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Abstract For a given combinatorial graph G a geometrization (G, g) of the graph is
obtained by considering each edge of the graph as a 1-dimensional manifold with an associated
metric g. In this paper we are concerned with minimal isometric immersions of geometrized
graphs (G, g) into Riemannian manifolds (Nn, h). Such immersions we call minimal webs.
They admit a natural ‘geometric’ extension of the intrinsic combinatorial discrete Laplacian.
The geometric Laplacian on minimal webs enjoys standard properties such as the maximum
principle and the divergence theorems, which are of instrumental importance for the appli-
cations. We apply these properties to show that minimal webs in ambient Riemannian spaces
share several analytic and geometric properties with their smooth (minimal submanifold)
counterparts in such spaces. In particular we use appropriate versions of the divergence theo-
rems together with the comparison techniques for distance functions in Riemannian geometry
and obtain bounds for the first Dirichlet eigenvalues, the exit times and the capacities as well
as isoperimetric type inequalities for so-called extrinsic R-webs of minimal webs in ambient
Riemannian manifolds with bounded curvature.

Keywords Minimal immersions · Locally finite countable graphs · Extrinsic minimal
R-webs · Laplacian · Eigenvalues · Capacity · Transience · Isoperimetric inequalities ·
Comparison theory
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1 Introduction

We let G = (V ,E) denote an abstract infinite graph with edge set E and vertex set V .
We will use standard notation and terminology from graph theory, see e.g [52,65,66]. For
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example, two vertices x and y in V are called neighbours if there is at least one edge e in E
between them, in which case we write x ∼ y and e = xy. Multigraphs (with a finite number
of multiple edges between neighbouring vertices) are allowed. Loops (pseudo-graphs) are
not allowed. In other words we assume without lack of generality that graphs containing
loops have been ‘normalized’ by introducing an auxiliary vertex somewhere on every loop
edge. We also assume that the graph is countable and connected as well as locally finite (but
not too finite) in the sense that every vertex p ∈ V has finite vertex degree m(p) ≥ 2.

We geometrize the graph G as follows. Every edge e = xy in E is considered as a com-
pact 1-dimensional manifold with boundary ∂e = x∪y (where x and y are the vertices inE
which are joined inG by e). Let each edge e be given a metric ge such that (e, ge) is isometric
to a finite interval [0, L(e)] of the real line with the standard metric. We assume throughout
that L(e) > ε for some positive ε for every edge e ∈ E. The distance metric on the edges
can be extended to the full graph via infima of lengths of curves in the geometrization of
G. Then the graphs become metrically complete length spaces, see e.g. [5, Chap. 1.3]. In
particular, for every two points p, q in the geometric graph there exists a minimal geodesic
joining p and q. The distance d(p, q) in G between p and q is the length of such a geodesic.
Note that because of the assumptionm(p) ≥ 2 every geodesic can be extended in such a way
that the extension is still the shortest connection between any pair of points—at least locally.
However, the extension through a vertex point may not be unique.

The resulting length space is called (G, g)—or just shorthandG. We note that the intrinsic
curvature at every vertex with degree m ≥ 3 is −∞ in the geodesic triangle comparison
sense, see e.g. [8]. In such cases (G, g) does not have bounded geometry in this geometric
sense, but only in the combinatorial sense of having bounded degree.

1.1 Concerning the literature on metric graphs and webs

The intrinsic discrete analysis of functions defined only on the vertices of a given graph
has produced a wealth of results beginning with the works of [22,26,34]. We find excellent
surveys in e.g. [14,16,59,66].

The idea of extending the analysis to intrinsic differentiable functions defined on the full
edges of the graph has been considered from different viewpoints. We refer to Friedman [30]
and Ohno and Urakawa [54], who obtain results concerning the eigenvalues of the discrete
Laplacian on graphs by way of linear interpolation along the edges.

When we impose natural (Kirchhoff type) conditions at the vertices, the spectrum of
the discrete Laplace operator and the corresponding eigenfunctions (defined at the vertices)
determine the spectrum of the geometric Laplacian and the continuous (Kirchhoff) eigenfunc-
tions. This far reaching intrinsic relationship has been studied by a number of authors, see e.g.
[3,9,31,53,57], and the excellent recent survey papers on quantum graphs: [28,39,40,60].

Yet another main idea of the present paper is to facilitate the analysis of, say, eigenvalues
and isoperimetric properties of metric graphs by appealing to the fruitful interplay between
the ‘inner’ combinatorial geometry and the ‘outer’ geometry of graphs which are immersed
isometrically and minimally into a given ambient Riemannian manifold. A related point of
view has been applied in [15], where Chung and Yau obtain lower bounds on Neumann
eigenvalues of certain subgraphs of homogeneous lattice graphs embedded into Riemann-
ian manifolds. In their setting the eigenvalue bounds are derived from known results for
eigenvalues of the ambient Riemannian manifolds using both the discrete heat kernels of the
graphs and the continuous heat kernels of the Riemannian manifolds in question.

In the other direction we refer to the work of Fujiwara in [32], where he obtains a two-sided
estimate of the spectrum of a given compact Riemannian manifold via the discrete spectra
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of roughly isometric nets on the manifold in the sense of Kanai, see [36–38]. These nets,
however, do not necessarily span minimal webs in the sense of Definition 2.6 below. It is an
open question—stated in [32, p. 2587]—whether a suitable ‘nice’ sequence of graphs could
improve the estimation of the eigenvalues of compact manifolds. At this note and in a related
vein, Urakawa obtains in [64] explicit limit expressions for the Dirichlet and Neumann eigen-
values from special (equilateral or isosceles right) triangulations of bounded plane domains.
In particular the resulting approximating graphs are thence in fact planar minimal webs. The
result supports the general idea that minimal webs could be of instrumental value for the
precise estimation of the spectra of Riemannian manifolds in general.

Here we also emphasize in particular those aspects of the previous works which are related
to the notion of harmonic maps of graphs into suitable target spaces. In [1,62,63] the harmonic
morphisms of (weighted) graphs into (weighted) graphs is defined and studied. As observed
by Anand in [1], Remark 3, the discrete combinatorial structure of the target spaces in such
a setting does not, however, allow directly for a proper definition of an energy functional
(whose critical maps should then be called harmonic). The work [27] by Eells and Fuglede
offers a natural setting for the study of harmonic maps of general Riemannian polyhedra into
Alexandrov spaces.

In the present paper we consider only those maps on metric graphs which are isometric
immersions and minimal in a sense, which will be made precise in the next section.

2 Preliminaries and outline of main results

Definition 2.1 A continuous map φ of (G, g) into a given Riemannian manifold (Nn, h)

will be called an isometry if it is an isometric immersion in the usual sense on every edge
with respect to the metric induced from h.

Remark 2.2 By continuity the isometries of geometrized graphs preserve the global graph
structure in the sense that φ(e) = φ(x)φ(y) whenever e = xy, whereas they only preserve
the local distances of the corresponding metric space continua. In comparison, the isometric
embeddings of finite combinatorial metric graphs considered in e.g. [20] preserve all the
distances represented by the full distance matrices of the corresponding finite metric spaces.
In both contexts the geometry and topology of the target spaces represent interesting possible
obstructions for isometric immersions of a given (G, g) to exist.

Definition 2.3 A given isometric immersion φ(G) is edge-minimal if the image of each edge
is a geodesic segment in Nn (realizing locally the distances between pairs of points on each
edge).

