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When can we avoid the curse of dimensionality?

» Smoothness

rate & (1/n)d

splines,kernel methods, L2 regularization...
» Sparsity

wavelets, L regularization, LASSO, compressed sensing..

» Geometry

graphs, simplicial complexes, laplacians, diffusions




» Distribution of natural data is non-uniform and
concentrates around low-dimensional structures.

» The shape (geometry) of the distribution can be
exploited for efficient learning.




Learning when data ~ M c RY

o Clustering: M — {1,...,k}
connected components, min cut

» Classification: M — {—1,+1}
Pon M x {—1,+1}

» Dimensionality Reduction: f: M —- R" n<< N
» M unknown: what can you learn about M from data?

e.g. dimensionality, connected components
holes, handles, homology
curvature, geodesics




» Speech

speech € I5 generated by vocal tract

Jansen and Niyogi (2005)

» Vision
group actions on object leading to different images

Donoho and Grimes (2004)

» Robotics

configuration spaces in joint movements

» Graphics

Manifold + Noise may be generic model in high dimensions.




» Geometrically motivated approach to learning

nonlinear, nonparametric, high dimensions

» Emphasize the role of the Laplacian and Heat Kernel
s Semi-supervised regression and classification
» Clustering and Homology

» Randomized Algorithms and Numerical Analysis




Given xi,...,x, € RV
Find v, ...,y, € R such that

Yi = W - X

and

max Variance({y:}) Zyz —w (Z xixiT> W
)

w. = leading eigenvector of » ~z;z

1




Suppose data does not lie on a linear subspace.

Yet data has inherently one degree of freedom.







One Dimensional Air Flow
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V(x,t) = volume velocity
P(x,t) = pressure
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Vocal Tract modeled as a sequence of tubes.
(e.g. Stevens, 1998)
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Learning when data ~ M c RY

s Clustering: M — {1,...,k}

connected components, min cut

» Classification/Regression: M — {—1,+1} or M — R
Pon M x{-1,+1}orPon M xR

s Dimensionality Reduction: f: M — R" n<< N

s M unknown: what can you learn about M from data?

e.g. dimensionality, connected components
holes, handles, homology
curvature, geodesics




Differential Geometry

All you wanted to know about
differential geometry but were
afraid to ask, in 10 easy slides!

Geometric Methods and Manifold Learnina = o. 15



MFE c RN

Locally (not globally) looks like Euclidean space.

S? c R?




k-dimensional affine subspace of R".







Tangent vectors < > curves.







foMF SR

o(t) : R — MF

flo(t)) R — R

i dfe)
dv dt 0

Tangent vectors < > Directional derivatives.




Norms and angles in tangent space.

(w,w) ], fJw]




o(t) : [0,1] — MF*

Z<¢>=/O1

do
— || dt
i

Can measure length using norm in tangent space.

Geodesic — shortest curve between two points.




Tangent vectors < > Directional derivatives.

Gradient points in the direction of maximum change.
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Geodesic ¢(t)
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Orthonormal coordinate system.




cannot flatten — can flatten

nonzero curvature — Zero curvature

No accurate map of Earth exists — Gauss’s theorem.




Given z1,...,z, € M C RV,
Find y1,...,y, € R*where d << N
s ISOMAP (Tenenbaum, et al, 00)
» LLE (Roweis, Saul, 00)
» Laplacian Eigenmaps (Belkin, Niyogi, 01)
» Local Tangent Space Alignment (Zhang, Zha, 02)
» Hessian Eigenmaps (Donoho, Grimes, 02)

» Diffusion Maps (Coifman, Lafon, et al, 04)

Related: Kernel PCA (Schoelkopf, et al, 98)










o

Neighborhood graph common to all methods.




