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1. Unconstrained Optimization

1.1. General Optimization
We seek a minimizer x̂ of a function f : Rn 7→ R. A minimizer satisfies ∇f(x̂) = 0, where
∇f ∈ Rn is the gradient.

The function dampnewton calls a user-supplied Matlab function with a header of the form

function [f, g, H] = fun(x,p1,p2,...)

The function should return f(x) in f, the gradient ∇f(x) in g , and the Hessian ∇2f(x) in H.

The functions linesearch and ucminf only need a user-supplied function of the form

function [f, g] = fun(x,p1,p2,...)

that returns the values of the function and its gradient.

The toolbox functions allow a list of parameters p1,p2,... to be passed to fun.

The implementation of ∇f(x) and ∇2f(x) can be checked by checkgrad, Section 3.2.2.

1.1.1. User’s guide to dampnewton
This function is based on the algorithm described in
[4, Section 3.2]. Given the iterate x, the step h to
the next iterate is found as the solution to the linear
system given to the right.

(∇2f (x) + µI
)
h

= −∇f (x)

The damping parameter µ is a positive number. For µ sufficiently large the matrix is positive
definite, and h is guaranteed to be a descent direction. During iteration µ is monitored so
that, as x approaches x̂, the damping tends to zero, so we approach the Newton method with
quadratic convergence.

Typical calls are [X, info] = dampnewton(fun, x0)
[X, info] = dampnewton(fun, x0, opts, p1,p2,...)
[X, info, perf] = dampnewton(.....)

Input parameters
fun Handle to the function.
x0 Starting guess for x̂.
opts Either a struct with fields ’tau’, ’tolg’, ’tolx’ and ’maxeval’, or a vector with

the values of these options, opts = [tau tolg tolx maxeval] .
tau is used to get starting value for the damping parameter:

µ = tau ∗ ‖∇2f(x0)‖∞
The other options are used in the stopping criteria (3.1),

3
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‖∇f(x)‖∞ ≤ tolg or

‖δx‖2 ≤ tolx (tolx + ‖x‖2) or

no. of function evaluations exceeds maxeval

Default tau = 1e-3, tolg = 1e-4, tolx = 1e-8, maxeval = 100.
If the input opts has less than 4 elements, it is augmented by the default values.
Also, zeros and negative elements are replaced by the default values.

p1,p2,... are passed directly to the function fun .

Output parameters
X If perf is present, then X is an array, holding the iterates columnwise, with the computed

solution in the last column.
Otherwise, X returns the computed solution vector.

info Performance information, vector with 7 elements:
info(1:4) Final values of

[
f(x), ‖∇f(x)‖∞, ‖δx‖2, µ/ max |(∇2f(x))ii|

]
.

info(5:6) Number of iteration steps and function evaluations.
info(7) = 1: Stopped by a small gradient.

2: Stopped by a small x-step,
3: No. of function evaluations exceeds opts(4)
-1: x is not a real valued vector.
-2: f is not a real valued scalar.
-3: g is not a real valued vector or H is not a real valued matrix.
-4: Dimension mismatch in x, g, H.
-5: H is not symmetric.

perf Struct with fields
f: values of f(x) ,
ng: values of ‖∇f(x)‖∞ ,
mu: values of damping parameter µ .

1.1.2. User’s guide to linesearch
This function is based on the algorithm described in
[4, Section 2.3]. Given x and a descent direction h, the
task is to find an approximate minimizer in that direc-
tion, ie a minimizer of the function

ϕ(α) = f(x + αh) , ϕ′(α) = hT ∇f(x + αh) .

linesearch can be used both for soft and exact line
search. In the former case we are satisfied with a point
α̂ in the acceptable region, sketched in the figure, ie
ϕ(α̂) ≤ ϕ(0) + α̂β1ϕ

′(0) and ϕ′(α̂) ≥ β2ϕ
′(0). β1 < β2

are input.

f(x + αh)

acceptable α−range

In case of exact line search we seek α̂ such that |ϕ′(α̂)| ≤ δ1|ϕ′(0)| or |b− a| ≤ δ2b, where [a, b]
is the current interval for α̂.