In the following we shall often use the notation G as shorthand for both (G, g) and
φ(G, g) unless the context calls for special attention concerning the metric g or concern-
ing specific properties of a given isometric immersion φ. In particular we note, that a given
edge-minimal isometric immersion ofG into Nn may map several edges ofG into identical
(or overlapping segments of) geodesics inNn. For example, we may consider immersions of
non-line graphs into R

1. In such cases it is important to keep track of the combinatorics of the
original abstract graph, so that the edges in the immersed image is counted with the correct
multiplicities.

To facilitate the local analysis of functions in a given metric neighborhood of a vertex p
in G we introduce the notion of parametrized star spaces as follows.
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Fig. 1 A 2D joint element for
Scherk’s web in R

3

Fig. 2 A 3D joint element for
Scherk’s web in R

3

Definition 2.4 The p-centered parametrized star space Yp ⊂ (G, g) is the compact metric
subspace of (G, g) consisting of the vertex p together with the arc length parametrized edges
emanating from p:

ei = γi([0, L(ei)]), i = 1, . . . , m(p), (2.1)

where γi(s), s ∈ [0, L(ei)], denotes the unique point on the edge ei which is at distance s
from p.

Figures 1 and 2 show special well known star spaces. They will be used to construct the
so-called Scherk web in Example 2.7. The Scherk web was originally introduced in [48] as
a discrete approximation to Scherk’s doubly periodic minimal surface, see Figs. 3–5.

Definition 2.5 The immersion φ(G) is vertex-minimal if every vertex is ‘edge-balanced’ in
the following way: Let p denote a given vertex in the image ofG inNn. Then φ(G) is vertex
minimal at p if the unit tangent vectors to the emanating edges from p in Yp add up to the
zero vector in TpN , i.e.

m(p)∑

i=1

γ̇i (0) = 0. (2.2)

Definition 2.6 We will say that the immersion φ(G) is minimal if it is both vertex-minimal
and edge-minimal.
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Fig. 3 A block of Scherk’s
surface

Fig. 4 A graph building block
for Scherk’s web

An example of a minimal web in R
3 which has already been alluded to above is the

‘skeleton’ of Scherk’s surface:

Example 2.7 Scherk’s surface is the doubly periodic minimal surface in R
3 defined by the

Monge patch parametrization φ(u, v) = ln
(

cos(v)
cos(u)

)
. The domain of definition in the (u, v)-

plane is like the black squares in an infinite checkerboard pattern. In Fig. 3 we show one piece
of the surface which is defined over just one square—7 such pieces fit together smoothly, as
shown in Fig. 5. Every vertex in Scherk’s web is the center of a star-space which is one of
two types, a 2D joint as in Fig. 1 or a 3D joint as in Fig. 2. The Scherk web construction is
also shown in Figs. 4 and 5. Every vertex is clearly minimal and since every edge is a straight
line segment, we conclude: Scherk’s web is minimal in R

3.

Definition 2.8 We recall that a map ψ between metric spaces (X, dX) and (Y, dY ) is called
a rough isometry if there are constants α ≥ 1 and β ≥ 0 such that for every (x, y) ∈ X ×X

we have

α−1dX(x, y)− β ≤ dY (ψ(x), ψ(y)) ≤ αdX(x, y)+ β. (2.3)
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Fig. 5 Scherk’s minimal buildings—surface and web, respectively

Scherk’s web is known to be roughly isometric to the doubly periodic Scherk minimal
surface in R

3; See [11,48].

Definition 2.9 A given Riemannian manifold M has bounded geometry if the injectivity
radius ofM is bounded positively away from 0 and if the Ricci curvatures ofM are bounded
away from −∞ .

In view of the examples considered above and in view of the flexibility of the constructions
involved, we conjecture that every minimal submanifold in an ambient Riemannian manifold
N may be approximated by a roughly isometric, Hausdorff close, minimal web in N . The
Hausdorff distance between two subsets A and B of N is defined to be the infimum of all
η for which A is contained in the metric η-tube around B, and B is contained in the metric
η-tube around A in N (see e.g. Sect. 7.3 in [8]).

Conjecture 2.10 Let Pm denote the image of a minimally immersed submanifold in a Rie-
mannian manifoldNn. Suppose thatPm andNn have bounded geometries. Let ε be any given
positive number. Then there exists a metric graph (G, g) and a minimal isometric immersion
of (G, g) into Nn, such that (G, g) is roughly isometric to Pm and such that the Hausdorff
distance dH (G,Pm) between the image of G and Pm in Nn is less than ε.

A very interesting recent development related to this conjecture is found in the works
of Bobenko, Hoffman, Pinkall, and Springborn, see e.g. [6,7]. For example they obtain
O( 1

n
)-approximations to minimal surfaces in R

3 by constructing discrete Weierstrass repre-
sentations from discrete holomorphic maps from 1

n
Z

2.
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2.1 Main results

Having constructed and analyzed the geometric Laplacian 	G on graphs and after having
proved the fundamental properties alluded to in the abstract, we show in Sect. 9 that the first
Dirichlet eigenvalue of certain subsets of minimal webs (called R-webs, defined in Sect. 7)
are bounded from below by π2/4R2 when the ambient space has an upper curvature bound;
See Theorem 9.4.

A phenomenon, which in fact is related to this eigenvalue estimate is the following: If you
get lost in a minimal maze (with the architecture of a minimal R-web in R

n) then you can
get out fast by performing a 	G-driven Brownian motion in the maze. If the ambient space
is negatively curved, then you get out even faster unless the web architecture is that of a star
web, whose inner geometry is clearly not able to ‘feel’ the curvature of the ambient space.
These results are stated and proved via the notion of mean exit time functions in Theorem 9.6
and in Theorem 8.4; See also Remark 8.5.

In Sect. 10 we obtain isoperimetric inequalities which show thatR-web subsets of minimal
webs behave much the same way as totally geodesic R-discs in space forms: In negatively
curved ambient spaces the boundary is large relative to the interior mass and in positively
curved ambient spaces the opposite holds true; See Theorem 10.4.

Finally, in Sect. 11 we show bounds on the capacity of annular subsets of minimal met-
ric webs—see Theorem 11.4—and we relate these bounds to the notions of transience and
recurrence for complete minimal webs in Hadamard–Cartan manifolds; See Corollary 11.7.
In terms of the maze analogy alluded to above, an infinite geometric maze is transient if the
Brownian motion in it is not certain to visit every vertex as time goes by. In consequence
there is a positive probability of getting lost at infinity. We have shown in [48] that Scherk’s
maze is transient. In view of Theorem 8.4 this shows in particular, that the mean exit time
functions for R-webs are not able to tell if a given infinite minimal web is transient or not.

3 The geometric Laplacian of admissible (Kirchhoff) functions

In this section we consider the local analysis (to second order) of functions defined on the
geometrized graphs (resp. on their isometric immersions into Riemannian manifolds). In this
paper we mainly consider finite precompact subgraphs of the geometrized graphs, in partic-
ular the so-called R-webs which will be defined shortly in Sect. 7 below. In the following
analysis we therefore assume thatG is finite. The intrinsic analysis of functions on the open
edges of a finite graph is standard and as elementary as can be. Hence we must pay special
attention to the notion of second order derivative, i.e. the Laplacian, at the vertices of the
finite graphs.

We consider the set C0(G) of continuous functions onG. Then L2(G) = ⊕#E
j=1 L

2(ej ),
and with fj = f|ej we set

‖f ‖2
G =

∑

j

‖fj‖2
ej

=
∑

j

∫

ej

|fj (t)|2 dt.

