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Manifold Data

“Learned” Manifolds

» Raw data lies in Euclidean space
» Manifold + Noise

“Known” Manifolds

» Raw data lies in a manifold
» Typically given by some constraints on data
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Manifold Data in Vision and Imaging

Directional data
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Transformation groups (rotations, projective, affine)

v

Shapes
Diffusion tensors, structure tensors

v

v

Diffeomorphisms (for deformable atlas building)



Manifold Statistics: Averages
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Manifold Statistics: Variability

-
Shape priors in segmentation




Manifold Statistics: Regression




What is Shape?
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What is Shape?

Shape is the geometry of an object modulo position,
orientation, and size.



Shape Representations

» Boundary models (points, curves, surfaces,
level sets)

» Interior models (medial, solid mesh)
» Transformation models (splines, diffeomorphisms)



Shape Analysis
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Shape Analysis

Shape Space
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A metric space structure provides a comparison
between two shapes.



Kendall’'s Shape Space

» Define object with k points.

» Represent as a vector in R%.

» Remove translation, rotation, and
scale.

» End up with complex projective
space, CP*2,
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Quotient Spaces

What do we get when we “remove” scaling from R??

[x]

Notation: [x] € R?/R*
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» Removing translation leaves us with C¥~!.



Constructing Kendall's Shape Space

v

Consider planar landmarks to be points in the
complex plane.

An object is then a point (zy, 22, . . ., zx) € Ck.

v

Removing translation leaves us with C¥=1,

v

v

How to remove scaling and rotation?



Scaling and Rotation in the Complex Plane
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Recall a complex number can be writ-
ten as z = re'®, with modulus r and
argument ¢.
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Scaling and Rotation in the Complex Plane

Recall a complex number can be writ-
ten as z = re'®, with modulus r and
argument ¢.

Complex Multiplication:

se' x re'® = (sr)e'?*+%)

Multiplication by a complex number se'’
scaling by s and rotation by 6.

is equivalent to



Removing Scale and Translation

Multiplying a centered point set, Z = (21,22, - . -, Z—1),
by a constant w € C, just rotates and scales it.
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Removing Scale and Translation

Multiplying a centered point set, Z = (21,22, - . -, Z—1),
by a constant w € C, just rotates and scales it.

Thus the shape of z is an equivalence class:
z) = {(wz1,wza,...,wzi_1) : Yw € C}
This gives complex projective space CP*2 — much like

the sphere comes from equivalence classes of scalar
multiplication in R".



The M-rep Shape Space

Medial Atom:
m = {X7 r, n07n1} € M(l)
M(1) =R x RT x §% x §?

M-rep Model with n atoms:
M € M(n) = M(1)"

Shape change in terms of local
translation, bending, & widening.




The Exponential and Log Maps

M

» The exponential map takes tangent vectors to
points along geodesics.

» The length of the tangent vector equals the length
along the geodesic segment.

» Its inverse is the log map — it gives distance
between points: d(p, q) = || Log,(q)]|-



Intrinsic Means (Fréchet)

The intrinsic mean of a collection of points x{, ..., xy on
a Riemannian manifold M is

(L = arg min g d(x,x;)%,

xeM

where d(-, -) denotes Riemannian distance on M.
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Computing Means

Gradient Descent Algorithm:

Input: X;,..., Xy €M

Ho = X

Repeat:
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Computing PGA

» Find nested linear subspaces Vi C T,,M such that
Exp,, (Vi) maximizes variance of projected data.

» First-order approximation: PCA in tangent space of
sample covariance matrix,

N
1
i=1



PGA of Kidney

Mode 1 Mode 2 Mode 3



Robust Statistics: Motivation

» The mean is overly influenced by outliers due to
sum-of-squares.

» Robust statistical description of shape or other
manifold data.

» Deal with outliers due to imaging noise or data
corruption.

» Misdiagnosis, segmentation error, or outlier in a
population study.



Mean vs. Median in R"

Mean: least-squares problem
_ . 2
po=argmin » |lx — x|
xeR?

Closed-form solution (arithmetic average)



Mean vs. Median in R"

Mean: least-squares problem
_ . 2
po=argmin » |lx — x|
xeR?

Closed-form solution (arithmetic average)

Geometric Median, or Fermat-Weber Point:

m= argminz ||x — x|

xeR”

No closed-form solution



Weiszfeld Algorithm in R"

Gradient descent on sum-of-distance:

v

My = my — aGy,

G = 3 e =] (Z|x,_mk| 1>

i€l i€l
» Stepsize: 0 < a <2

Exclude singular points: I, = {i : my # x;}
Weiszfeld (1937), Ostresh (1978)

v

v



Geometric Median on a Manifold

The geometric median of data x; € M is the point that
minimizes the sum of geodesic distances:

N
m = argmin » d(x,x;)

xeM
i=1

Fletcher, et al. CVPR 2008 and Neurolmage 2009.