Typical calls are [xn,fn,gn,info] = linesearch(fun,x,f,g,h)
[xn,fn,gn,info] = linesearch(fun,x,f,g,h,opts,p1,p2,...)
[xn,fn,gn,info,perf] = linesearch(......)
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Input parameters
fun Handle to the function.
x Current x.
f,g f(x) and ∇f(x).
h Step vector.
opts Either a struct with fields ’choice’, ’cp1’, ’cp2’, ’maxeval’, ’amax’ or a vector

with the values of these options, opts = [choice cp1 cp2 maxeval amax].
choice = 0 : exact line search.

Otherwise soft line search (Default).
cp1, cp2: options for stopping criteria.

choice = 0: |ϕ′(a)| ≤ cp1 ∗ |ϕ′(0)| or c − b ≤ cp2 ∗ c , where a = α̂ and
[b, c] is the current interval for a. Default cp1 = cp2 = 10−3.

otherwise: ϕ(a) ≤ ϕ(0) + a ∗ cp1 ∗ ϕ′(0) and ϕ′(a) ≥ cp2 ∗ ϕ′(0).
Default cp1 = 10−3, cp2 = 0.99.

maxeval Maximum number of function evaluations. Default maxeval = 10.
amax Maximal allowable α−value. Default amax = 10.
If the input opts has less than 5 elements, it is augmented by the default values. Also,
negative elements and (except for choice) zeros are replaced by the default values.

p1,p2,... are passed directly to the function fun .

Output parameters
xn New iterate, x + α̂h.
fn,gn f(xn) and ∇f(xn)
info Performance information, vector with 3 elements:

info(1) > 0: Successful call. Value of α̂.
= 0: h is not downhill or it is so large and maxeval so small, that a

better point was not found.
= −1: x is not a real valued vector.
= −2: f is not a real valued scalar.
= −3: g or h is not a real valued vector.
= −4: g or h has different length from x.

info(2) Slope ratio ϕ′(α̂)/ϕ′(0).
info(3) Number of function evaluations used.

perf Struct with fields
alpha: values of α ,
phi: values of ϕ(α) ,

slope: values of ϕ′(α) .

1.1.3. User’s guide to ucminf
This function is based on a Quasi-Newton method with
BFGS updating of the approximate inverse Hessian, see
eg [4, Section 3.5].

BFGS updating

soft line search

Typical calls are [X, info] = ucminf(fun, x0)
[X, info] = ucminf(fun, x0, opts)
[X, info] = ucminf(fun, x0, opts, D0, p1,p2,...)
[X, info, perf] = ucminf(.....)
[X, info, perf, D] = ucminf(.....)
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Input parameters
fun Handle to the function.
x0 Starting guess for x̂.
opts Either a struct with fields ’Delta’, ’tolg’, ’tolx’ and ’maxeval’, or a vector

with the values of these options, opts = [Delta tolg tolx maxeval] .
Delta: Expected length of initial step.
The other options are used in the stopping criteria (3.1),

‖∇f(x)‖∞ ≤ tolg or

‖δx‖2 ≤ tolx (tolx + ‖x‖2) or

no. of function evaluations exceeds maxeval
Default Delta = 1, tolg = 1e-4, tolx = 1e-8, maxeval = 100. If the input opts
has less than 4 elements, it is augmented by the default values. Also, zeros and negative
elements are replaced by the default values.

D0 If present, then approximate inverse Hessian at x. Otherwise, D0 := I.
p1,p2,... are passed directly to the function fun .

Output parameters
X If perf is present, then X is an array, holding the iterates columnwise, with the

computed solution in the last column.
Otherwise, X returns the computed solution vector.

info Performance information, vector with 6 elements:
info(1:3) Final values of [f(x), ‖∇f(x)‖∞, ‖δx‖2] .
info(4:5) Number of iterations steps and evaluations of f and ∇f .
info(6) = 1: Stopped by a small gradient.

2: Stopped by a small x-step.
3: No. of function evaluations exceeds opts(4).
-1: x is not a real valued vector.
-2: f is not a real valued scalar.
-3: g is not a real valued vector.
-4: Dimension mismatch in x, g.
-6: D0 is not a symmetric, positive definite n× n matrix.

perf Struct with fields
f: values of f(xk) ,

ng: values of ‖∇f(xk)‖∞ ,
Delta: values of trust region radius.

am: values of α̂ from line search,
slope: values of ϕ′(α̂) from line search,
neval: no. of function evaluations in current line search.