We let H1(G) denote the Sobolev space obtained as the completion of the set

{f ∈ C0(G) | fj ∈ C1(ej )},
where the closure is with respect to the norm
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‖f ‖2
1,G =

∑

j

(
‖fj‖2

ej
+ ‖f ′

j‖2
ej

)
.

For all f ∈ H1(G) we associate a quadratic form to G:

F : f → ‖f ′‖2
G =

∑

j

‖f ′
j‖2
ej
.

The Laplacian ofG is then the unique self-adjoint and non-negative operator	G associ-
ated with the closed form F , see e.g. [9,19,28,41,56].

Lemma 3.1 (See e.g. [9], Lemma 1) The domain DG of 	G consists of all functions f ∈
C1(G) which are twice weakly differentiable on each edge and which satisfies the Kirchhoff
condition at each vertex. The functions in DG will be called the admissible functions on G.

We now explain this latter Kirchhoff condition in some detail because it mimics pre-
cisely the geometric condition of vertex minimality previously introduces in 2.5. For each
edge e = γ ([0, L(e)]) in the parametrized star space Yp from a point p we have for every
f ∈ DG:

⎧
⎪⎨

⎪⎩

lims→0 f (γ (s)) = f (γ (0)) = f (p)

lims→0 f
′(γ (s)) = f ′(γ (0)) and

lims→0 f
′′(γ (s)) = f ′′(γ (0)),

(3.1)

where we use shorthand notation f ′(γ (s0)) for the first derivative of the function f (γ (s))
with respect to s at s = s0.

Every function ψ in DG satisfies

Definition 3.2 (The Kirchhoff condition)

m(p)∑

i=1

ψ ′(γi(0)) = 0 at every vertex p in V, γi ∈ Yp. (3.2)

Remark 3.3 The Kirchhoff condition is a first order ‘balancing’ condition for the functions
at each vertex of the graph G. As we shall see in the next section, this property is naturally
inherited (by functions which are restrictions toG fromNn) whenG is vertex-minimal inNn.

In the domain DG the Laplacian is related to the form F as follows:

〈	Gf, f 〉L2(G) = ‖f ′‖2
G.

The name ‘Laplacian’ is further motivated by:

Corollary 3.4 Let f ∈ DG. Along the interior of any given edge e = γ ([ 0, L(e) ]) the
Laplacian of f is the usual second order derivative with respect to arclength (independent
of the orientation of the parametrization of the edge) :

	G(f )|γ (s) = d2

ds2 f (γ (s)) = f ′′(γ (s)) for s ∈ ] 0, L(e) [. (3.3)

At any given vertex p in G we have—using the parametrized star space Yp:

	G(f )|p = lim
s→0

⎛

⎝ 2

s2

⎡

⎣ 1

m(p)

m(p)∑

i=1

( f (γi(s))− f (γi(0)) )

⎤

⎦

⎞

⎠ . (3.4)
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Remark 3.5 The square bracket in this definition is (when L(e) = 1 for all the edges and
s = 1) the discrete combinatorial Laplacian which was studied and applied by Dodziuk and
co-workers in [22–24]. This definition may be considered a natural limit of the combinatorial
Laplacian obtained as follows: Subdivide every edge by insertingw = L(e)/s new auxiliary
vertices equidistributed along each edge e, scale the graph by a homothety with factor 1/s,
so that the new graph has all its edge-lengths equal to 1, calculate the usual discrete combina-
torial Laplacian of f , and finally multiply the result by 2/s2. It should come as no surprise,
therefore, that this definition of the Laplacian satisfies the important maximum principle. For
completeness we give the proof below.

Proposition 3.6 (Maximum Principle for 	G) Let ψ ∈ DG denote an admissible function
which is superharmonic on � ⊂ G so that 	Gψ(x) ≤ 0 for all x ∈ �. Then ψ has no
local interior minimum in �: If there is an interior point p ∈ � such that ψ(p) ≤ ψ(x)

for all x in a neighbourhood ω(p) of p in �, then ψ(x) = ψ(p) for all x ∈ ω(p) . In a
similar way subharmonicity rules out the existence of interior maxima.

Proof At any given interior edge point w ∈ e ∈ E this follows from the usual maximum
principle (for the double derivative with respect to arclength along the edge). Suppose then
that p is a vertex, and that ψ(p) ≤ ψ(x) for all x ∈ ω(p) ⊂ Yp. Along every arclength
parametrized edge γi(s) in Yp we therefore have

ψ ′(γi(0)) ≥ 0. (3.5)

From condition (3.2) we conclude, that

ψ ′(γi(0)) = 0. (3.6)

Hence along every edge (via superharmonicity of ψ there) in ω(p)

ψ ′(γi(s)) =
∫ s

0
ψ ′′(γi(t)) dt ≤ 0. (3.7)

This contradicts the assumption ψ(x) ≥ ψ(p) for all x ∈ ω(p) unless ψ(x) = ψ(p)

for all x ∈ ω(p) , which is what we wanted to conclude. �

In the last section of the present paper, which is concerned with the capacities of minimal
webs, we shall also need the following version of the maximum principle, which is proved
along the same lines of reasoning as above.

Proposition 3.7 (Boundary point version) Letψ ∈ DG denote an admissible function which
is subharmonic on a precompact open domain � ⊂ G , so that 	Gψ(x) ≥ 0 for all x ∈ �.
Suppose there exists a point x0 ∈ ∂� at which

ψ ′(γi(0)) = 0 for all γi ⊂ Yx0 ∩�. (3.8)

Then ψ(x) = ψ(x0) for all x ∈ �.

4 Minimal immersions

Proposition 4.1 Let f ∈ DG. For each vertex p there exists a minimal isometric immersion
of the p-centered star space Yp into a Euclidean space R

n (of sufficiently high dimension)
and a smooth functionU : R

n → R such that f is the restriction ofU to Yp , i.e. f = U|Yp .
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Proof This follows from solving the relevant linear system of equations for the cofficients
in the Taylor series expansion of U at the point p. �

Remark 4.2 Proposition 4.1 raises the interesting question of obtaining conditions under
which a given complete metric graphG admits an isometric minimal immersion (or embed-
ding) into some Euclidean space or, say, into a given space form of constant curvature. We
shall not pursue this question further here. If such an immersion exists, then it is probably not
unique in general—it may be quite flexible in the same way as exemplified by the families
of associated pairwise isometric minimal surfaces in R

3. Concerning graphs on surfaces, the
combinatorial (non-metric) embedding problem is thoroughly covered in [52].

Proposition 4.3 SupposeG is a vertex minimal isometric immersion inNn and let φ denote
a smooth function on Nn. Then the restriction f of φ to G is an admissible function on G,

f = φ|G ∈ DG. (4.1)

Proof The function φ is clearly smooth on the (open) edges ofG. At any given vertex p we
have, using again the parametrized star space Yp

φ′(γi(0)) = 〈∇Nf, γ̇i(0) 〉N, (4.2)

so that by vertex-minimality at p

m(p)∑
i=1

φ′(γi(0)) = 〈∇Nf,
∑m(p)
i=1 γ̇i (0) 〉N

= 〈∇Nf, 0 〉N = 0.
(4.3)

Lemma 3.1 then applies and gives the result. �

5 Divergence theorems

A vector field X on G is a (smooth) choice of tangent vector at each point of every edge. A
vector field is thus m(p)-valued at any given vertex p. Along the 1-dimensional interior of
every edge ei in the p-centered star space Yp a given vector field X is integrable and may
thus be considered as the gradient of a smooth function fi on ei in Yp :

X|ei = ∇ei (fi) = f ′
i (γi(s)) · γ̇i (s) for some fi ∈ DG. (5.1)

Note that fi(γi(s)) is defined only modulo arbitrary constants of integration and that the sign
of f ′

i (γi(s)) depends on the parametrization of γi in Yp: f ′
i (γi(s)) = 〈X, γ̇i(s) 〉G . The

inner product 〈 . , . 〉G stems from the geometrization ofG. We will say thatX is admissible
in G if for every vertex p we have

m(p)∑

i=1

f ′
i (γi(0)) = 0, (5.2)

where fi(γi(s)) is any (local integral) function representing X on the star space Yp.
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Conversely, suppose f is an admissible smooth function on G. Then the gradient of f is
the vector field (m(p)-valued at the vertex p)

∇G(f ) = f ′(γ (s)) · γ̇ (s) along every edge e = γ ([0, L(e)]). (5.3)

The gradient vector field is clearly admissible in G because of Eq. 3.2.

