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Abstract

One of the primary goals of computational anatomy is the statistical analysis of anatomical variability in large populations of
images. The study of anatomical shape is inherently related to the construction of transformations of the underlying coordinate
space, which map one anatomy to another. It is now well established that representing the geometry of shapes or images in Euclidian
spaces undermines our ability to represent natural variability in populations. In our previous work we have extended classical
statistical analysis techniques, such as averaging, principal components analysis, and regression, to Riemannian manifolds, which
are more appropriate representations for describing anatomical variability. In this paper we extend the notion of robust estimation,
a well established and powerful tool in traditional statistical analysis of Euclidian data, to manifold-valued representations of
anatomical variability. In particular, we extend the geometric median, a classic robust estimator of centrality for data in Euclidean
spaces. We formulate the geometric median of data on a Riemannian manifold as the minimizer of the sum of geodesic distances
to the data points. We prove existence and uniqueness of the geometric median on manifolds with non-positive sectional curvature
and give sufficient conditions for uniqueness on positively curved manifolds. Generalizing the Weiszfeld procedure for finding the
geometric median of Euclidean data, we present an algorithm for computing the geometric median on an arbitrary manifold. We
show that this algorithm converges to the unique solution when it exists. In this paper we exemplify the robustness of the estimation
technique by applying the procedure to various manifolds commonly used in the analysis of medical images. Using this approach,
we also present a robust brain atlas estimation technique based on the geometric median in the space of deformable images.
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1. Introduction

Within computational anatomy, geometric transfor-
mations play a central role in quantifying and studying
anatomical variations in populations of brain images. The
transformations being utilized for the study of anatom-
ical shapes range from low-dimensional rigid and affine
transforms to the infinite-dimensional space of diffeomor-
phic transformations. These transformations, regardless of
their dimensionality, inherently have an associated group
structure and capture anatomical variability by defining a
group action on the underlying coordinate space on which
medical images are defined.

Recently, there has been substantial interest in the sta-
tistical characterization of data that are best modeled as
elements of a Riemannian manifold, rather than as points
in Euclidean space (Fletcher et al., 2003; Klassen et al.,

∗ Corresponding author.
Email address: fletcher@sci.utah.edu (P. Thomas Fletcher).

2004; Pennec, 2006; Srivastava et al., 2005). In previous
work (Buss and Fillmore, 2001; Fletcher et al., 2003; Pen-
nec, 2006), the notion of centrality of empirical data was de-
fined via the Fréchet mean (Fréchet, 1948), which was first
developed for manifold-valued data by Karcher (Karcher,
1977). In (Joshi et al., 2004) the theory of Fréchet mean
estimation was applied to develop a statistical framework
for constructing brain atlases. Although the mean is an ob-
vious central representative, one of its major drawbacks is
its lack of robustness, i.e., it is sensitive to outliers.

Robust statistical estimation in Euclidean spaces is now
a field in its own right, and numerous robust estimators ex-
ist. However, no such robust estimators have been proposed
for data lying on a manifold. One of the most common ro-
bust estimators of centrality in Euclidean spaces is the ge-
ometric median. Although the properties of this point have
been extensively studied since the time of Fermat, (this
point is often called the Fermat-Weber point), no gener-
alization of this estimator exists for manifold-valued data.
In this paper we extend the notion of geometric median
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to general Riemannian manifolds, thus providing a robust
statistical estimator of centrality for manifold-valued data.
We prove some basic properties of the generalization and
exemplify its robustness for data on common manifolds en-
countered in medical image analysis. In this paper we are
particularly interested in the statistical characterization of
shapes given an ensemble of empirical measurements. Al-
though the methods presented herein are quite general, for
concreteness we will focus on the following explicit exam-
ples: i) the space of 3D rotations, ii) the space of positive-
definite tensors, iii) the space of planar shapes and iv) the
space of deformable images for brain atlas construction.

2. Background

2.1. Deformable Images via Metamorphosis

Metamorphosis (Trouvé and Younes, 2005) is a Rieman-
nian metric on the space of images that accounts for geo-
metric deformation as well as intensity changes. We briefly
review the construction of metamorphosis here and refer
the reader to (Trouvé and Younes, 2005) for a more de-
tailed description.

We will consider square integrable images defined on an
open subset Ω ⊂ Rd, i.e., images are elements of L2(Ω, R).
Geometric variation in the population is modeled in this
framework by defining a transformation group action on
images following Miller and Younes (2001). To accommo-
date the large and complex geometric transformations evi-
dent in anatomical images, we use the infinite-dimensional
group of diffeomorphisms, Diff (Ω). A diffeomorphism g :
Ω → Ω is a bijective, C1 mapping that also has a C1 in-
verse. The action of g on an image I : Ω → R is given by
g · I = I ◦ g−1.

Metamorphosis combines intensity changes in the space
L2(Ω, R) with geometric changes in the space Diff (Ω). A
metamorphosis is a pair of curves (µt, gt) in L2(Ω, R) and
Diff (Ω), respectively 1 . The diffeomorphism group action
produces a mapping of these curves onto a curve in the
image space: It = gt · µt. Now the energy of the curve It in
the image space is defined via a metric on the deformation
part, gt, combined with a metric on the intensity change
part, µt. This gives a Riemannian manifold structure to the
space of images, which we denote by M .