D Array holding the approximate inverse Hessian at the computed minimizer.

1.1.4. Example
Consider the function

function [f,g,H] = rosenbrock(x, p1,p2)
f1 = p1*(x(2) - x(1)^2); f2 = 1 - x(1);
f = 0.5*(f1^2 + f2^2) + p2;
if nargout > 1

g = [-2*p1*x(1)*f1 - f2; p1*f1];
if nargout > 2
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p12 = p1^2; h12 = -2*p12*x(1);
H = [1-2*p1*(f1 - 2*p1*x(1)^2) h12
h12 p12];

end
end

Choosing the parameters p1 = 10 and p2 = 0 this is an implementation of the famous Rosenbrock
function. In the program

[X1, ii1, pf1] = dampnewton(@rosenbrock,[-1.2 1],opts,10,0);
[X2, ii2] = ucminf(@rosenbrock,[-1.2 1],[],[],10,0)

we use the default values for opts and an empty D0 in ucminf, and get the results,

X1(:,end) = 0.99998987 X2(:,end) = 1.00000032
0.99997934 1.00000063

ii1 = 5.95e-11 7.11e-05 1.38e-03 1.50e-06 21 31 1
ii2 = 5.25e-14 1.42e-06 9.32e-06 34 38 1

In both cases we find a good approximation to
the true minimizer, x̂ = [1 1], and ii1(7) =
ii2(6) = 1 shows that iteration stops because
the infinity norm of the gradient iix(2) is
smaller than the default threshold tolg = 1e-4.
We see that ucminf used 38 evaluations of f and
∇f , while dampnewton used 31 evaluations of f ,
∇f and the Hessian ∇2f .

The adjoining figure shows the two iteration
paths. It was obtained by the command −1 −0.5 0 0.5 1

−0.5

0

0.5

1

1.5

 

 

dampnewton
ucminf

plot(X1(1,:),X1(2,:),’-ob’, X2(1,:),X2(2,:),’-xr’)

In X2 every column 2,3,. . . is obtained by line search from the previous, and ii2(4:5) shows
that in almost every iteration step we onle need one function evaluation. In the damped Newton
case info(6) = info(5)+1 would have indicated that all trial steps were successful. The result
above shows that there were 9 uphill trial steps, where the iterand did not change, but the
damping was increased. This can be seen from the ratios between dampings,

r = pf1.mu(2:end) ./ pf1.mu(1:end-1)

4 of these ratios are larger than 2, indicating at least one uphill trial.

To illustrate linesearch we give a program that uses soft and exact line search in the steepest
descent direction from the same starting point as above. Again we use default values for opts.

x0 = [-1.2 1]; [f0, g0] = rosenbrock(x0,10,0)
optse = immoptset(’linesearch’, ’choice’,0) % For exact line search
[x3, f3, g3, ii3] = linesearch(@rosenbrock,x0,f0,g0,-g0,[], 10,0)
[x4, f4, g4, ii4] = linesearch(@rosenbrock,x0,f0,g0,-g0,optse,10,0)

We get the following results,

x3 = -0.8761675820 x4 = -1.0219187641
1.1321764971 1.0726862187

ii3 = 3.00e-03 -6.11e-01 4 f3 = 8.4033
ii4 = 1.65e-03 -3.92e-02 6 f4 = 2.0843

The step used with exact line search is about half the step used with soft line search, and we get
smaller values for both f(x) and the ratio ϕ′(α̂)/ϕ′(0), but the number of evaluations of f(x)
and ∇f(x) grows from 4 to 6.
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1.2. Nonlinear Least Squares Problems
We seek a minimizer x̂ of the function

f(x) = 1
2

m∑

i=1

ri(x)2 = 1
2r(x)T r(x) , (1.1)

where the ri are given functions of x ∈ Rn and r(x) ∈ Rm is the vector function with ri(x) as
its ith component. A minimizer satisfies ∇f(x) = 0, where the gradient is given by

∇f(x) = J(x)T r(x) .