Definition 5.1 Let X be a smooth admissible vector field on G as defined above with the
local integrals fi on the edges of Yp. By suitable choice of integration constants we may
assume without lack of generality that the values of fi agree at p, and that f is a single-
valued smooth function on Yp which agrees with fi along the edges emanating from p. Then
we define

div(X) = div(∇Gf ) = 	G(f ). (5.4)

Remark 5.2 This ‘definition-by-local-construction’ only depends on the vector field X and
not on the local representing integrals f nor fi .

With this definition the familiar divergence theorems hold true. Indeed, let us consider a
domain � inG, i.e. � is a precompact, open, connected subset ofG with boundary denoted
by ∂�, and let X denote a smooth admissible vector field on G.

Theorem 5.3 (Divergence theorem)

∫

�

div(X) dV =
∑

∂�

〈X , ν〉G. (5.5)

Here dV denotes the measure on the graph induced from the geometrization ofG. The vectors
ν are the outward (from �) pointing unit tangent vectors of the closed segments of edges in
� at the respective points of intersection with ∂�. If ∂� contains a vertex from G, then ν
and X may be multi-valued at this point in ∂� , in which case the sum has a contribution
from each of the outward pointing unit tangent directions.

Proof The theorem follows from the ‘one-dimensional’ divergence theorem applied to the
union of open edges of G in � together with the following observation: The contribution
to the left hand side of Eq. 5.5 from the inner vertices of G in � vanishes because of the
balancing condition (3.2) at the ‘center’ of every star space. �

The corresponding Green’s theorems may now be stated as follows:

Theorem 5.4 Let h, f ∈ DG denote smooth admissible functions on G . Then

∫

�

(
h	Gf + 〈∇Gh , ∇Gf 〉G

)
dV =

∑

∂�

h · 〈∇Gf , ν〉G and (5.6)

∫
�

(
h	Gf − f 	Gh

)
dV =

∑
∂�

(
h · 〈∇Gf , ν〉G − f · 〈∇Gh , ν〉G

)
.

(5.7)
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6 The first Dirichlet eigenvalue

Much of the well known analysis of functions on domains in manifolds can be extended to
domains of geometrized graphsG as long as we restrict attention to admissible functions. In
particular we can study the eigenfunctions of 	G in DG. The Dirichlet spectrum of 	G is
purely discrete on precompact sub-webs ofG, see e.g. [9,31]. The so-called R-webs, which
are defined in the following Sect. 7, will be our main examples of such sub-webs of G.

For the Laplacian defined in Sect. 3 we consider the smallest eigenvalue λ1(�) in the
Dirichlet spectrum of any given precompact domain � in G, i.e. λ1 is the smallest real
number for which the following problem has a non-zero solution u ∈ D�:

{
	Gu(x)+ λ1 u(x) = 0 at all points x ∈ �

u(x) = 0 at all points x ∈ ∂�. (6.1)

Proposition 6.1 The first eigenfunction is nowhere zero in the interior of the domain and
has multiplicity 1.

Proof This follows almost verbatim from the proof of the corresponding statement for
domains in Riemannian manifolds together with the maximum principle, see e.g. [11]. �

A beautiful observation due to Barta concerning the estimation of first eigenvalues of
precompact domains on manifolds can therefore be extended to precompact domains of
geometrized graphs as follows (cf. also [30,54]).
Theorem A ([2]) Let � denote a given precompact domain in G and let f ∈ D� be any
admisssible function on�, which satisfies f|� > 0 and f|∂� = 0 . Then the first eigenvalue
λ1 of the Dirichlet problem on � is bounded as follows

inf
�

(
	Gf

f

)
≤ −λ1 ≤ sup

�

(
	Gf

f

)
. (6.2)

If [= ] occurs in any one of the two inequalities in (6.2), then f is an eigenfunction for �
corresponding to the eigenvalue λ1.

Proof Let φ be an eigenfunction for � corresponding to λ1. Then we may assume without
lack of generality that φ|� > 0 and φ|∂� = 0. If we let h denote the difference h = φ−f ,
then

−λ1 = 	Gφ

φ
= 	Gf

f
+ f	Gh− h	Gf

f (f + h)

= inf�

(
	Gf

f

)
+ sup�

(
f	Gh− h	Gf

f (f + h)

)

= sup�

(
	Gf

f

)
+ inf�

(
f	Gh− h	Gf

f (f + h)

)
.

(6.3)

Here the supremum, sup�

(
f	Gh− h	Gf

f (f + h)

)
is necessarily positive since

f (f + h)|� > 0 , (6.4)

and since by Green’s second formula (5.7) in Theorem 5.4 we have
∫

�

(
f	Gh− h	Gf

)
dV = 0. (6.5)

123



Geom Dedicata (2008) 133:7–34 19

For the same reason, the infimum, inf�

(
f	Gh− h	Gf

f (f + h)

)
is necessarily negative. This

gives the first part of the theorem. If equality occurs, then
(
f	Gh− h	Gf

)
vanishes iden-

tically on �, so that −λ1(�) = 	Gf

f
, which gives the last part of the statement. �

Along the same lines of reasoning we can establish Rayleigh’s Theorem, the Max-Min
theorem and the Domain Monotonicity (of eigenfunctions) almost verbatim from the classical
analysis, see e.g [10,11].

7 Extrinsic distance analysis on minimal webs

We letG be a complete immersed minimal web in an ambient Riemannian manifold (Nn, h)

with bounded sectional curvatures (i.e. KN ≤ b or KN ≥ b, respectively, for some b). Let
p denote a point in G—not necessarily a vertex point — and let BR(p) denote the geodesic
distance ball of radius R and center p in (Nn, h):

BR(p) = {x ∈ N | distN(p, x) ≤ R}. (7.1)

The distance from p will be denoted by r so that r(x) = distN(p, x) for all x ∈ N . In
particular G inherits the function r|G , which will also be denoted by r .

Since we shall need differentiability of certain distance dependent functions F ◦ r in our
analysis below, we will assume that the balls under consideration are always diffeomorphic
to a standard Euclidean ball via the exponential map in Nn from the center point. This is
guaranteed by bounding the radius as follows:

R <
π

2
√
k

and R < iN(p) , where (7.2)

(1) k = supx∈BR(p){KN(σ) | σ is a two-plane in TxBR(p)},
(2) KN(σ) denotes the sectional curvature in Nn of the 2-plane σ,
(3) π

2
√
k

= ∞ if k ≤ 0, and

(4) iN (p) = the injectivity radius of expp in N .