To define a metric on the space of diffeomorphisms, we
use the now well established flow formulation. Let v : [0, 1]×
Ω → Rd be a time-varying vector field. We can define a
time-varying diffeomorphism gt as the solution to the ordi-
nary differential equation

dgt

dt
= vt ◦ gt. (1)

The metric on diffeomorphisms is based on choosing a
Hilbert space V , which gives an inner product to the space

1 We will use subscripts to denote time-varying mappings, e.g.,
µt(x) = µ(t, x).

of differentiable vector fields. We use the norm

‖v‖2
V =

∫
Ω

〈Lv(x), v(x)〉Rd dx, (2)

where L is a symmetric differential operator, for instance,
L = (αI −∆)k, for some α ∈ R and integer k. We use the
standard L2 norm as a metric on the intensity change part.

Denote the diffeomorphism group action by g(µ) = g ·µ.
Also, for a fixed µ the group action induces a mapping Rµ :
g 7→ g ·µ. The derivative of this mapping at the identity ele-
ment e ∈ Diff (Ω) then maps a vector field v ∈ TeDiff (Ω) to
a tangent vector deRµ(v) ∈ TµM . We denote this tangent
mapping by v(µ) = deRµ(v). If we assume images are also
C1, this mapping can be computed as v(µ) = −〈∇µ, v〉.
Given a metamorphosis (gt, µt), the tangent vector of the
corresponding curve It = gt · µt ∈ M is given by

dIt

dt
= dµt

g
(

dµt

dt

)
+ v(µt). (3)

Now, a tangent vector η ∈ TIM can be decomposed into
a pair (v, δ) ∈ TeDiff (Ω)×L2(Ω, R), such that η = v(I)+δ.
This decomposition is not unique, but it induces a unique
norm if we minimize over all possible decompositions:

‖η‖2
I = inf

{
‖v‖2

V +
1
σ2
‖δ‖2

L2 : η = v(I) + δ

}
(4)

Using this metric, the distance between two images I, I ′ can
now be found by computing a geodesic on M that minimizes
the energy

U(vt, It) =
∫ 1

0

‖vt‖2
V dt +

1
σ2

∫ 1

0

∥∥∥∥dIt

dt
+ 〈∇It, vt〉

∥∥∥∥2

L2

dt,

(5)
with boundary conditions I0 = I and I1 = I ′. An exam-
ple of a metamorphosis geodesic between two 3D MR brain
images is shown in Figure 1. It was computed using a gra-
dient descent on (5), which is described in further detail in
Section 6.4.

2.2. Outliers, Robust Estimators And The Geometric
Median

Outliers in data can throw off estimates of centrality
based on the mean. One possible solution to this problem
is outlier deletion, but removing outliers often merely pro-
motes other data points to outlier status, forcing a large
number of deletions before a reliable low-variance estimate
can be found. The theory of robust estimators formalizes
the idea that no individual point should affect measures of
central tendency. The measure of robustness of an estima-
tor is the breakdown point ; formally, it is the fraction of the
data that can be “dragged to infinity” (i.e., completely cor-
rupted) without affecting the boundedness of the estima-
tor. Clearly, the mean, whether it be a standard centroid
or the more general Fréchet mean, has a breakdown point
of 0, since as any single data point is dragged to infinity,
the mean will grow without bound.
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Fig. 1. Metamorphosis geodesic between two 3D brain images. Mid-axial (top row) and mid-coronal (bottom row) slices are shown.

The theory of robust estimation has led to the devel-
opment of numerous robust estimators, of which the L1-
estimator, also known as the geometric median, is one of
the best known. Given a set of points {xi, i = 1, · · · , n} ∈
Rd, with the usual Euclidean norm ‖x‖, the L1-estimator
is defined as the point m ∈ Rd minimizing

∑n
i=1 ‖m− xi‖.

It can be shown (Lopuhaä and Rousseeuw, 1991) that this
estimator has a breakdown point of 0.5, which means that
half of the data needs to be corrupted in order to corrupt
this estimator. In Figure 2 we illustrate this by showing
how the geometric median and the mean are displaced in
the presence of a few outliers.

Fig. 2. The geometric median (marked with a 2) and mean (marked
with a ×) for a collection of points in the plane. Notice how the few
outliers at the top right of the picture have forced the mean away
from the points, whereas the median remains centrally located.

The existence and uniqueness of the the median in Rd

follows directly from the convexity of the distance function.
In one dimension, the geometric median is the point that
divides the point set into equal halves on either side (if n is
odd) and is any point on the line segment connecting the
two middle points (if n is even). In general however, com-

puting the geometric median is difficult; Bajaj has shown
that the solution cannot be expressed using radicals (arith-
metic operations, and kth roots) (Bajaj, 1988).

There are two main approaches to computing the geo-
metric median of a collection of points in Rd. One way is to
compute an approximate median m̃ such that

∑n
i=1 ‖m̃ −

xi‖ is at most a (1 + ε)-factor larger than cost of the op-
timal median. This can be computed using the ellipsoid
method (Chandrasekaran and Tamir, 1990). A more effi-
cient algorithm achieving the same result is due to Bose
et al. (2003).

These algorithms do not generalize beyond Euclidean
spaces. A more general iterative algorithm due to Weiszfeld
(1937) and later improved by Kuhn and Kuenne (1962)
and Ostresh (1978) converges to the optimal solution in
Euclidean spaces (Kuhn, 1973), and was subsequently gen-
eralized to Banach spaces by Eckhardt (1980).

Several other robust estimators of centrality have been
proposed in the statistics literature (Maronna et al., 2006).
Winsorized means, where a percentage of extreme values
are clamped, and trimmed means, where extreme values are
removed, have been used for univariate data. The drawback
of these methods is that they require a somewhat arbitrary
selection of a threshold. M-estimators (Huber, 1981) are
a generalization of maximum likelihood methods in which
some function of the data is minimized. The geometric me-
dian is a special case of an M-estimator with an L1 cost
function.