J(x) is the Jacobian, as defined by

Jij =
∂ri

∂xj

The toolbox functions dogleg and marquardt assume an analytic expression for the Jacobian.
In those cases the user must supply a Matlab function with a header of the form

function [r, J] = fun(x,p1,p2,...)

The function should return r(x) as a column vector in r and the m×n Jacobian in J. The
toolbox functions allow a list of parameters p1,p2,.... The implementation of J(x) can be
checked by checkgrad, Section 3.2.2.

The function smarquardt only needs a user supplied function with the header of the form

function r = fun(x,p1,p2,...)

Also this function should return r(x) as a column vector in r.

1.2.1. User’s guide to dogleg

This function is based on Powell’s dog-leg algorithm,
as described eg in [4, Section 6.3].

Typical calls are

[X,info] = dogleg(fun,x0)
[X,info] = dogleg(fun,x0,opts,p1,p2,...)
[X,info,perf] = dogleg(......)

∆
αh

sd

h
GN

h
DL

Input parameters
fun Handle to the function.
x0 Starting guess for x̂.
opts Either a struct with fields ’Delta’, ’tolg’, ’tolx’, ’tolr’ and ’maxeval’, or a

vector with the values of these options,
opts = [Delta tolg tolx tolr maxeval] .

Delta Initial trust region radius ∆.
The other options are used in an extended version of the stopping criteria (3.1),

‖∇f(x)‖∞ ≤ tolg or
‖δx‖2 ≤ tolx (tolx + ‖x‖2) or

‖r(x)‖∞ ≤ tolr or
no. of function evaluations exceeds maxeval

Default Delta = 0.1(1 + ‖x0‖2), tolg = 10−4, tolx = 10−8, tolr = 10−6,
maxeval = 100. If the input opts has less than 5 elements, it is augmented by the
default values. Also, zeros and negative elements are replaced by the default values.

p1,p2,... are passed directly to the function fun .
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Output parameters

X If perf is present, then X is an array, holding the iterates columnwise, with the
computed solution in the last column.
Otherwise, X returns the computed solution vector.

info Performance information, vector with 7 elements:
info(1:4) Final values of [f(x), ‖∇f(x)‖∞, ‖δx‖2, ∆] .
info(5:6) No. of iteration steps and function evaluations.
info(7) = 1: Stopped by a small gradient.

2: Stopped by a small x-step,
3: No. of function evaluations exceeds maxeval
-1: x is not a real valued vector.
-2: r is not a real valued column vector.
-3: J is not a real valued matrix.
-4: Dimension mismatch in x, r and J.
-5: Overflow during computation.

perf Struct with fields
f: values of f(xk) ,

ng: values of ‖∇f(xk)‖∞ ,
Delta: values of trust region radius ∆.

1.2.2. User’s guide to marquardt

This function is based on Levenberg-Marquardt
damping of the Gauss-Newton method. as de-
scribed eg in [4, Section 6.2]. The updating of the
damping parameter is further described in [10].

(
J(x)TJ(x) + µI

)
h

= −∇f (x)

Typical calls are [X,info] = marquardt(fun,x0)
[X,info] = marquardt(fun,x0,opts,p1,p2,...)
[X,info,perf] = marquardt(......)

Input parameters
fun Handle to the function.
x0 Starting guess for x̂.
opts Either a struct with fields ’tau’, ’tolg’, ’tolx’ and ’maxeval’, or a vector with

the values of these options, opts = [tau tolg tolx maxeval] .
tau used in starting value for Marquardt parameter:

µ = τ ·max{(J(x0)T J(x0)
)
ii
} .

The other options are used in the stopping criteria (3.1),
‖∇f(x)‖∞ ≤ tolg or
‖δx‖2 ≤ tolx (tolx + ‖x‖2) or
no. of function evaluations exceeds maxeval.

Default tau = 10−3, tolg = 10−4, tolx = 10−8, maxeval = 100.
If the input opts has less than 4 elements, it is augmented by the default values.
Also, zeros and negative elements are replaced by the default values.

p1,p2,... are passed directly to the function fun .