The intersection of the interior of a regular ball BR(p) with G will be called an extrinsic
minimal R-web of the web G, and will be denoted by

WR(p) = BR(p) ∩G. (7.3)

The geodesic balls BR(p) are strongly convex as follows directly from [58, proof of
Theorem 5.3]. Thus any two points in BR(p) can be joined by a unique minimal geodesic
which is completely contained in the ball BR(p). Therefore, when the boundary ∂BR(p)
meets a (geodesic) edge of WR(p), then the prolongation of this geodesic intersects the
boundary transversally.

Without lack of generality we may and do add vertices to WR(p) at these intersections
with the boundary of the ambient ball BR(p), so that WR becomes the image of a web in
its own right with a well defined vertex set boundary ∂WR(p). We refer to Figs. 6–8 for
examples indicating how to construct a variety of R-webs in the plane.

We then obtain the (2nd order) comparison theory for theF -modified distance functions on
extrinsicR-webs of minimal webs by first specializing the corresponding theory for minimal
submanifolds (as developed in e.g. [35,47,49–51,55]) to the 1-dimensional case of geodesics
and then secondly by generalizing this to minimal webs as follows.

123



20 Geom Dedicata (2008) 133:7–34

Fig. 6 Any finite system of intersecting straight lines in the plane (with a vertex at each intersection point) is
a minimal web in R

2. Portions of regular hexagonal ‘fillings’ also generate minimal webs

Fig. 7 Examples of hexagonal minimal R-webs in R
2

Fig. 8 A foam-like wedge
portion of a hexagonal web in R

2
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Proposition 7.1 Let G ⊂ Nn denote a minimal web in Nn (resp. the image of an isometric
minimal immersion of G into Nn). Let F denote a smooth real function on R, such that the
function F ◦ r is an admissible function on G within an extrinsic web WR of G. Suppose
further that

{
KN ≤ b for some b ∈ R, and that

d
dr
F (r) ≥ 0 for all r ∈ [0, R], (7.4)

and let ZF,b(r) denote the function

ZF,b(r) = F ′′(r)− F ′(r)hb(r), (7.5)

where the function hb(r) denotes the mean curvature of the geodesic sphere ∂Bb,nr of radius
r in the space form K

n(b) of constant curvature b. Specifically

hb(r) =

⎧
⎪⎨

⎪⎩

√
b cot(

√
b r), if b > 0

1/r if b = 0√−b coth(
√−b r) if b < 0.

(7.6)

Along the interior of every arclength parametrized geodesic edge γ (s) of the web WR we
then have for all r = r(γ (s)):

	G(F ◦ r)|γ (s) ≥ ZF,b(r) · 〈 ∇Nr, γ̇ (s) 〉2
N + F ′(r)hb(r). (7.7)

At a given vertex p inWR with emanating edges γi(s) (in the corresponding p-centered star
space Yp) we get for r = r(p):

	G(F ◦ r)|p ≥ ZF,b(r) ·
⎛

⎝ 1

m(p)

m(p)∑

i=1

〈 ∇Nr, γ̇i(0) 〉2
N

⎞

⎠

+F ′(r)hb(r). (7.8)

Proof Along the interior of each geodesic edge inG this follows directly from the result for
minimal submanifolds (in casu geodesics) in Nn on the basis of standard index comparison
theory for Jacobi fields along the distance realizing minimal geodesics from p, see e.g. [47].
The Laplace inequality at vertices is then obtained by averaging the Laplace inequalities (7.7)
over the directions in Yq emanating from q. �

In particular we note the following consequences

Corollary 7.2 If precisely one of the inequalities in the asumptions (7.4) is reversed, then
the inequalities (7.7) and (7.8) are likewise reversed.

Corollary 7.3 If at least one of the inequalities in the assumptions (7.4) is actually an equal-
ity (i.e. N = K

n(b) orF(t) = constant), then the inequalities (7.7) and (7.8) are equalities
as well.

8 Minimal R-webs in space forms

If we consider functions F satisfying ZF,b(r) = 0 for all r ∈ [0, R], and if we further-
more assume that N = K

n(b), then we get the following results for minimal webs in space
forms.
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Proposition 8.1 Let G ⊂ K
n(b) denote a minimal web in K

n(b). In any extrinsic web WR

of G the following identities hold for all r ∈ [0, R]:
	G cos(

√
b r) = −b cos(

√
b r) for b > 0, (8.1)

	G
(

1

2
r2

)
= 1 for b = 0 and (8.2)

	G cosh(
√−b r) = −b cosh(

√−b r) for b < 0. (8.3)

Proof In all 3 cases the function ZF,b(r) vanishes identically, so the statements follow from
Corollary 7.3 and Proposition 7.1. �
8.1 An exact first Dirichlet eigenvalue

With reference to Theorem 6 in Sect. 6 we thus get from Eq. 8.1 the exact first Dirichlet
eigenvalue for minimal webs in any hemisphere:

Corollary 8.2 Let G ⊂ K
n(b) denote a minimal web in the sphere of constant positive sec-

tional curvature b. Then the first Dirichlet eigenvalue of any extrinsic minimal
(

π

2
√
b

)
-web

of G is

λ1(W π

2
√
b
) = b. (8.4)

8.2 An exact mean exit time function

Furthermore, referring to Remark 3.5 we may consider the Brownian motion on a given min-
imal web as a limit process of the random walk on the subdivided and scaled combinatorial
web. The discrete combinatorial Laplacian (the difference operator defined by Dodziuk in
[22]) as well as the smooth Laplacian (on Riemannian manifolds) both give rise to a theory of
diffusion on the corresponding geometric background — via the heat equation and its kernel
solutions, see e.g. [13,25,46,47]. Accordingly we define the mean exit time functionsER for
the Brownian motion (‘driven’ by the operator 	G) on minimal webs G—in casu extrinsic
minimal webs WR in G—as follows:

Definition 8.3 Let WR denote an extrinsic R-web of a minimal web G in an ambient
Riemannian manifoldNn. Then the mean exit time functionER(x) for the Brownian motion
onWR from the point x is the unique continuous solution in DWR to the following boundary
value Poisson problem on WR

{
	GER(x) = −1 at all x ∈ WR , and

ER(x) = 0 at all x ∈ ∂WR.
(8.5)

Using Proposition 8.1, Eq. 8.2, we then obtain the following result:

Theorem 8.4 Let WR(p) denote an extrinsic p-centered web of a minimal web G in R
n.

Then the mean exit time from any given starting point x ∈ WR is

ER(x) = 1

2

(
R2 − r2(x)

)
, (8.6)

where r(x) as usual denotes the Euclidean distance in R
n of x from p .
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Remark 8.5 A somewhat surprising interpretation of this result is the following. Consider a
maze in R

n constructed in such a way that the underlying graph is an extrinsic R-web of a
minimal web. The theorem roughly says that if you get lost in the maze at some place with
Euclidean distance r from p then by performing a Brownian motion in the maze, then (in the
mean) you will get out of the maze as quickly as if you had performed a Brownian motion
on a straight line segment of length 2R starting at distance r from the center of the segment.

9 Minimal webs in nonconstant curvature

In ambient spaces with varying (but bounded) curvature we expect the equalities of the above
space form results to be replaced by suitable inequalities. Since ∇Nr and γ̇i (s) are both unit
vectors, we certainly have the following basic inequality which will be instrumental for our
applications:

〈 ∇Nr, γ̇i(s) 〉2
N ≤ 1. (9.1)

We note that if equality holds in 9.1 for all edges γi in a given web WR(p), then ∇Nr =
γ̇i (s) and therefore the web is a star web of radius R consisting ofm(p) geodesic line graphs
each of length R emanating from p, see Fig. 9.