3. The Riemannian Geometric Median

Let M be a Riemannian manifold. Given points
x1, . . . , xn ∈ M and corresponding positive real weights
wi, . . . , wn, with

∑
i wi = 1, define the weighted sum-of-

distances function f(x) =
∑

i wid(x, xi), where d is the
Riemannian distance function on M . Throughout, we will
assume that the xi lie in a convex set U ⊂ M , i.e., any two
points in U are connected by a unique shortest geodesic ly-
ing entirely in U . We define the weighted geometric median,
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m, as the minimizer of f , i.e.,

m = arg min
x∈M

n∑
i=1

wi d(x, xi). (6)

When all the weights are equal, wi = 1/n, we call m simply
the geometric median.

In contrast, the Fréchet mean, or Karcher mean (Karcher,
1977), of a set of points on a Riemannian manifold is de-
fined, via the generalization of the least squares principle in
Euclidean spaces, as the minimizer of the sum-of-squared
distances function,

µ = arg min
x∈M

n∑
i=1

wi d(x, xi)2. (7)

We begin our exploration of the geometric median with
a discussion of the Riemannian distance function. Given a
point p ∈ M and a tangent vector v ∈ TpM , where TpM
is the tangent space of M at p, there is a unique geodesic,
γ : [0, 1] → M , starting at p with initial velocity v. The Rie-
mannian exponential map, Expp : TpM → M , maps the
vector v to the endpoint of this geodesic, i.e., Expp(v) =
γ(1). The exponential map is locally diffeomorphic onto
a neighborhood of p. Let V (p) be the largest such neigh-
borhood. Then within V (p) the exponential map has an
inverse, the Riemannian log map, Logp : V (p) → TpM .
For any point q ∈ V (p) the Riemannian distance func-
tion is given by d(p, q) = ‖Logp(q)‖. For a fixed point
p ∈ M , the gradient of the Riemannian distance function
is ∇xd(p, x) = −Logx(p)/‖Logx(p)‖ for x ∈ V (p). Notice
that this is a unit vector at x, pointing away from p (com-
pare to the Euclidean distance function).

The diameter of U , denoted diam(U), is the maximal
distance between any two points in U . Using the convexity
properties of the Riemannian distance function (see the
Appendix for more details), we have the following exis-
tence and uniqueness result for the geometric median.

Theorem 1. The weighted geometric median defined by
(6) exists and is unique if (a) the sectional curvatures of M
are nonpositive, or if (b) the sectional curvatures of M are
bounded above by ∆ > 0 and diam(U) < π/(2

√
∆).

Proof. Let γ : [a, b] → U be a geodesic. By the arguments
in the Appendix, the distance function to any xi is convex,
that is, (d2/dt2)d(xi, γ(t)) ≥ 0. Since the weighted sum-
of-distances function f(x) is a convex combination of such
functions, it is also convex. Furthermore, since the xi do
not all lie on the same geodesic, the vector Logγ(t)(xk) is
not tangential to γ(t) for at least one k ∈ [1, n]. Therefore,
by Lemma 1 we have (d2/dt2)d(xk, γ(t)) > 0, and f(x) is a
strictly convex function, which implies that the minimiza-
tion (6) has a unique solution.

An isometry of a manifold M is a diffeomorphism φ
that preserves the Riemannian distance function, that is,
d(x, y) = d(φ(x), φ(y)) for all x, y ∈ M . The set of all
isometries forms a Lie group, called the isometry group.

It is clear from the definition of the geometric median (6)
that the geometric median is invariant under the isometry
group of M . In other words, if m is the geometric median
of {xi} and φ is an isometry, then φ(m) is the geometric
median of {φ(xi)}. This is a property that the geometric
median shares with the Fréchet mean.

4. The Breakdown Point of the Geometric Median

A standard measure of robustness for a centrality esti-
mator in Euclidean space is the breakdown point, which is
the minimal proportion of data that can be corrupted, i.e.,
made arbitrarily distant, before the statistic becomes un-
bounded. Let X = {x1, . . . , xn} be a set of points on M .
Define the breakdown point of the geometric median as

ε∗(m,X) = min
1≤k≤n

{
k

n
: sup

Yk

d(m(X),m(Yk)) = ∞
}

,

where the supremum is taken over all sets Yk that corrupt
k points of X, that is, Yk contains n−k points from the set
X and k arbitrary points from M . Lopuhaä and Rousseeuw
(1991) show that for the case M = Rd the breakdown point
is ε∗(m,X) = b(n+1)/2c/n. Notice that if M has bounded
distance, then ε∗(m,X) = 1. This is the case for compact
manifolds such as spheres and rotation groups. Therefore,
the breakdown point is only interesting in the case of man-
ifolds with unbounded distance. The next theorem shows
that the geometric median on unbounded manifolds has
the same breakdown point as in the Euclidean case.

Theorem 2. Let U be a convex subset of M with
diam(U) = ∞, and let X = {x1, . . . , xn} be a collection
of points in U . Then the geometric median has breakdown
point ε∗(m,X) = b(n + 1)/2c/n.