Output parameters
X If perf is present, then X is an array, holding the iterates columnwise, with the

computed solution in the last column.
Otherwise, X returns the computed solution vector.
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info Performance information, vector with 7 elements:
info(1:4) Final values of[

f(x), ‖∇f(x)‖∞, ‖δx‖2,
µ

max{(J(x)T J(x))ii}
]

.

info(5:6) No. of iteration steps and function evaluations.
info(7) = 1: Stopped by a small gradient.

2: Stopped by a small x-step,
3: No. of function evaluations exceeds maxeval
-1: x is not a real valued vector.
-2: r is not a real valued column vector.
-3: J is not a real valued matrix.
-4: Dimension mismatch in x, r and J.
-5: Overflow during computation.

perf Struct with fields
f : values of f(xk) ,
ng : values of ‖∇f(xk)‖∞ ,
mu : values of damping parameter µ.

1.2.3. User’s guide to smarquardt

This function is based on the same algorithm as
marquardt, but instead of an analytic expression
for the Jacobian, this matrix function is approx-
imated by successive updatings. See [4, Section
6.4].

B := B +

(rnew − r −Bh) hT

hTh

The initial approximation is either given as input or it is computed by forward differences,

B:,j =
r(x + hjej)− r(x)

hj
,

Where ej is the unit vector in the j’th direction, and hj = d2 if xj = 0, otherwise hj = d·|xj |. d
is an input option, ’relstep’.

Typical calls are [X, info] = smarquardt(fun,x0)
[X, info] = smarquardt(fun,x0,opts)
[X, info] = smarquardt(fun,x0,opts,B0,p1,p2,...)
[X, info, perf] = smarquardt(......)
[X, info, perf, B] = smarquardt(......)

Input parameters
fun Handle to the function that returns r(x).
x0 Starting guess for x̂.
opts Either a struct with fields ’tau’, ’tolg’, ’tolx’, ’maxeval’ and ’relstep’, or

a vector with the values of these options,
opts = [tau tolg tolx maxeval relstep] .

tau used in starting value for Marquardt parameter:
µ = τ ·max{(BT

0 B0

)
ii
} ,

where B0 is an approximate Jacobian at x0 .
relstepd, “relative” step length for difference approximations.
The other options are used in the stopping criteria, cf (3.1),
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‖B(x)T r(x)‖∞ ≤ tolg or
‖δx‖2 ≤ tolx (tolx + ‖x‖2) or
no. of function evaluations exceeds maxeval.

Default tau = 10−3, tolg = 10−4, tolx = 10−8,
maxeval = 100 + 10n, relstep = 10−6.

If the input opts has less than 5 elements, it is augmented by the default values.
Also, zeros and negative elements are replaced by the default values.

B0 (Approximation to) J(x0).
If B0 is not given or is empty, a forward difference approximation to it is used.

p1,p2,... are passed directly to the function fun .

Output parameters
X If perf is present, then X is an array, holding the iterates columnwise, with the com-

puted solution in the last column. Otherwise, X returns the computed solution vector.
info Performance information, vector with 7 elements:

info(1:4) Final values of[
f(x), ‖B(x)T r(x)‖∞, ‖δx‖2,

µ

max{(B(x)T B(x))ii}
]

.

info(5) Number of function evaluations.
info(6) = 1: Stopped by a small gradient.

2: Stopped by a small x-step.
3: No. of function evaluations exceeds maxeval.
-1: x is not a real valued vector.
-2: r is not a real valued column vector.
-4: Dimension mismatch in x, r and J.
-5: Overflow during computation.
-6: Error in approximate Jacobian.

info(7) = No. of iterations.
perf Struct with fields

f: values of f(xk) ,
ng: values of ‖B(x)T r(x)‖∞ ,
mu: values of damping parameter µ.

B Computed approximation to the Jacobian at the solution, J(x̂).