From these observations together with Proposition 7.1 (Eqs. 7.7, 7.8) we then get the
following comparison inequalities and corresponding rigidity statements:

Proposition 9.1 We consider a minimal webG inNn, and letWR(p) denote an extrinsic min-
imal web ofG. (In the following we letKN ≤ b be the shorthand notation for the assumption
KN(σ) ≤ b for every 2-plane σ inNn. Further we let, for example, F ′(r) ≥ 0 represent that
assumption for all r ∈ [0, R] and similarly forZF,b(r) ≤ 0.) Then the following inequalities
hold true at every point x ∈ WR(p):

⎛

⎝
KN ≤ b

F ′(r) ≥ 0
ZF,b(r) ≤ 0

⎞

⎠ �⇒ 	G(F ◦ r)|x ≥ F ′′(r)|x , (9.2)

⎛

⎝
KN ≤ b

F ′(r) ≤ 0
ZF,b(r) ≥ 0

⎞

⎠ �⇒ 	G(F ◦ r)|x ≤ F ′′(r)|x , (9.3)

Fig. 9 An extrinsic minimal star
web W∗

2 (p) of radius 2 in the
Euclidean plane

p
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⎛

⎝
KN ≥ b

F ′(r) ≥ 0
ZF,b(r) ≥ 0

⎞

⎠ �⇒ 	G(F ◦ r)|x ≤ F ′′(r)|x , (9.4)

⎛

⎝
KN ≥ b

F ′(r) ≤ 0
ZF,b(r) ≤ 0

⎞

⎠ �⇒ 	G(F ◦ r)|x ≥ F ′′(r)|x . (9.5)

If ZF,b(r) �= 0 almost everywhere in [0, R] and if 	G(F ◦ r)|x = F ′′(r)|x almost
everywhere in [0, R], then WR(p) is a star web of radius R from p.

For the applications below we need to study those modified distance functions for which
the right hand sides of the Laplace inequalities in (9.2)–(9.5) are constants. Specifically we
have the following immediate consequences of Proposition 9.1:

Corollary 9.2 Let F denote a function with F ′(r) = c− r for some constant c ∈ R (so that
F ′′(r) = −1). Then we get the following Laplace inequalities for minimal extrinsic webs
WR in N :

⎧
⎪⎨

⎪⎩

If c ≥ R, then 	G(F ◦ r) ≥ −1.

If KN ≤ b ≤ 0 and c ≤ 0, then 	G(F ◦ r) ≤ −1.

If KN ≥ b ≥ 0 and c = 0, then 	G(F ◦ r) ≥ −1.

(9.6)

If (c �= 0 or b �= 0) and if 	G(F ◦ r) = −1 almost everywhere in [0, R], then WR is a star
web of radius R from p.

Proof Since the sign discussion for F ′(r) is quite obvious, we only have to consider the sign
of ZF,b(r) = −1 − (c − r) hb(r). We get for all r ∈ [ 0, R]: If c ≤ 0 and b ≤ 0, then
ZF,b(r) ≥ 0; If c ≥ 0 and b ≥ 0, then ZF,b(r) ≤ 0; If c ≥ R, then ZF,b(r) ≤ 0 for all b.
The Corollary then follows directly from Proposition 9.1. In all cases ZF,b(r) �= 0 unless
b = 0, so that the rigidity conclusion holds true as well. �
Corollary 9.3 Let F denote a function with F ′(r)=c for some constant c∈R (so that F ′′
(r)=0). Then we get the following Laplace inequalities for minimal extrinsic websWR inN :

{
If c ≥ 0, then 	G(F ◦ r) ≥ 0.

If c ≤ 0, then 	G(F ◦ r) ≤ 0.
(9.7)

If c �= 0 and if 	G(F ◦ r) = 0 almost everywhere in ]0, R], then WR is a star web of radius
R from p.

Proof The sign discussions for F ′(r) andZF,b(r) = −c hb(r), respectively, is now obvious.
We get for all r ∈ ] 0, R]: If c ≤ 0, then ZF,b(r) ≥ 0; If c ≥ 0, then ZF,b(r) ≤ 0; The
Corollary again follows from Proposition 9.1. For c �= 0 we get ZF,b(r) �= 0, so that the
rigidity conclusion again holds true. �
9.1 Eigenvalue inequalities

Theorem 9.4 Let G ⊂ Nn denote a minimal web in an ambient Riemannian manifold Nn.
Then the first Dirichlet eigenvalue of any extrinsic minimal R-web WR of G satisfies

λ1(WR) ≥
( π

2R

)2
, (9.8)

and equality is attained if and only if WR is a star web.
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Proof We use Barta’s Theorem 6 (from Sect. 6) on the test function F(r) = cos
(
π

2R r
)
. Let

b denote the supremum

b = sup
x∈BR(p)

{KN(σ) | σ is a two-plane in TxBR(p)}.

In view of Proposition 9.1 Eq. 9.3 we only need to show, that ZF,b(r) > 0 for all r ∈ ] 0, R].
But this is a consequence of the following equivalent inequalities:

ZF,b(r) > 0

−F ′(r) hb(r) > F ′′(r)

hb(r)
(
π

2R

)
sin

(
π

2R r
)
>

(
π

2R

)2 cos
(
π

2R r
)

hb(r) >
(
π

2R

)
cot

(
π

2R r
)

hb(r) > h π2

4R2
(r).

(9.9)

Indeed, the last inequality follows from the fact that the mean curvature function hb(r) is a
strictly decreasing function of b for every fixed r ≤ R together with the general assumption

that R < π

2
√
b

, so that b < π2

4R2 . We conclude that

	GF(r) ≤ F ′′(r) = −
( π

2R

)2
F(r). (9.10)

The result then follows from Barta’s second inequality in (6.2). Since ZF,b(r) > 0, the
equality statement follows from the rigidity conclusion of Proposition 9.1. �

Remark 9.5 In view of the inequality
(
π

2R

)2
> b , we get λ1(WR) > b . This is, of course,

only interesting when b > 0, in which case (9.8) should be compared with Corollary 8.2. It is
also informative to compare theR-web-eigenvalue in (9.8) with the first Dirichlet eigenvalue
of a geodesic ball of radius R in R

m:

λ1(B
0,m
R ) =

(
jk

R

)2

>
( π

2R

)2
, (9.11)

where jk is the smallest positive zero of the Bessel function Jk of order k = 1
2 (m− 2). (Here

j0 � 2.405 and jk ∼ k ∼ 1
2m for m → ∞.)

9.2 Mean exit time inequalities

The mean exit time function F from the extrinsic R-web of a minimal web in R
n satisfies

ZF,0 = 0 and F ′(r) ≤ 0 for all r ∈ [ 0, R ], see Definition 8.3 in combination with the
R-web analysis above. In consequence we have the following inequalities.

Theorem 9.6 Let WR(p) denote an extrinsic minimal R-web of a minimal web G in a Rie-
mannian manifold Nn. The sectional curvatures of the ambient space are denoted by KN .
Then the mean exit time ER(x) from the point x in WR satisfies the inequalities:

{
ER(x) ≥ 1

2

(
R2 − r2(x)

)
if KN(σ) ≥ 0 for all σ,

ER(x) ≤ 1
2

(
R2 − r2(x)

)
if KN(σ) ≤ 0 for all σ.

(9.12)
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If the sectional curvaturesKN(σ) are bounded strictly away from 0 in either of the two cases
in (9.12), then the corresponding mean exit time function ER(x) is also bounded strictly
(with strict inequalities) by the comparison function 1

2

(
R2 − r2(x)

)
, unless the webWR(p)

is a star web of radius R.