Proof. The first part of the proof is a direct generalization
of the argument for the Euclidean case given by (Lopuhaä
and Rousseeuw, 1991) (Theorem 2.2). Let Yk be a corrupted
set of points that replaces k points from X, with k ≤ b(n−
1)/2c. We show that for all such Yk, d(m(X),m(Yk)) is
bounded by a constant. Let R = maxi d(m(X), xi), and
consider B = {p ∈ M : d(p, m(X)) ≤ 2R}, the ball of
radius 2M about m(X). Let δ = infp∈B d(p, m(Yk)). By the
triangle inequality we have d(m(X),m(Yk)) ≤ 2R + δ, and

d(yi,m(Yk)) ≥ d(m(X), yi)− d(m(X),m(Yk))
≥ d(m(X), yi)− (2R + δ).

Now assume that δ > b(n− 1)/2c2R. Then for the original
points xi we have

d(xi,m(Yk)) ≥ R + δ

≥ d(m(X), xi) + δ.

Combining the two inequalities above with the fact that
n−b(n−1)/2c of the yi are from the original set X, we get

4



n∑
i=1

d(m(Yk), yi) ≥
n∑

i=1

d(m(X), yi)− b(n− 1)/2c(2R + δ)

+ (n− b(n− 1)/2c)δ

≥
n∑

i=1

d(m(X), yi)− b(n− 1)/2c2R + δ

>

n∑
i=1

d(m(X), yi).

However, this is a contradiction since m(Yk) mini-
mizes the sum of distances,

∑
i d(m(Yk), yi). Therefore,

d(m(Yk),m(X)) ≤ 2R + δ ≤ b(n + 1)/2c2R. This implies
that ε∗(m,X) ≥ b(n + 1)/2c/n.

The other inequality is proven with the following con-
struction. Consider the case where k ≥ b(n + 1)/2c and
each of the k corrupted points of Yk are equal to some point
p ∈ M . It is easy to show that m(Yk) = p. Since we can
choose the point p arbitrarily far away from m(X), it fol-
lows that ε∗(m,X) ≤ b(n + 1)/2c/n.

5. The Weiszfeld Algorithm for Manifolds

For Euclidean data the geometric median can be com-
puted by an algorithm introduced by Weiszfeld (1937) and
later improved by Kuhn and Kuenne (1962) and Ostresh
(1978). The procedure iteratively updates the estimate mk

of the geometric median using essentially a steepest descent
on the weighted sum-of-distances function, f . For a point
x ∈ Rn not equal to any xi, the gradient of f exists and is
given by

∇f(x) =
n∑

i=1

wi(x− xi)/‖x− xi‖. (8)

The gradient of f(x) is not defined at the data points x =
xi. The iteration for computing the geometric median due
to Ostresh is

mk+1 = mk − αGk,

Gk =
∑
i∈Ik

wixi

‖xi −mk‖
·
(∑

i∈Ik

wi

‖xi −mk‖

)−1

, (9)

where Ik = {i ∈ [1, n] : mk 6= xi}, and α > 0 is a step size.
Notice if the current estimate mk is located at a data point
xi, then this term is left out of the summation because the
distance function is singular at that point. Ostresh (1978)
proves that the iteration in (9) converges to the unique
geometric median for 0 ≤ α ≤ 2 and when the points are
not all colinear. This follows from the fact that f is strictly
convex and (9) is a contraction, that is, f(mk+1) < f(mk)
if mk is not a fixed point.

Now for a general Riemannian manifold M , the gradient
of the Riemannian sum-of-distances function is given by

∇f(x) = −
n∑

i=1

wi Logx(xi)/d(x, xi), (10)

where again we require that x ∈ U is not one of the data
points xi. This leads to a natural steepest descent iteration
to find the Riemannian geometric median, analogous to (9),

mk+1 = Expmk
(αvk),

vk =
∑
i∈Ik

wi Logmk
(xi)

d(mk, xi)
·

(∑
i∈Ik

wi

d(mk, xi)

)−1

. (11)

The following result for positively curved manifolds
shows that this procedure converges to the unique weighted
geometric median when it exists.

Theorem 3. If the sectional curvatures of M are nonnega-
tive and the conditions (b) of Theorem 1 are satisfied, then
limk→∞mk = m for 0 ≤ α ≤ 2.

Proof. We use the fact that the Euclidean Weiszfeld iter-
ation, given by (9), is a contraction. First, define f̃(v) =∑

i wi‖v − Logmk
(xi)‖, i.e., f̃ is the weighted sum-of-

distances function for the log-mapped data, using distances
in Tmk

M induced by the Riemannian norm. Notice that the
tangent vector vk defined in (11) is exactly the same com-
putation as the Euclidean Weiszfeld iteration (9), replacing
each xi with the tangent vector Logmk

(xi). Therefore, we
have the contraction property f̃(αvk) < f̃(0). However,
geodesics on positively curved manifolds converge, which
means that distances between two points on the manifold
are closer than their images under the log map. (This is
a direct consequence of the Toponogov Comparison The-
orem, see (Cheeger and Ebin, 1975)). In other words,
d(Expmk

(αvk), xi) < ‖αvk−Logmk
(xi)‖. This implies that

f(mk+1) = f(Expmk
(αvk)) < f̃(αvk) < f̃(0) = f(mk).

(The last equality follows from ‖Logmk
(xi)‖ = d(mk, xi).)

Therefore, (11) is a contraction, which combined with
f being strictly convex, proves that it converges to the
unique solution m.

We believe that a similar convergence result will hold for
negatively curved manifolds as well (with an appropriately
chosen step size α). Since the algorithm is essentially a
gradient descent on a convex function, there should be an α
for which it converges, although in this case α may depend
on the spread of the data. Our experiments presented in
the next section for tensor data (Section 6.2) support our
belief of convergence in this case. The tensor manifold has
nonpositive curvature, and we found the procedure in (11)
converged for α = 1. Proving convergence in this case is an
area of future work.