1.2.4. Example

The following function is a “vector version” of the function from Example 1.1.4.

function [r, J] = rosenbrockv(x, p1,p2)
if p2 > 0, r = [p1*(x(2) - x(1)^2); 1 - x(1); sqrt(2*p2)];
else, r = [p1*(x(2) - x(1)^2); 1 - x(1)]; end
if nargout > 1 % also the Jacobian

if p2 > 0, J = [-2*p1*x(1) p1; -1 0; 0 0];
else, J = [-2*p1*x(1) p1; -1 0]; end

end

In the program

[x1 ii1] = dogleg(@rosenbrockv, [-1.2 1], [], 10,1e6)
[x2 ii2] = marquardt(@rosenbrockv, [-1.2 1], [], 10,1e6)
[X3 ii3 pf3 B] = smarquardt(@rosenbrockv, [-1.2 1], [], [], 10,1e6);



12 immoptibox

we use the default values for opts and an empty B0 in smarquardt. We get the following results,
where x3 = X3(:,end),

x1 = 1 x2 = 0.9999992008 x3 = 0.9999998944
1 0.9999983957 0.9999997841

ii1 = 1.00e+06 0 6.02e-03 2.16e-01 16 21 1
ii2 = 1.00e+06 5.87e-07 1.17e-04 2.55e-06 13 16 1
ii3 = 1.00e+06 8.16e-07 2.20e-05 1.79e-06 18 50 1

In all the cases we find a good approximation to the true minimizer, x̂ = [1 1], and iix(7) = 1
shows that iteration stops because the the infinity norm of the gradient iix(2) is smaller than
the default threshold tolg = 1e-4.
smarquardt uses almost the same number of iterations as marquardt, costing a total of 50
function evaluations, whereas marquardt uses 16 evaluations of r(x) and the Jacobian J(x).
The computed approximation to J(x̂) and the true Jacobian at the minimizer are

B = -19.969 9.985 J(xm) = -20 10
-1 -6.53e-17 -1 0
0 0 0 0

Thus, also B is a good approximation to the Jacobian J(x̂).
Finally,

t = 0 : 18;
semilogy(t,pf3.f-1e6,’ok’, ...

t,pf3.ng,’vb’, t,pf3.mu,’pr’)

illustrates the iteration with smarquardt. We
subtract the final value in order to be able see
the variation in the function values.

Both f and ∇f show superlinear convergence in
the final iterations, and µ is divided by 3 in each
of these steps. 0 5 10 15 20

10
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2. Data Fitting

2.1. Cubic Splines
The toolbox contains a number of functions that can be used
to determine a cubic spline, which either interpolates given
points or is found as a weighted least squares fit to a set of
given data points. In both cases it is possible to apply quite
general boundary conditions. The theory is described eg in
[1, Sections 5.9 – 5.12] and [4, Section 5.7].

The function splinefit is used to determine the spline s so that it fits to (or interpolates) given
data points, possibly with constraints of the form

d11s(a) + d12s
′(a) + d13s

′′(a) = d14

d21s(b) + d22s
′(b) + d23s

′′(b) = d24

(2.1)

where [a, b] is the range of the spline knots.

splineval and splinedif can be used to evaluate the spline and derivatives of it, respectively.

The spline s is represented by a struct S with fields:

fail Performance indicator. The other fields are only significant if S.fail = 0.
fail = 0: No problems

1: x is not a real valued vector of length at least 2.
2: Knots are not in increasing order.
3: Some data abscissa is not real or is outside [x(1), x(end)].
4: No data ordinates are given.
5: Too few active data points (ie points with strictly positive weights).
6: The Schoenberg-Whitney conditions are not satisfied.
7: When given, the boundary condition matrix D must be a 2× 4 matrix.

x Knots.
c Coefficients in the B-spline representation of s.
pp Piecewise polynomial representation of s.
sdy Estimated standard deviation of data.
sdc Estimated standard deviation of the coefficients c.

2.1.1. User’s guide to splinefit

This function determines a cubic spline as a weighted least squares fit to given data points,
possibly with given boundary conditions. The algorithm is described in [4, Section 5.7]. If the
number of data points is equal to the number of degrees of freedom, one gets the interpolating
spline.

Typical calls are S = splfit(tyw, x)
S = splfit(tyw, x, D)

13
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Input parameters

tyw Data points and weights. Array with 2 or 3 columns,
tyw(:,1) Data abscissas.
tyw(:,2) Data ordinates.
tyw(:,3) Weights.

