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Manifold Data in Vision and Imaging

I Directional data

I Transformation groups (rotations, projective, affine)
I Shapes
I Diffusion tensors, structure tensors
I Diffeomorphisms (for deformable atlas building)
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Manifold Statistics: Averages
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Manifold Statistics: Variability

Shape priors in segmentation



Manifold Statistics: Regression

  

Application: Healthy Brain Aging
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What is Shape?

Shape is the geometry of an object modulo position,
orientation, and size.
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Shape Representations

I Boundary models (points, curves, surfaces,
level sets)

I Interior models (medial, solid mesh)
I Transformation models (splines, diffeomorphisms)



Shape Analysis

Shape Space

A shape is a point in a high-dimensional, nonlinear
shape space.
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Shape Analysis

Shape Space

A metric space structure provides a comparison
between two shapes.



Kendall’s Shape Space

I Define object with k points.
I Represent as a vector in R2k.
I Remove translation, rotation, and

scale.
I End up with complex projective

space, CPk−2.



Quotient Spaces

What do we get when we “remove” scaling from R2?
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Constructing Kendall’s Shape Space

I Consider planar landmarks to be points in the
complex plane.

I An object is then a point (z1, z2, . . . , zk) ∈ Ck.
I Removing translation leaves us with Ck−1.
I How to remove scaling and rotation?



Constructing Kendall’s Shape Space

I Consider planar landmarks to be points in the
complex plane.

I An object is then a point (z1, z2, . . . , zk) ∈ Ck.

I Removing translation leaves us with Ck−1.
I How to remove scaling and rotation?



Constructing Kendall’s Shape Space

I Consider planar landmarks to be points in the
complex plane.

I An object is then a point (z1, z2, . . . , zk) ∈ Ck.
I Removing translation leaves us with Ck−1.

I How to remove scaling and rotation?



Constructing Kendall’s Shape Space

I Consider planar landmarks to be points in the
complex plane.

I An object is then a point (z1, z2, . . . , zk) ∈ Ck.
I Removing translation leaves us with Ck−1.
I How to remove scaling and rotation?



Scaling and Rotation in the Complex Plane
Im

Re
0

!

r

Recall a complex number can be writ-
ten as z = reiφ, with modulus r and
argument φ.

Complex Multiplication:

seiθ ∗ reiφ = (sr)ei(θ+φ)

Multiplication by a complex number seiθ is equivalent to
scaling by s and rotation by θ.
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Removing Scale and Translation

Multiplying a centered point set, z = (z1, z2, . . . , zk−1),
by a constant w ∈ C, just rotates and scales it.

Thus the shape of z is an equivalence class:

[z] = {(wz1,wz2, . . . ,wzk−1) : ∀w ∈ C}

This gives complex projective space CPk−2 – much like
the sphere comes from equivalence classes of scalar
multiplication in Rn.
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The M-rep Shape Space

n

n

0

1

x

Medial Atom:

m = {x, r,n0,n1} ∈ M(1)

M(1) = R3 × R+ × S2 × S2

M-rep Model with n atoms:

M ∈M(n) =M(1)n

Shape change in terms of local
translation, bending, & widening.



The Exponential and Log Maps

p
T M pExp  (X)p

X

M

I The exponential map takes tangent vectors to
points along geodesics.

I The length of the tangent vector equals the length
along the geodesic segment.

I Its inverse is the log map – it gives distance
between points: d(p, q) = ‖Logp(q)‖.



Intrinsic Means (Fréchet)

The intrinsic mean of a collection of points x1, . . . , xN on
a Riemannian manifold M is

µ = arg min
x∈M

N∑

i=1

d(x, xi)
2,

where d(·, ·) denotes Riemannian distance on M.



Computing Means

Gradient Descent Algorithm:

Input: x1, . . . , xN ∈ M

µ0 = x1

Repeat:

∆µ = 1
N

∑N
i=1 Logµk

(xi)

µk+1 = Expµk
(∆µ)
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Principal Geodesic Analysis

Linear Statistics (PCA) Curved Statistics (PGA)
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Computing PGA

I Find nested linear subspaces Vk ⊂ TpM such that
Expµ(Vk) maximizes variance of projected data.

I First-order approximation: PCA in tangent space of
sample covariance matrix,

S =
1

N − 1

N∑

i=1

Logµ(xi) Logµ(xi)
T



PGA of Kidney

Mode 1 Mode 2 Mode 3



Robust Statistics: Motivation

I The mean is overly influenced by outliers due to
sum-of-squares.