6. Applications

In this section we present results of the Riemannian ge-
ometric median computation on 3D rotations, symmetric
positive-definite tensors, planar shapes and, finally, the ro-
bust estimation of neuroanatomical atlases from brain im-
ages. For each example the geometric median is computed
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Fig. 3. Eight rotations from the original dataset (top). Eight rotations
from the outlier set (bottom).

0 outliers 5 outliers 10 outliers 15 outliers

Fig. 4. Comparison of the geometric median and Fréchet mean for
3D rotations. The geometric median results with 0, 5, 10, and 15
outliers (top). The Fréchet mean results for the same data (bottom).

using the iteration presented in Section 5, which only re-
quires computation of the Riemannian exponential and log
maps. Therefore, the procedure is applicable to a wide
class of manifolds beyond those presented here. The Fréchet
mean is also computed for comparison using a gradient de-
scent algorithm as described in (Fletcher et al., 2003) and
elsewhere. It is important to note that unlike the Euclidean
case where the mean can be computed in closed-form, both
the Fréchet mean and geometric median computations for
general manifolds are iterative, and we did not find any ap-
preciable difference in the computation times in the exam-
ples described below.

6.1. Rotations

We represent 3D rotations as the unit quaternions, H1.
A quaternion is denoted as q = (a, v), where a is the “real”
component and v = bi + cj + dk. Geodesics in the rota-
tion group are given simply by constant speed rotations

Fig. 5. Five tensors from the original dataset (top). Five tensors from
the outlier set (bottom).

about a fixed axis. Let e = (1, 0) be the identity quater-
nion. The tangent space TeH1 is the vector space of quater-
nions of the form (0, v). The tangent space at an arbitrary
point q ∈ H1 is given by right multiplication of TeH1 by
q. The Riemannian exponential map is Expq((0, v) · q) =
(cos(θ/2), v · sin(θ/2)/θ) · q, where θ = ‖v‖. The log map
is given by Logq((a, v) · q) = (0, θv/‖v‖) · q, where θ =
2 arccos(a).

To demonstrate the geometric median computations
for 3D rotations, we generated a random collection of 20
quaternions. First, random tangent vectors were sampled
from an isotropic Gaussian distribution with µ = 0, σ =
π/30 in the tangent space at the identity. Next, the expo-
nential map was applied to these random tangent vectors
to produce random elements of H1, centered about the
identity. The same procedure was repeated to generate sets
of 5, 10, and 15 random outliers, whose mean now was ro-
tated by 90 degrees from the original set. A sample of 8 of
the original random rotations are displayed as 3D frames
in the top row of Figure 3 along with 8 of the outliers in
the bottom row.

We computed both the Fréchet mean and the geometric
median of the original rotation dataset with 0, 5, 10, and 15
outliers included. This corresponds to an outlier percent-
age of 0%, 20%, 33%, and 43%, respectively. The geomet-
ric median was computed using the iteration in (11). The
Fréchet mean was computed using the gradient descent al-
gorithm described in (Buss and Fillmore, 2001). Both al-
gorithms converged in under 10 iterations in a fraction of
a second for all cases. The results are shown in Figure 4.
The geometric median remains relatively stable even up to
an addition of 15 outliers. In contrast, the Fréchet mean is
dragged noticeably towards the outlier set.

6.2. Tensors

Positive definite symmetric matrices, or tensors, have a
wide variety of uses in computer vision and image analysis,
including texture analysis, optical flow, image segmenta-
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0 outliers 5 outliers 10 outliers 15 outliers

Fig. 6. Comparison of the geometric median and Fréchet mean for 3D
tensors. The geometric median results with 0, 5, 10, and 15 outliers
(top). The Fréchet mean results for the same data (bottom).

tion, and neuroimage analysis. The space of positive defi-
nite symmetric tensors has a natural structure as a Rieman-
nian manifold. Manifold techniques have successfully been
used in a variety of applications involving tensors, which
we briefly review now.

Diffusion tensor magnetic resonance imaging (DT-MRI)
(Basser et al., 1994) gives clinicians the power to image in
vivo the structure of white matter fibers in the brain. A
3D diffusion tensor models the covariance of the Brownian
motion of water at a voxel, and as such is required to be
a 3 × 3, symmetric, positive-definite matrix. Recent work
(Batchelor et al., 2005; Fletcher and Joshi, 2004; Pennec
et al., 2006; Wang and Vemuri, 2005) has focused on Rie-
mannian methods for statistical analysis (Fréchet means
and variability) and image processing of diffusion tensor
data. The structure tensor (Bigun et al., 1991) is a measure
of edge strength and orientation in images and has found
use in texture analysis and optical flow. Recently, Rathi
et al. (2007) have used the Riemannian structure of the ten-
sor space for segmenting images. Finally, the Riemannian
structure of tensor space has also found use in the analysis
of structural differences in the brain, via tensor based mor-
phometry (Lepore et al., 2006). Barmpoutis et al. (2007)
describes a robust interpolation of DTI in the Riemannian
framework by using a Gaussian weighting function to down-
weight the influence of outliers. Unlike the geometric me-
dian, this method has the drawback of being dependent on
the selection of the bandwidth for the weighting function.