1. Construct Neighborhood Graph.
2. Find shortest path (geodesic) distances.

Dij ISn X n

3. Embed using Multidimensional Scaling.




ldea: Distances — Inner products — Embedding

1. Inner product from distances:

(x,x) — 2(x,y) + {y,y) = [x =y

A + Ajj — ZAZ'j — Dz’j

Answer:

1 1
A = —§HDH where # =7 — =111
n

In general only an approximation.
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2. Embedding from inner products (same as PCA).

Consider a positive definite matrix A. Then A;; corresponds
to inner products.

A= zn: it
i=1

Then forany z € {1, ..., n}

0(@) = (VAi(@),....VAop(a) ) € R




Wrisl olalian

-l

From Tenenbaum, et al. 00

uppueke j2BuH




Isomap:
“unfolds” a flat manifold isometric to a convex domain in R”.

Hessian Eigenmaps:
“unfolds” and flat manifold isometric to an arbitrary domain
In R,

LTSA can also find an unfolding.




1. Construct Neighborhood Graph.

2. Let x1,...,z, be neighbors of z. Project x to the span of
Llyeooyps

3. Find barycentric coordinates of z.

® X
T = wi1x] + waxy + w3xs
o 8%
X % wy + wg +wz =1
ye
.x Weights w1, ws, w3 chosen,

so that z Is the center of mass.




4. Construct sparse matrix 1. :th row Is barycentric
coordinates of z; in the basis of its nearest neighbors.

5. Use lowest eigenvectors of (I — W){(I — W) to embed.
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® X, Hessian H. Taylor expansion :

f(wi) = F(0) + @4V f + ~at Has + ol

(I —W)f(0) = f(0) - Z w; f(x;) = f(0) — Zwif(O) — waﬁVf — %foﬂxz =
= —% ;foxz ~—trH =Af




Step 1 [Constructing the Graph]

e;; = 1 & x; “close to” x;

1. e-neighborhoods. [parameter e € R] Nodes ¢ and j are connected by an edge if

i —x]|* < e

2. n nearest neighbors. [parameter n € N] Nodes ¢ and j are connected by an edge if ¢ is among
n nearest neighbors of 5 or 5 is among n nearest neighbors of .




Step 2. [Choosing the weights].

1. Heat kernel. [parameter t € R]. If nodes 7 and j are connected, put

2
il

Wij:e t

2. Simple-minded. [No parameters]. W;; = 1 if and only if vertices 7 and j are connected by an
edge.




Step 3. [Eigenmaps] Compute eigenvalues and eigenvectors for the generalized eigenvector problem:

Lf=M\Df

D is diagonal matrix where

Let fo, ..., f,_1 be eigenvectors.
Leave out the eigenvector fo and use the next m lowest eigenvectors for embedding in an

m-dimensional Euclidean space.
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Heat diffusion operator H°.
6z and ¢, Initial heat distributions.

Diffusion distance between z and y:

|H'6, — H'0y| 1

Difference between heat distributions after time ¢.




Embed using weighted eigenfunctions of the Laplacian:

x — (e MU (x), e My (x), . . )

Diffusion distance is (approximated by) the distance
between the embedded points.

Closely related to random walks on graphs.




Find y1,...,y, € R

min Z(yz — ) Wy
1,

Tries to preserve locality




But

_Z y] 2Wzg — TLY

D (i — i) Wi = (W7 +v3 — 2viy;) Wi
> i

= Z y:Di; + Z yf-Djj — 2 Z yiy; Wi
i J 1,]

=2yl Ly




min yTLy
yT1=0

LetY = [y1y2...ym]

> Vi = Y;|PWy; = trace(Y T LY)
(2%
subjectto YTY = 1I.
Use eigenvectors of L to embed.
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smoothmap f: M — R

/M IV fI2~ S Wi(fi — £)?