I Robust statistical description of shape or other
manifold data.

I Deal with outliers due to imaging noise or data
corruption.

I Misdiagnosis, segmentation error, or outlier in a
population study.



Mean vs. Median in Rn

Mean: least-squares problem

µ = arg min
x∈Rn

∑
‖x− xi‖2

Closed-form solution (arithmetic average)

Geometric Median, or Fermat-Weber Point:

m = arg min
x∈Rn

∑
‖x− xi‖

No closed-form solution
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Weiszfeld Algorithm in Rn

I Gradient descent on sum-of-distance:

mk+1 = mk − αGk,

Gk =
∑

i∈Ik

mk − xi

‖xi − mk‖

/(∑

i∈Ik

‖xi − mk‖−1

)

I Step size: 0 < α ≤ 2
I Exclude singular points: Ik = {i : mk 6= xi}
I Weiszfeld (1937), Ostresh (1978)



Geometric Median on a Manifold

The geometric median of data xi ∈ M is the point that
minimizes the sum of geodesic distances:

m = arg min
x∈M

N∑

i=1

d(x, xi)

Fletcher, et al. CVPR 2008 and NeuroImage 2009.



Weiszfeld Algorithm for Manifolds

Gradient descent:

mk+1 = Expmk
(αvk),

vk =
∑

i∈Ik

Logmk
(xi)

d(mk, xi)

/(∑

i∈Ik

d(mk, xi)
−1
)



Example: Rotations
Input data: 20 random rotations

Outlier set: random, rotated 90◦



Example: Rotations

Mean

Median

0 outliers 5 outliers 10 outliers 15 outliers



Application: Diffusion Tensor MRI

! !



Space of Positive-Definite Tensors

I Positive-definite, symmetric matrices

PD(n) = GL+(n)/SO(n)

I Riemannian manifold with nonpositive curvature
I Applications:

I Diffusion tensor MRI: Fletcher (2004), Pennec (2004)
I Structure tensor: Rathi (2007)
I Bookstein’s simplex shape space (1986)



Example: PD(2)

a

c

b
l

γ

p

p

0

1

A ∈ PD(2) is of the form

A =

(
a b
b c

)
,

ac− b2 > 0, a > 0.

Similar situation for PD(3) (6-dimensional).



Example: Tensors
Input data: 20 random tensors

Outlier set: random, rotated 90◦



Example: Tensors

Mean

Median

0 outliers 5 outliers 10 outliers 15 outliers



Kendall’s Shape Space

I Define object with k points.
I Represent as a vector in R2k.
I Remove translation, rotation, and

scale.
I End up with complex projective

space, CPk−2.



Example on Kendall Shape Spaces

Hand shapes

Outliers



Example on Kendall Shape Spaces

Mean:

# Outliers: 0 2 6 12

Median:

# Outliers: 0 2 6 12
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Image Metamorphosis

I Metric between images
I Includes both deformation and intensity change

U(vt, It) =

∫ 1

0
‖vt‖2

V dt +
1
σ2

∫ 1

0

∥∥∥∥
dIt

dt
+ 〈∇It, vt〉

∥∥∥∥
2

L2

dt

Fig. 1. Metamorphosis geodesic between two 3D brain images. Mid-axial (top row) and mid-coronal (bottom row) slices are shown.

The theory of robust estimation has led to the devel-
opment of numerous robust estimators, of which the L1-
estimator, also known as the geometric median, is one of
the best known. Given a set of points {xi, i = 1, · · · , n} ∈
Rd, with the usual Euclidean norm ‖x‖, the L1-estimator
is defined as the point m ∈ Rd minimizing

∑n
i=1 ‖m− xi‖.

It can be shown (Lopuhaä and Rousseeuw, 1991) that this
estimator has a breakdown point of 0.5, which means that
half of the data needs to be corrupted in order to corrupt
this estimator. In Figure 2 we illustrate this by showing
how the geometric median and the mean are displaced in
the presence of a few outliers.

Fig. 2. The geometric median (marked with a !) and mean (marked

with a ×) for a collection of points in the plane. Notice how the few

outliers at the top right of the picture have forced the mean away
from the points, whereas the median remains centrally located.

The existence and uniqueness of the the median in Rd

follows directly from the convexity of the distance function.
In one dimension, the geometric median is the point that
divides the point set into equal halves on either side (if n is
odd) and is any point on the line segment connecting the
two middle points (if n is even). In general however, com-

puting the geometric median is difficult; Bajaj has shown
that the solution cannot be expressed using radicals (arith-
metic operations, and kth roots) (Bajaj, 1988).