In case of a positively curved ambient space we have an upper bound on the mean exit
time. A rough estimate is the following:

Theorem 9.7 (See e.g. [45,51]) Suppose that KN ≤ b for some b > 0, then

ER(x) ≤ µbR(r(x)) for all x ∈ WR, (9.13)

where

µbR(r) = cos(
√
b r)

b cos(
√
b R)

. (9.14)

Proofs of Theorems 9.6 and 9.7 When inserting the comparison functions f (r)= 1
2

(
R2 − r2

(x)
)

and f (r) = µbR(r), respectively, into Proposition 9.1, Eq. 9.3, and using f ′(r) ≤ 0 ,
Zf,b(r) = f ′′(r)− f ′(r)hb(r) = 0 for all r , we get in both cases (for KN ≤ b):

	Pf (r(x)) ≤ f ′′(r)|x ≤ −1 = 	PER(x), (9.15)

so that the difference function ER(x) − f (r(x)) is subharmonic in WR . Furthermore, the
difference is certainly non-positive on the boundary ∂WR . The Maximum Principle then im-
plies that the difference function is non-positive in all of WR , and this proves the two upper
bounds for ER in (9.12) and in (9.13), respectively.

To get the lower bound onER in (9.12) we proceed with the comparison function f (r) =
1
2

(
R2 − r2(x)

)
and apply Proposition 9.1, Eq. 9.5, or Corollary 9.2, from which it follows that

	Pf (r(x)) ≥ f ′′(r)|x = −1 = 	PER(x). (9.16)

The difference function ER(x) − f (r(x)) is now superharmonic in WR . Furthermore, the
difference is precisely 0 on the boundary ∂WR . The Maximum Principle then implies that
the difference function is non-negative in all ofWR , and this proves the lower bound for ER .

If the sectional curvature bounds in (9.12) are given by strict inequalities, then in the neg-
atively curved case we have by compactness of BR(p) thatKN(σ) ≤ b for some negative b.
Using this value of b and still f (r) = 1

2

(
R2 − r2(x)

)
in Proposition 9.1, Eq. 9.3, we now

obtain Zf,b(r) = f ′′(r)− f ′(r)hb(r) > 0 for all r , (because x coth(x) > 1 for all x > 0)
so that (according to the rigidity statement in Proposition 9.1) the identityER(x) = f (r(x))

is only possible if WR(p) is a p-centered star web. If the sectional curvatures are bounded
positively away from 0 the same conclusion follows almost verbatim from the corresponding
elementary inequality x cot(x) < 1 for all x ∈ ] 0 , π2 [. �

10 Isoperimetric inequalities

From the divergence theorem together with the Laplace inequalities of Sect. 9 we obtain use-
ful isoperimetric information for extrinsic minimal websWR ofG inNn such as inequalities
relating the measure of the boundary (the number of incoming edges to ∂WR) to the measure
of the web itself (the total length or mass of the edges inWR). We refer to [49,50,55] for the
corresponding statements for minimal submanifolds in Nn.
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To facilitate the discussion and to ease the notation, we first define the radial transversality
of the boundary ∂WR(p) as ‘seen’ from the center p.

Definition 10.1 For a given extrinsic minimal web WR(p) of a minimal web G in Nn, the
radial transversality of the boundary ∂WR(p) is defined by

T(∂WR) =
∑

∂WR

〈∇Nr, ν〉N =
∑

∂WR

〈∇Gr, ν〉G, (10.1)

where the sum is to be taken over every out-going unit direction ν from WR at the boundary
∂WR—as in the statement of the divergence Theorem 5.3.

Definition 10.2 Two extrinsic minimal webs are concentric if they share the same center
point.

The divergence theorem then gives direct estimates of the total lengths of minimal extrinsic
R-webs in terms of the transversalities as follows.

Proposition 10.3 Let WR(p) and Wρ(p), R > ρ , denote two concentric extrinsic minimal
webs, with radius R and ρ respectively. Then the total lengths L(WR) and L(Wρ) of the
edges in WR and Wρ , respectively, satisfy the following inequalities (without any further
assumptions on the sectional curvatures of the ambient space)

L(WR)− L(Wρ) ≥ (R − ρ) · T(∂Wρ). (10.2)

In particular we get

L(WR) ≥ R ·m(p) ≥ 2R. (10.3)

If equality occurs in (10.2) or in the first inequality of (10.3) then WR is a p-centered star
space of radius R.

Proof We choose c = R in Corollary 9.2 and let F ′(r) = R− r . Then ∇G(F ◦ r) ≥ −1 for
all r ∈ [ 0, R]. Using the divergence theorem we therefore get:

L(WR −Wρ) = ∫
WR−Wρ 1 dV

≥ ∫
WR−Wρ −	G(F ◦ r) dV

= − ∫
WR−Wρ div(∇GF ◦ r) dV

= −F ′(R)
∑
∂WR

〈∇Gr, ν(∂WR) 〉N
+F ′(ρ)

∑
∂Wρ

〈∇Gr, ν(∂Wρ) 〉N
= 0 + (R − ρ) · T(∂Wρ(p)),

(10.4)

where ν(∂Wρ) denotes the outward pointing unit directions from Wρ at ∂Wρ and similarly,
ν(∂WR) denotes the outward pointing unit directions from WR . Since c �= 0 in this setting,
equality in Eq. 10.4 implies rigidity via Corollary 9.2. �

If we do bound the sectional curvatures of the ambient space, then we have the following
dual inequalities:

123



28 Geom Dedicata (2008) 133:7–34

Theorem 10.4 Let WR(p) and Wρ(p), R > ρ , denote two concentric extrinsic minimal
webs, with radius R and ρ respectively, in an ambient space Nn with sectional curvatures
KN . Then we have

{
L(WR)− L(Wρ) ≤ R · T(∂WR)− ρ · T(∂Wρ) if KN ≤ b ≤ 0,

L(WR)− L(Wρ) ≥ R · T(∂WR)− ρ · T(∂Wρ) if KN ≥ b ≥ 0.
(10.5)

In particular we get
{

L(WR) ≤ R · T(∂WR) ≤ R · #(∂WR) if KN ≤ b ≤ 0,

L(WR) ≥ R · T(∂WR) if KN ≥ b ≥ 0,
(10.6)

where #(∂WR) denotes the number of outgoing directions ν (counted with multiplicities)
from WR along the boundary ∂WR—this is the same as the number of edges in WR which
have a point in common with ∂WR . If equality occurs in one of the inequalities in (10.5) and
if b �= 0, then WR is a p-centered star web.

Proof We now use c = 0 and F ′(r) = −r . According to Corollary 9.2 we have (but here
only for b ≤ 0) that ∇G(F ◦ r) ≤ −1 for all r ∈ [ 0, R]. Again the divergence theorem
applies, and this time we get

L(WR −Wρ) = ∫
WR−Wρ 1 dV

≤ ∫
WR−Wρ −	G(F ◦ r) dV

= − ∫
WR−Wρ div(∇GF ◦ r) dV

= −F ′(R)
∑
∂WR

〈∇Gr, ν(∂WR) 〉N
+F ′(ρ)

∑
∂Wρ

〈∇Gr, ν(∂Wρ) 〉N
= R · T(∂WR)− ρ · T(∂Wρ),

(10.7)

which shows the first inequality of (10.5). The other follows similarly. For b �= 0 the rigidity
is likewise again a consequence of Corollary 9.2. �
Corollary 10.5 Let WR(p) denote a p-centered extrinsic minimal R-web in a flat ambient
space N . Then

R · #(∂WR) ≥ L(WR) = R · T(∂WR) ≥ R ·m(p) ≥ 2R. (10.8)

Remark 10.6 The equality #(∂WR) = T(∂WR) does not by itself imply that WR is a star
web. This follows e.g. from an inspection of the web shown in Fig. 10.