We briefly review the differential geometry of tensor man-
ifolds, which is covered in more detail in (Batchelor et al.,
2005; Fletcher and Joshi, 2004; Pennec et al., 2006). Recall
that a real n × n matrix A is symmetric if A = AT and
positive-definite if xT Ax > 0 for all nonzero x ∈ Rn. We
denote the space of all n × n symmetric, positive-definite
matrices as PD(n). Diffusion tensors are thus elements of
PD(3), and structure tensors for 2D images are elements
of PD(2). The tangent space of PD(n) at any point can

be identified with the space of n × n symmetric matrices,
Sym(n). Given a point p ∈ PD(n) and a tangent vector X,
the Riemannian exponential map is given by

Expp(X) = p
1
2 exp(Σ)p

1
2 T , Σ = p−

1
2 Xp−

1
2 T , (12)

where exp(Σ) is the matrix exponential and can be com-
puted by exponentiating the eigenvalues of Σ, since it is
symmetric. Likewise, the Riemannian log map between two
points p, q ∈ PD(n) is given by

Logp(q) = p
1
2 log(Λ)p

1
2 T , Λ = p−

1
2 qp−

1
2 T , (13)

where log(Λ) is the matrix logarithm, computed by taking
the log of the eigenvalues of Λ, which is well defined in the
case of positive definite symmetric matrices.

As in the rotations example, we generated 20 random
tensors as the image under the exponential map of Gaus-
sian random tangent vectors. The mean was a tensor with
eigenvalues λ1 = 4 and λ2 = λ3 = 1. Next, sets of 5, 10,
and 15 outliers were randomly generated in the same fash-
ion with a mean tensor perpendicular to the original group.
The standard deviation of both groups was σ = 0.2. A
sample of 5 of the original tensor data and 5 of the out-
lier tensors are shown in Figure 5. The Fréchet mean and
geometric median were computed for the tensor dataset in-
cluding 0, 5, 10, and 15 outliers, and the results are shown
in Figure 6. Again, convergence of the geometric median
took less than 10 iterations in a fraction of a second. The
tensors in Figures 5 & 6 are colored based on the orien-
tation of the major eigenvector (green = original orien-
tation, blue = outlier orientation) and with color modu-
lated by the fractional anisotropy (Basser et al., 1994), i.e.,
more anisotropic tensors are more brightly colored. The ge-
ometric median retains the directionality and anisotropy
of the original data, unlike the mean, which becomes more
isotropic in the presence of outliers. This situation is com-
mon in DT-MRI, where adjacent white matter tracts may
pass perpendicular to each other. In such cases, the geo-
metric median would be a more appropriate local statistic
than the mean to avoid contamination from tensors of a
neighboring tract.

6.3. Planar Shapes

One area of medical image analysis and computer vision
that finds the most widespread use of Riemannian geom-
etry is the analysis of shape. Dating back to the ground-
breaking work of Kendall (1984) and Bookstein (1986),
modern shape analysis is concerned with the geometry of
objects that is invariant to rotation, translation, and scale.
This typically results in representing an object’s shape as a
point in a nonlinear Riemannian manifold, or shape space.
Recently, there has been a great amount of interest in Rie-
mannian shape analysis, and several shape spaces for 2D
and 3D objects have been proposed (Fletcher et al., 2003;
Grenander and Keenan, 1991; Klassen et al., 2004; Michor
and Mumford, 2006; Sharon and Mumford, 2004; Younes,
1998).
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Fig. 7. The original dataset of 18 hand shapes.

Fig. 8. The 12 outlier shapes.

An elementary tool in shape analysis is the computation
of a mean shape, which is useful as a template, or repre-
sentative of a population. The mean shape is important
in image segmentation using deformable models (Cootes
et al., 1995), shape clustering, and retrieval from shape
databases (Srivastava et al., 2005). The mean shape is, how-
ever, susceptible to influence from outliers, which can be
a concern for databases of shapes extracted from images.
We now present an example showing the robustness of the
geometric median on shape manifolds. We chose to use the
Kendall shape space as an example, but the geometric me-
dian computation is applicable to other shape spaces as
well.

We first provide some preliminary details of Kendall’s
shape space (Kendall, 1984). A configuration of k points
in the 2D plane is considered as a complex k-vector, z ∈
Ck. Removing translation, by requiring the centroid to be
zero, projects this point to the linear complex subspace
V = {z ∈ Ck :

∑
zi = 0}, which is equivalent to the space

Ck−1. Next, points in this subspace are deemed equivalent
if they are a rotation and scaling of each other, which can be
represented as multiplication by a complex number, ρeiθ,
where ρ is the scaling factor and θ is the rotation angle. The
set of such equivalence classes forms the complex projective
space, CP k−2. As Kendall points out, there is no unique
way to identify a shape with a specific point in complex
projective space. However, if we consider that the geometric
median only require computation of exponential and log
maps, we can compute these mappings relative to the base
point, which requires no explicit identification of a shape

0 outliers 2 outliers 6 outliers 12 outliers

Fig. 9. The gometric median shape (top row) from the hand database
with 0, 2, 6, and 12 outliers included. The Fréchet mean shape
(bottom row) using the same data.

with CP k−2.
Thus, we think of a centered shape x ∈ V as representing

the complex line Lx = {z ·x : z ∈ C\{0} }, i.e., Lx consists
of all point configurations with the same shape as x. A
tangent vector at Lx ∈ V is a complex vector, v ∈ V , such
that 〈x, v〉 = 0. The exponential map is given by rotating
(within V ) the complex line Lx by the initial velocity v,
that is,

Expx(v) = cos θ · x +
‖x‖ sin θ

θ
· v, θ = ‖v‖. (14)

Likewise, the log map between two shapes x, y ∈ V is given
by finding the initial velocity of the rotation between the
two complex lines Lx and Ly. Let πx(y) = x · 〈x, y〉/‖x‖2

denote the projection of the vector y onto x. Then the log
map is given by

Logx(y) =
θ · (y − πx(y))
‖y − πx(y)‖

, θ = arccos
|〈x, y〉|
‖x‖‖y‖

. (15)

Notice that we never explicitly project a shape onto CP k−2.
This has the effect that shapes computed via the exponen-
tial map (14) will have the same orientation and scale as
the base point x. Also, tangent vectors computed via the
log map (15) are valid only at the particular representation
x (and not at a rotated or scaled version of x). This works
nicely for our purposes and implies that the geometric me-
dian shape resulting from (11) will have the same orienta-
tion and scale as the intialization shape, m0.