1~]

Recall standard gradient in R* of f(z1,..., )

- of
0z1
of
0z9




Consider a curve on M

c(t) € M te(—1,1) p=c(0); g =c(7)

fle(®): (=1,1) = R

1£(0) — f(7)] S da(p, )V f ()|




A Basic Fact
[ IVl - / Fe A
M
This is like
Z Wi (f — fTLf
where

A rf 1S the manifold Laplacian




Recall ordinary Laplacian in R*
This maps

2
f(.fl?l, ce ,Cljk) — (— Z g$£>

Manifold Laplacian is the same on the tangent space.




Eigensystem
Apmf = Aigi

A, > 0and )\, —

{#;} form an orthonormal basis for L?(M)

/ IV meill? = A




_dQ_“ = \u where u(0) = u(2n)
dt? N

Eigenvalues are

Eigenfunctions are

sin(nt), cos(nt)




f-M—-R xeM z,....,00, M

Graph Laplacian:

L(H(@) = f@) ) em 7 =) flae

Theorem [pointwise convergence] ¢, =n~ 2+

lim (47tn)” +

n— 00 n

Ly f(x) = A f(x)

Belkin 03, Lafon Coifman 04, Belkin Niyogi 05, Hein et al 05
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Theorem [convergence of eigenfunctions]

lim  Fig[Li"] — BiglAn]

t—0,n—00

Belkin Niyogi 06




Then

2 2
A+ —log(j) < log(A;) < B+ —log(j +1)

Example: on S*

. 2 .
A =742 = log())) = 0 log(4)

(Li and Yau; Weyl's asymptotics)




Data representation, dimensionality reduction, visualiz ation

Visualizing spaces of digits.

Partiview, Ndaona, Surendran 04




Motion estimation

Markerless motion estimation: inferring joint angles.

Corazza, Andriacchi, Stanford Biomotion Lab, 05, Partiview, Surendran

X B
0 o 5 Ny |

Isometrically invariant representation.

liNK

Eigenfunctions of the Laplacian are invariant under

Isometries.
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. Graphics, etc

ELE "-’-T.--:'

Laplacian from meshes/non-probabilistic point clouds.
Belkin, Sun, Wang 08, 09
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Heat equation in R":

u(x,t) — heat distribution at time .
u(x,0) = f(x) — Initial distribution. = € R™,t € R.

du
Arnu(x,t) = E(x, t)

Solution — convolution with the heat kernel:

2
_ =yl

fly)e™ 3 ~dy
Rn

N[3

u(x,t) = (4nt)~




Functional approximation:
Taking limit as ¢ — 0 and writing the derivative:

Agn f(z) = % [(47”5)_3 flye deyL




Functional approximation:
Taking limit as ¢ — 0 and writing the derivative:

d

Apnf(z) = — [(47”5)_

N3

_ lz—yl?
Fly)e dy]
R~ 0

V|3

Ao () & 1 (4t)" (f<x>— Rnf(y)e—%“dy)




Functional approximation:
Taking limit as ¢ — 0 and writing the derivative:

d

Apnf(z) = — [(47”5)_

NS

_ lz—yl?
Fly)e dy]
R~ 0

V|3

Ao () = 1 (4mt)" (f<x>— Rnf(y)e—”it“dy)

Empirical approximation:
Integral can be estimated from empirical data.

<f(ar) - Zf<xz->ew£”>

N[3

Agn f(z) & —%(47”5)_




Some difficulties arise for manifolds:

» Do not know distances.
» Do not know the heat kernel.

X M

dist, (x,y)
|Ix=yIl




Some difficulties arise for manifolds:

» Do not know distances.
» Do not know the heat kernel.

X M

dist, (x,y)
|Ix=yIl

Careful analysis needed.




o Hi(x,y) = > e M i(x)di(y)
» in R%, closed form expression

1 _ lz—yl?
Ht(x,y) — (47Tt)d/2€ 1t

» Goodness of approximation depends on the gap

1 _ ||w;3||2
(4mt)d/2 ‘

Ht(xv y) o

» H;is a Mercer kernel intrinsically defined on manifold.