11 Capacity and transience

We finally apply the considerations from the previous sections to estimate capacities and
transience of minimal webs.

Definition 11.1 The p-centered annular (ρ, R)-web of a minimal web G in Nn is defined
by Aρ,R(p) = WR(p)−Wρ(p).
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Fig. 10 An extrinsic minimal
2-web W2(p) in the Euclidean
plane with #(∂W2(p))=
T(∂ W2(p)) = 8. The outer
circle is ∂B2(p). The total length
L(W2) of W2(p) is 16—in
accordance with Corollary 10.5
and Remark 10.6

p

The notion of capacity of a minimal annulus Aρ,R of G in Nn is defined as follows.

Definition 11.2 Let � ∈ DAρ,R denote the harmonic function on Aρ,R which satisfies
⎧
⎪⎨

⎪⎩

	G�(x) = 0 for all x ∈ Aρ,R,
�(x) = 0 for all x ∈ ∂Wρ and

�(x) = 1 for all x ∈ ∂WR.

(11.1)

Then

Cap(Aρ,R) = ∑
∂Wρ

〈∇G�, ν(∂Wρ) 〉G
= ∑

∂WR

〈∇G�, ν(∂WR) 〉G. (11.2)

Remark 11.3 The latter equality in (11.2) is, of course, due to the harmonicity of �, and is
obtained via the divergence Theorem 5.3. The harmonicity equation in (11.1) with the given
boundary conditions is precisely the Euler–Lagrange equation for the alternative energy
expression of the capacity as in the case of smooth manifolds, see e.g. [33].

We then have the following

Theorem 11.4 Let Aρ,R(p) denote a p-centered minimal annular web in an ambient man-
ifold Nn. Then

T(∂Wρ) ≤ (R − ρ) · Cap(Aρ,R) ≤ T(∂WR). (11.3)

In particular, if we let ρ go to 0, we get

m(p) ≤ R · Cap(A0,R) ≤ T(∂WR) ≤ #(∂WR). (11.4)

If equality occurs in one of the inequalities in (11.3), thenAρ,R(p) is isometric to a star web
annulus (with #(∂WR) radial edges from ∂Wρ to ∂WR), see Fig.11.

Proof We apply Corollary 9.3 with the function F(r) defined by

F(ρ) = 0, F (R) = 1 , and F ′(r) = (R − ρ)−1 , (11.5)

so that

	GF(r)|x ≥ 0 = 	G�(x), (11.6)
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Fig. 11 The extrinsic minimal
star web annulus A1,2(p)=
W∗

2 (p)−W∗
1 (p) in the

Euclidean plane

p

where �(x) is the solution to Eq. 11.1. The difference F(r(x)) − �(x) is hence a subhar-
monic function on Aρ,R , and since the difference vanishes at the boundary ∂Aρ,R , we get
from the maximum principle, that

F(r(x)) ≤ �(x) for all x ∈ Aρ,R. (11.7)

In particular, along the in-boundary and out-boundary the derivatives must therefore satisfy
the following inequalities

〈 ∇GF(r(x)), ν(∂Wρ) 〉G ≤ 〈∇G�(x), ν(∂Wρ) 〉G,
〈 ∇GF(r(x)), ν(∂WR) 〉G ≥ 〈∇G�(x), ν(∂WR) 〉G. (11.8)

It follows that

Cap(Aρ,R) = ∑
∂Wρ

〈 ∇G�, ν(∂Wρ) 〉G
≥ ∑

∂Wρ

〈 ∇GF(r(x)), ν(∂Wρ) 〉G
= F ′(ρ) · T(∂Wρ)

= (R − ρ)−1 T(∂Wρ),

(11.9)

and similarly

Cap(Aρ,R) ≤ (R − ρ)−1 T(∂WR). (11.10)

If equality occurs in (11.9) or in (11.10), then we have a corresponding equality in Eq. 11.8
as well. The boundary version of the maximum principle, Proposition 3.7, then applies and
gives F(r(x)) = �(x) for all x ∈ Aρ,R . In particular all the edges in Aρ,R(p) must be
directed radially away from p, and this proves the theorem. �
Remark 11.5 Equalities in (11.3) do not imply that all of the R-web WR is star shaped—
consider e.g. the minimal annulus A1,2(p) of the example W2(p) in Fig. 10.

Definition 11.6 (Cf. [33]) A given complete metric graphG is transient if there is a precom-
pact open domain� inG, such that the Brownian motionXt starting from� does not return
to � with probability 1, i.e.:

Px{ω |Xt(ω) ∈ � for some t > 0} < 1, (11.11)

otherwise G is called recurrent.
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In view of Remark 3.5, and since G = (V ,E) = (G, g), considered as a length space
continuum, is roughly isometric to (V , d), considered as a combinatorial metric space with
the metric d induced from the length space metric g, we obtain: Transience of the Random
Walk on V with respect to d is equivalent to transience of the 	G-driven Brownian Motion
on G with respect to g, see e.g. [48].

In the literature there are several conditions for transience of manifolds and combinatorial
graphs. For example, Lyons [42] obtains transience from the existence of a finite energy flow
field on the graph. This, in turn, is applied by Thomassen in [61] to show transience from the
existence of a rooted isoperimetric profile function whose reciprocal is square integrable on
the graph. The corresponding statements for manifolds are established in [43] by Lyons and
Sullivan and in [29] by Fernandez, respectively.

The following is but one other consequence, which expresses transience in terms of capac-
ities. The relation between these two notions is much more general than stated here (see e.g.
[33,43]), but we only need the following for Corollary 11.7 below.

Proposition B A given complete minimal web G in an Hadamard–Cartan manifold is tran-
sient if for some (hence any) fixed ρ we have

lim
R→∞ Cap(Aρ,R) > 0, (11.12)

From Theorem 11.4 we then conclude

Corollary 11.7 Let G denote a complete minimal web in an Hadamard–Cartan manifold.
Let p ∈ G and let WR denote the p-centered R-web of G. Then G is recurrent if

lim
R→∞

(
R

T(∂WR)

)
= ∞. (11.13)

The so-called type problem is concerned with the challenging problem of establishing suf-
ficient (and necessary) global ‘structural’ conditions for a given metric graph to be transient.

Remark 11.8 As already alluded to in Subsect. 2.1, Scherk’s web is transient. This is shown
in [48] via the finite energy flow criterion of [42].

It is to be expected that minimal webs in Hadamard–Cartan manifolds are in fact transient
under conditions which should be quite mild in comparison with the intrinsic isoperimetric
type conditions alluded to above. This expectation is mainly motivated by the fact that mini-
mally immersed submanifolds (of sufficient dimension) in Hadamard–Cartan manifolds are
transient without any further conditions:

Theorem C([51]) Let Pm be a complete minimally immersed submanifold of an Hadam-
ard–Cartan manifold Nn with sectional curvatures bounded from above by b ≤ 0. Then Pm

is transient if either (b < 0 and m ≥ 2) or (b = 0 and m ≥ 3).
However, it is not yet clear how to mold a similar condition like this ‘dimensionality

assumption’, which in a corresponding setting would work for minimally immersed metric
graphs as well.
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