To test the robustness of the geometric median in Kendall
shape space, we used the classic hand outlines from (Cootes
et al., 1995). This data, shown in Figure 7, consists of 18
hand shapes, each with 72 points. We then generated a
set of 12 ellipses as outliers. Each ellipse was generated as
(a cos(θk), b sin(θk), where a, b are two uniformly random
numbers in [0.5, 1] and θk = kπ/36, k = 0, . . . , 71. We com-
puted the Fréchet mean and geometric median for the hand
data with 0, 2, 6, and 12 outliers included, corresponding
to 0%, 10%, 25%, and 40% outliers, respectively. Both the
mean and geometric median computations converge in un-
der 15 iterations, running in less than a second for each of
the cases. The results are shown in Figure 9. With enough
outliers the Fréchet mean is unrecognizable as a hand, while
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the geometric median is very stable even with 40% outliers.
To ensure that both the Fréchet mean and the geomet-
ric median computations were not caught in local minima,
we initialized both algorithms with several different data
points, including several of the outlier shapes. In each case
the Fréchet mean and geometric median converged to the
same results as shown in Figure 9.

6.4. Deformable Images

We now present the application of the manifold geomet-
ric median algorithm developed above for robust atlas es-
timation from a collection of grayscale images. To do this
in a fashion that combines geometric variability as well as
intensity changes in the images, we use the metamorpho-
sis metric reviewed in Section 2.1. The algorithms to com-
pute the Fréchet mean and the geometric median of a set
of images Ii, i = 1, . . . , n are slightly different than in the
above finite-dimensional examples. Rather than computing
exponential and log maps for the metamorphosis metric,
we compute a gradient descent on the entire energy func-
tional and optimize the atlas image simultaneously with
the geodesic paths. We begin with a description of the com-
putation for the Fréchet mean image, µ. We now have n
metamorphoses (f i

t , g
i
t), where Ii(t) = gi

t · f i
t has boundary

conditions Ii
0 = µ and Ii

1 = Ii. In other words, each path
starts at the atlas image µ and ends at an input image.
The Fréchet mean is computed by minimizing the sum of
geodesic energies, i.e.,

µ = argI min
I,vi

n∑
i=1

U(vi
t, I

i
t), subject to Ii

0 = I, Ii
1 = Ii.

(16)
Similarly, the geometric median image, m, is computed

by minimizing the sum of square root geodesic energies, i.e.,

m = argI min
I,vi

n∑
i=1

√
U(vi

t, I
i
t), subject to Ii

0 = I, Ii
1 = Ii.

(17)
Following Garcin and Younes (2005), we compute

geodesics directly using the discretized version of the en-
ergy functional U . Denoting a discretized metamorphosis
by It, t = 1 . . . , T , and vt, t = 1, . . . , T − 1, the energy of
this path is given by

U(I, v) =
T−1∑
t=1

〈Lvt, vt〉+
1
σ2
‖TvtIt+1 − It‖2, (18)

where TvI denotes trilinear interpolation of the trans-
formed image I(x+ v(x)). The gradients of U with respect
to both v and I are given by

∇vtU(I, v) = vt −
1
σ2

K [(TvtIt+1 − It)Tvt∇It+1] ,

σ2∇It
U(I, v) = It − Tvt

It+1 + T T
vt

(Tvt−1It − It−1),

where T T
v denotes the adjoint of the trilinear interpola-

tion operator (see (Garcin and Younes, 2005) for details),

Fig. 10. 2D cross-sections from the input images for the 3D bullseye
example. The bottom right image is an outlier.

and K = L−1. Finally, given a discretized version of the
Fréchet mean equation (16) and discretized paths Ii

t , v
i
t, i =

1, . . . , n, we denote the total sum-of-square geodesic ener-
gies by

Eµ(Ii, vi) =
n∑

i=1

U(Ii, vi), such that Ii
1 = µ.

The gradient of Eµ with respect to the Fréchet mean atlas,
µ, is

∇µEµ(Ii, vi) =
1
σ2

n∑
i=1

(
µ− Tvi

1
Ii
2

)
.

For computing the geometric median from the discretized
version of (17), the gradients for the individual paths are
given by

∇vt

√
U(I, v) = ∇vtU(I, v)/2

√
U(I, v),

∇It

√
U(I, v) = ∇ItU(I, v)/2

√
U(I, v).

We denote the total discretized energy functional for the
geometric median by

Em(Ii, vi) =
n∑

i=1

√
U(Ii, vi), such that Ii

1 = m.

