. Similar to figure 2, however
the mage signal-to-noise ratio s SNF=0.1.
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Initial dip data: Visual stimulus (TR 0.33s)

Cimbi

Gaussian kernel, sparse
kernel regression

Sensitivity map
computed for whole slice

Error rates about 0.03

How to set
— Kernel width?

- Sparsity?
s()~ Y a(MK (X, X,)

K xy) = exp -2}

Lars Kai Hansen
IMM, Technical University of Denmark
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Initial dip data: Visual stimulus (TR 0.33s)

e Select hyperparameters
of kernel machine using
NPAIRS resampling

0.5

| o SPARSE 005
- Degree of sparsity | * SPARSE 0.2

i | o SPARSE 0.5 |
- Kernel width, | 5 apAReE 0%
localization of map

|

o
W

MISS CLASS RATE
o
N
(e}

| Gy,

85 0.6 0.7 0.8 0.9 1
SPM CORRELATION
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Conclusion

e Machine learning in statistical modeling has two
equally important objectives
— Generalizability
— SPM reproducibility

e Can visualize general brain state decoders maps with
perturbation based methods (saliency maps,
sensitivity maps etc)

e NPAIRS split-half based framework for optimization of
generalizability and robust visualizations
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