There are two main approaches to computing the geo-
metric median of a collection of points in Rd. One way is to
compute an approximate median m̃ such that

∑n
i=1 ‖m̃ −

xi‖ is at most a (1 + ε)-factor larger than cost of the op-
timal median. This can be computed using the ellipsoid
method (Chandrasekaran and Tamir, 1990). A more effi-
cient algorithm achieving the same result is due to Bose
et al. (2003).

These algorithms do not generalize beyond Euclidean
spaces. A more general iterative algorithm due to Weiszfeld
(1937) and later improved by Kuhn and Kuenne (1962)
and Ostresh (1978) converges to the optimal solution in
Euclidean spaces (Kuhn, 1973), and was subsequently gen-
eralized to Banach spaces by Eckhardt (1980).

Several other robust estimators of centrality have been
proposed in the statistics literature (Maronna et al., 2006).
Winsorized means, where a percentage of extreme values
are clamped, and trimmed means, where extreme values are
removed, have been used for univariate data. The drawback
of these methods is that they require a somewhat arbitrary
selection of a threshold. M-estimators (Huber, 1981) are
a generalization of maximum likelihood methods in which
some function of the data is minimized. The geometric me-
dian is a special case of an M-estimator with an L1 cost
function.

3. The Riemannian Geometric Median

Let M be a Riemannian manifold. Given points
x1, . . . , xn ∈ M and corresponding positive real weights
wi, . . . , wn, with

∑
i wi = 1, define the weighted sum-of-

distances function f(x) =
∑

i wid(x, xi), where d is the
Riemannian distance function on M . Throughout, we will
assume that the xi lie in a convex set U ⊂ M , i.e., any two
points in U are connected by a unique shortest geodesic ly-
ing entirely in U . We define the weighted geometric median,

3
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Example: Metamorphosis

Input Data

Mean Median
ratio = 1.13 ratio = 1.04
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Example: Metamorphosis

Fig. 12. Midaxial slices from the four input 3D MR images (left). The resulting geometric median atlas (right).

Grant R01EB007688-01A1.
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Preliminaries

I xi ∈ U ⊂ M, U is a convex subset
I diam(U) = maxx,y∈U d(x, y)



Existence and Uniqueness

Theorem. The weighted geometric median exists and is
unique if

1. the sectional curvatures of M are bounded above
by ∆ > 0 and diam(U) < π/(2

√
∆), or

2. the sectional curvatures of M are nonpositive.

Proof is by showing the convexity of geodesic distance.

Identical conditions to ensure the mean (Karcher).
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Robustness

I Breakdown point: percentage of points that can be
moved to infinity before statistic goes to infinity

I Euclidean mean: 0%
I Euclidean geometric median: 50%
I Same result holds for noncompact manifolds
I Does not make sense for compact manifolds



Convergence Theorem for Manifold
Weiszfeld Algorithm

Theorem. If the sectional curvatures of M are
nonnegative and the existence/uniqueness conditions
are satisfied, then limk→∞mk = m for 0 < α ≤ 2.



Describing Shape Change

I How does shape change over time?
I Changes due to growth, aging, disease, etc.
I Example: 100 healthy subjects, 20–80 yrs. old

I We need regression of shape!



Regression Analysis

I Describe relationship between a dependent random
variable Y to an independent random variable T .

I Given observations (Ti,Yi), find regression
function: Y = f (T).

I Often phrased as conditional expectation
E[Y|T = t] = f (t).

I Parametric (e.g., linear) or nonparametric (e.g.,
kernel).



Kernel Regression (Nadaraya-Watson)

Define regression function through weighted averaging:

f (t) =
N∑

i=1

wi(t)Yi

wi(t) =
Kh(t − Ti)∑N
i=1 Kh(t − Ti)



Example: Gray Matter Volume

K (t-s)

t

h

s
ti

wi(t) =
Kh(t − Ti)∑N
i=1 Kh(t − Ti)

f (t) =
N∑

i=1

wi(t)Yi



Manifold Kernel Regression

m

M

pi

^ (t)h

Using Fréchet weighted average:

m̂h(t) = arg min
y

N∑

i=1

wi(t)d(y,Yi)
2

Davis, et al. ICCV 2007



Brain Shape Regression

  

Application: Healthy Brain Aging
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