Now, the gradient of Em with respect to the geometric
median atlas, m, has the form

∇mEm(Ii, vi) =
n∑

i=1

(m−Tvi
1
Ii
2)/

√
〈Lv1, v1〉+

1
σ2
‖Tvi

1
Ii
2 −m‖2

We first tested the geometric median atlas estimation us-
ing synthesized 3D bullseye images, consisting of concetric
spheres with different grayscales. We created three spher-
ical bullseye images with varying radii. We then added a
single outlier image that was a bullseye with anisotropic
aspect ratio. Slices from the input images are shown in Fig-
ure 10. Finally, we computed the geometric median and
Fréchet mean atlases under the metamorphosis metric as
described in this section (Figure 11). The Fréchet mean at-
las is geometrically more similar to the outlier, i.e., it has
an obvious oblong shape. However, the geometric median
atlas is able to better retain the spherical shape of the orig-
inal bullseye data.
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Fig. 12. Midaxial slices from the four input 3D MR images (left). The resulting geometric median atlas (right).

Fig. 11. The Fréchet mean of the bullseye images (left) and the
geometric median (right), both using the metamorphosis metric.
Notice the mean is affected more by the outlier, while the median
retains the spherical shape of the main data.

Finally, we tested the geometric median atlas estimation
from a set of 3D MR brain images. The input images were
chosen from a database containing MRA, T1-FLASH, T1-
MPRAGE, and T2-weighted images from 97 healthy adults
ranging in age from 20 to 79 (Lorenzen et al., 2006). For this
study we only utilized the T1-FLASH images. These images
were acquired at a spatial resolution of 1mm×1mm×1mm
using a 3 Tesla head-only scanner. The tissue exterior to
the brain was removed using a mask generated by a brain
segmentation tool described in (Prastawa et al., 2004). This
tool was also used for bias correction. In the final prepro-
cessing step, all of the images were spatially aligned to an
atlas using affine registration. We applied our geometric
median atlas estimation to a set of four MR images from
the database. The resulting atlas is shown on the right side
of Figure 12. In this case the geometric median atlas was
nearly identical to the Fréchet mean atlas, most likely be-
cause there is no clear outlier in the MR images. We expect
the median atlas construction to be useful in cases where
there are gross anatomical outliers.

7. Conclusion and Discussion

In this paper we extended the notion of the geometric
median, a robust estimator of centrality, to manifold-valued
data. We proved that the geometric median exists and is
unique for any non positively curved manifold and under
certain conditions for positively curved manifolds. Gen-
eralizing the Weiszfeld algorithm, we introduced a proce-
dure to find the Riemannian geometric median and proved
that it converged on positively curved manifolds. Applica-
tions to the 3D rotation group, tensor manifolds, and pla-
nar shape spaces were presented with comparisons to the
Fréchet mean.

We expect the geometric median to be useful in several
image analysis applications. For instance, the geometric
median could be used to robustly train deformable shape
models for image segmentation applications. In this appli-
cation and in robust atlas construction we believe the ge-
ometric median will have advantages to the Fréchet mean
when the data includes anatomical outliers due to misdiag-
nosis, segmentation errors, or anatomical abnormalities. In
diffusion tensor imaging we envision the geometric median
being used as a median filter or for robust tensor splines
(similar to (Barmpoutis et al., 2007)). This would preserve
edges in the data at the interface of adjacent tracts. The ge-
ometric median could also be used for along-tract summary
statistics for robust group comparisons (along the lines of
Corouge et al. (2006); Fletcher et al. (2007); Goodlett et al.
(2008)).

Since the area of robust estimation on manifolds is largely
unexplored, there are several exciting opportunities for fu-
ture work. Least squares estimators of the spread of the
data have been extended to manifolds via tangent space
covariances (Pennec, 2006) and principal geodesic analysis
(PGA) (Fletcher et al., 2003). Noting that the median is an
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example of an L1 M-estimator, the techniques presented in
this paper can be applied to extend notions of robust co-
variances and robust PCA to manifold-valued data. Other
possible applications of the Riemannian geometric median
include robust clustering on manifolds, filtering and seg-
mentation of manifold-valued images (e.g., images of tensor
or directional data).

8. Appendix

Here we outline the convexity properties of the Rieman-
nian distance function. Our argument follows along the
same lines as Karcher (1977), who proves the convexity of
the squared distance function. Let U be a convex subset of
a manifold M . Let γ : [a, b] → U be a geodesic and consider
the variation of geodesics from p ∈ U to γ given by c(s, t) =
Expp(s ·Logp(γ(t))). To prove convexity of the Riemannian
distance function, we must show that the second derivative
d2

dt2 d(p, γ(t)) is strictly positive. Denote c′ = (d/ds)c(s, t)
and ċ = (d/dt)c(s, t). (Readers familiar with Jacobi fields
will recognize that ċ is a family of Jacobi fields.) The sec-
ond derivative of the distance function is given by

d2

dt2
d(p, γ(t)) =

〈ċ(1, t), (D/ds)ċ(1, t)〉
d(p, γ(t))

− 〈ċ(1, t), c′(1, t)〉2

d(p, γ(t))3
. (19)

When ċ(1, t) is tangential to γ(t), i.e., γ is a geodesic
towards (or away from) p, we can easily see that
d2

dt2 d(p, γ(t)) = 0. Now let ċ⊥(1, t) be the component of
ċ(1, t) that is normal to γ(t). We use the following result
from (Karcher, 1977).

Lemma 1. If the sectional curvature of M is bounded
above by ∆ > 0 and diam(U) < π/(2

√
∆), then

〈ċ⊥(1, t), (D/ds)c′(1, t)〉 > 0. If M has nonpositive curva-
ture (∆ ≤ 0), then the result holds with no restriction on
the diameter of U .

Along with 〈ċ⊥(1, t), c′(1, t)〉 = 0, Lemma 1 implies that
d2

dt2 d(p, γ(t)) is strictly positive when Logγ(t)(p) is not tan-
gential to γ(t).
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