Weiszfeld Algorithm for Manifolds

Gradient descent:

M1 = Exp,, (avy),

Logm X;
vk:Z mkkyxl /(;dmk,x, )

i€l;




Example: Rotations

Input data: 20 random rotations

Outlier set: random, rotated 90°



Example: Rotations

Mean

NN

0 outliers 5 outliers 10 outliers 15 outliers



Tensor MR

ion

Diffus

Application




Space of Positive-Definite Tensors

» Positive-definite, symmetric matrices
PD(n) = GL"(n)/SO(n)

» Riemannian manifold with nonpositive curvature
» Applications:

» Diffusion tensor MRI: Fletcher (2004), Pennec (2004)
» Structure tensor: Rathi (2007)
» Bookstein’s simplex shape space (1986)



Example: PD(2)

A € PD(2) is of the form

a b
= (5.

ac—b>>0, a>0.

/

Similar situation for PD(3) (6-dimensional).



Example: Tensors

Input data: 20 random tensors

V4l 4

Outlier set: random, rotated 90°
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Example: Tensors

Mean/".
- /100

0 outliers 5 outliers 10 outliers 15 outliers




Kendall’'s Shape Space

» Define object with k points.

» Represent as a vector in R%.

» Remove translation, rotation, and
scale.

» End up with complex projective
space, CP*2,



Example on Kendall Shape Spaces
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Example on Kendall Shape Spaces

WRVRCR?

Mean:

# Outliers:



Example on Kendall Shape Spaces

Mean:
# Outliers: 0 2 6 12
Median:

508 8

# Outliers:



Image Metamorphosis

» Metric between images
» Includes both deformation and intensity change

1 1

1 dl

U(vt,lt):/ |vil|3 dt + —2/ d
0 0= Jo
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E _|_ <V1t, V[>




Image Metamorphosis

» Metric between images

» Includes both deformation and intensity change

1 1
1
U(vi, 1) :/ lvelly dr + —2/
0 o= Jo

2

dt
L2

dl,
jtt + <VI;, Vt>




Example: Metamorphosis

Input Data




Example: Metamorphosis

Mean Median
ratio=1.13 ratio = 1.04

Input Data



Example: Metamorphosis

Input Data Median Atlas



Preliminaries

» x; € U C M, U isaconvex subset
» diam(U) = max, ey d(x,y)



Existence and Uniqueness

Theorem. The weighted geometric median exists and is
unique if

1. the sectional curvatures of M are bounded above
by A > 0 and diam(U) < 7/(2vA), or

2. the sectional curvatures of M are nonpositive.



Existence and Uniqueness

Theorem. The weighted geometric median exists and is
unique if

1. the sectional curvatures of M are bounded above
by A > 0 and diam(U) < 7/(2vA), or

2. the sectional curvatures of M are nonpositive.

Proof is by showing the convexity of geodesic distance.

Identical conditions to ensure the mean (Karcher).



Robustness

» Breakdown point: percentage of points that can be
moved to infinity before statistic goes to infinity

» Euclidean mean: 0%

» Euclidean geometric median: 50%

» Same result holds for noncompact manifolds
» Does not make sense for compact manifolds



Convergence Theorem for Manifold
Weiszfeld Algorithm

Theorem. If the sectional curvatures of M are
nonnegative and the existence/uniqueness conditions
are satisfied, then limy_ .o my = m for0 < o < 2.



Describing Shape Change

» How does shape change over time?
» Changes due to growth, aging, disease, etc.
» Example: 100 healthy subjects, 20-80 yrs. old

H808848008880088880888488
CEELEPEEETVLEELEELEET T

» We need regression of shape!



Regression Analysis

» Describe relationship between a dependent random
variable Y to an independent random variable 7.

» Given observations (7}, Y;), find regression
function: Y = f(T).

» Often phrased as conditional expectation
E[Y|T =1 =f(1).

» Parametric (e.g., linear) or nonparametric (e.g.,
kernel).



Kernel Regression (Nadaraya-Watson)

Define regression function through weighted averaging:

f(t) = Z wi(1)Y;

wi(t) = 5}10 — T
> ic1 Kt = T))



Example: Gray Matter Volume

K,(t-s)

Gray Matter Volume / Total Brain Velume
&
@

a2t

Gray Matter Volume
Kernel Width=6; Sample Size=50

30 40 50 80 70

B8O



Manifold Kernel Regression

Using Fréchet weighted average:

N

ny(t) = I i(t)d ,Yi2
rina(t) argrrgﬂZW()(y )

Davis, et al. ICCV 2007



Brain Shape Regression
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