Leads to SVMs on manifolds.
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1. Arbitrary probability distribution on the manifold:
convergence to weighted Laplacian.
2. Noise off the manifold:

p= ppgd + RN
Then

lim L'f (z) = Af (x)

3. Noise off the manifold:
2= +1 (~ N(0,0%1))

We have
lim lim LY f(z) = Af(x)

t—0 oc—0
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» A global geometric framework for nonlinear dimensionality reduction.

J.B. Tenenbaum, V. de Silva and J. C. Langford, 00.

» Nonlinear Dimensionality Reduction by Locally Linear Embedding.

L. K. Saul and S. T. Roweis. 00

» Laplacian Eigenmaps for Dimensionality Reduction and Data Representation.

M.Belkin, P.Niyogi, 01.

» Hessian Eigenmaps: new locally linear embedding techniques for high-dimensional data. D. L.
Donoho and C. Grimes, 02.

» Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment.
Zhenyue Zhang and Hongyuan Zha. 02.

» Charting a manifold. Matthew Brand, 03

» Diffusion Maps. R. Coifman and S. Lafon. 04.

» Many more: http://www.cse.msu.edu/~lawhiu/manifold/




Reasons to use unlabeled data in inference:
» Pragmatic:

Unlabeled data is everywhere. Need a way to use it.

» Philosophical:

The brain uses unlabeled data.




How does shape of the data affect classification?

» Manifold assumption.

» Cluster assumption.

Reflect our understanding of structure of natural data.













Geometry of data changes our notion of similarity.

B
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Geometry Is Important.
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50 —A— K—NN

—A— Geodesic k—NN

Error rate, %

20 50 100 500 1000 5000
Number of Labeled Points










Geometry Is Important.
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Geometry Is important.
Unlabeled data to estimate geometry.

B
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Manifold/geometric assumption:
functions of interest are smooth with respect to the
underlying geometry.




Manifold/geometric assumption:

functions of interest are smooth with respect to the
underlying geometry.

Probabillistic setting:
Map X — Y. Probability distribution P on X x Y.

Regression/(two class)classification: X — R.




Manifold/geometric assumption:
functions of interest are smooth with respect to the
underlying geometry.

Probabillistic setting:
Map X — Y. Probability distribution P on X x Y.

Regression/(two class)classification: X — R.

Probabilistic version:
conditional distributions P(y|x) are smooth with respect to
the marginal P(x).




Function f: X — R. Penalty at v € X:

G | U@ 1+ 0) pa)ds ~ |V

small ¢

Total penalty — Laplace operator:

/HVNQ TN




Function f: X — R. Penalty at v € X:

G | U@ 1+ 0) pa)ds ~ |V

small ¢

Total penalty — Laplace operator:

/va2 TN

Two-class classification — conditional P(1|x).

Manifold assumption: (P(1|x), A,P(1|z)) IS small.




SVM

-1 0 1 2
Y, =0.08125 y =0




SVM Laplacian SVM Laplacian SVM

-1 0 1 2
Y, =0.08125 y =0 Y, =0.03125 y = 0.01 Y, =0.03125 y =1

-1 0 1 2




Estimate f: RY - R
Data: (x1,v1),---, (x5, y1)

Regularized least squares (hinge loss for SVM):

f* = argmin - Z )> + Allfll%

feH

fit to data + smoothness penalty

| f|lx Incorporates our smoothness assumptions.
Choice of || ||x Is Important.




Solve: f* = argmm 24 )\||fHK
feH

| /|l x 1S @ Reproducing Kernel Hilbert Space norm with
kernel K(x,y).

Can solve explicitly (via Representer theorem):
[
=) aiK(x,)
1=1

ar, ] = (KA AD  y, ol

(K)ij = K(xi,%;)




Estimate f: RY - R

Labeled data: (x1,41),..., (x;,y)
Unlabeled data: xm, e X

f* = argmin l Z (x4) 2+ Al fllE + A7
fEH

fit to data + extrinsic smoothness + intrinsic smoothness
Empirical estimate:

1
(l+u)2[

I£1I7 = Feaa), o F ) L f (k1) f ()]




Representer theorem (discrete case):

[H+u
f() =) aiK(xi,-)
1=1
Explicit solution for quadratic loss:

a = (JK 4+ Mgll + LK) Yy, ..., 4,0,...,0/

(u+1)?

K= K(x;,x;), J=dwag(1l,...,1,0,...,0
( )’l] (z J) 9( )

l U
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Experimental results: USPS

RLS vs LapRLS
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Dataset — g50c Coil20 | Uspst || mac-win | WebKB | WebKB WebKB
Algorithm | (link) (page) | (page+link)
SVM (full labels) 3.82 0.0 3.35 2.32 6.3 6.5 1.0
SVM (I labels) 8.32 24.64 | 23.18 18.87 25.6 22.2 15.6
Graph-Reg 17.30 6.20 21.30 11.71 22.0 10.7 6.6
TSVM 6.87 26.26 | 26.46 7.44 14.5 8.6 7.8
Graph-density 8.32 6.43 16.92 10.48 - - -
VTSVM 5.80 1756 | 17.61 5.71 - - -
LDS 5.62 4.86 15.79 5.13 - : .
LapSVM 5.44 3.66 12.67 10.41 18.1 10.5 6.4




Probability distribution P.

What are clusters? Geometric question.

How does one estimate clusters given finite data?







~0.46 0.46

0.26

~0.46 0.4¢




~0.46 0.46 ( 2 -1 -1 0 0 0)

0.26 0 0 0 -1 2 -1

~0.46 0.4¢

Unnormalized clustering:

Le; = Mier ey =[—0.46,—0.46, —0.26,0.26, 0.46, 0.46]




~0.46 0.46 ( 2 -1 -1 0 0 0)

0.26 0 0 0 -1 2 -1

~0.46 0.4¢

Unnormalized clustering:

Le; = Mier ey =[—0.46,—0.46, —0.26,0.26, 0.46, 0.46]

Normalized clustering:

Ler = MiDe1  e1 = [—0.31,—0.31, —0.18,0.18, 0.31, 0.31]




Mincut: minimize the number (total weight) of edges cut).

argmin E Wi j

S ies, jev—s




fILf

1
2

> (fi = fi) wig

1~]

Basic fact:




2 )
. 1 .t
argmin Z Wij = argmm Z =3 argmin f"Lf
o €S, jeV-=>=S —L1}y i~ fi€i-L1}
Relaxation gives eigenvectors.

Lv = \v




Limit behavior of spectral clustering.
X1,...,Xp n — o0

Sampled from probability distribution P on X.

Theorem 1.
Normalized spectral clustering (bisectioning) is consistent.

Theorem 2:
Unnormalized spectral clustering may not converge
depending on the spectrum of L and P.

von Luxburg Belkin Bousquet 04




Isoperimetric problem. Cheeger constant.

“

vol" 1 (6 M)

iv=1nf min (vol”™ (M), vol" (M — My))

B
m



Laplacian eigenfunction as a relaxation of the isoperimetric problem.

59\/[1 . VOln_1(5M1)
h = inf — = m
min (vol™ (M), vol" (M — My))

0=X <A1 <A <

AYCED '/ %Jtcluster
VA
2

h < [Cheeger]




Theorem:

2 1 T,

L is the normalized graph Laplacian and 1y is the indicator vector
of points In S. (Narayanan Belkin Niyogi, 06)




» Clustering is all about geometry of unlabeled data (no
labeled datal).

» Need to combine probability density with the geometry of
the total space.




» Machine Learning

s Scaling Up

s Multi-scale

s Geometry of Natural Data

s Geometry of Structured Data

» Algorithmic Nash embedding

» Graphics / Non-randomly sampled data
» Random Hodge Theory

» Partial Differential Equations

s Algorithms
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