If tyw holds less than 3 columns, then all weights are set to 1.
x Knots. Must satisfy x(1) < x(2) <= ... <= x(end-1) < x(end) .
D 2×4 array with the dij presented in (2.1). a = x(1), b = x(end).

Output parameters

S Struct representing the spline, as described on page 13.

2.1.2. User’s guide to splineval

This function can be used to evaluate a cubic spline, computed by splinefit. The evaluation is
done by means of the piecewise 3rd order polynomial provided in S.pp. For arguments outside
the knot range we use the 2nd order polynomial obtained by continuation of the spline beyond
its end knots.

Typical calls are f = splval(S, t)
f = splval(t, S)

The alternative formulation is introduced in order that splineval can be used in conjunction
with fminbnd, fzero, quad, and other standard MATLAB function functions.

Input parameters

S Struct representing the spline, as described on page 13.
t Vector with arguments for the spline.

Output parameters

f Vector of the same type as t, with fi = s(ti).

2.1.3. User’s guide to splinedif

This function can be used to evaluate derivatives of a cubic spline, computed by splinefit.
The evaluation is done by means of a differentiated version of the piecewise 3rd order polynomial
provided in S.pp. Arguments outside the knot range are not allowed.

Typical calls are f = splinedif(S, t)
f = splinedif(S, t, d)

Input parameters

S Struct representing the spline, as described on page 13.
t Vector with arguments for the spline.

If any t(i) is outside the knot range, you get at error return.
d Differentation order. Default d = 1 .

Output parameters

f Vector of the same type as t, with fi = s(d)(ti).
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2.1.4. Example

The toolbox data set wild.dat discussed on page 29 was generated by adding ”noise” to a
function defined on [-1, 1] with slope approximately equal to 0.2 at both end points. This
is used at the right hand end in the following Matlab program, while we use natural spline
condition at the other end. The 6 interior knots are distributed so that they are closest where
the function varies most, cf [1, Section 5.11].

load wild.dat
D = [0 0 1 0; 0 1 0 0.2]; x = [-1 -0.25 0 0.2 0.3 0.4 0.6 1];
S = splinefit(wild, x, D);
t = linspace(-1,1,201);
subplot(211), plot(wild(:,1),wild(:,2),’.b’, t,splineval(S,t),’-r’)
grid on, legend(’Data’, ’Fit, n = 7’,2)
subplot(223), plot(t, splinedif(S,t),’-r’)
grid on, legend(’First derivative’,3)
subplot(224)
plot(t,splinedif(S,t,2),’-r’), grid on
grid on, legend(’Second derivative’, 3)

The plot is shown below. Note how the position of the knots is seen clearly in the piecewise
linear s′′.
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2.2. Robust Estimation

The toolbox contains a number of functions that are meant
for robust data fitting. They are based on Huber estimation,
where ”wild point” residuals only contribute with their ab-
solute value, while ”good point” residuals contribute as in
a least squares fit. The threshold γ is used to distinguish
between small and large residuals. The theory is described
in [4, Section 7.3], and algorithmic details are given eg in
[3], [5], [7], [9].

The figure shows the Huber function (full line) and the
scaled least squares function, r2/(2γ) (dashed line).

−γ 0 γ u

½γ

φγ

The MATLAB function linhuber finds the minimizer of a slightly extended version of the linear
Huber estimation problem,

f(x) =
m∑

i=1

φγ(ri(x)) + 1
2µ‖Lx‖2

2 + cT x (2.2)

Here, r(x) = b − Ax, where A is an m×n matrix and b an m-vector, and the extra terms are
optional.

In connection with nonlinhuber and huberobj the user must supply a Matlab function with
a header of the form

function [r, J] = fun(x, p1,p2,...) (2.3)

(cf Sections 1.2.1 and 1.2.2 (dogleg and marquardt)). The function should return r(x) as a
column vector in r and the m×n Jacobian in J. We allow a list of parameters p1,p2,... . The
implementation of J(x) can be checked by checkgrad, Section 3.2.2.

2.2.1. User’s guide to linhuber

The function f(x) is a piecewise quadratic. The algorithm for finding a minimizer for it is
outlined in [4, Section 7.3] and more details are given in [9].

Typical calls are [X, info] = linhuber(A,b,c,L,par)
[X, info] = linhuber(A,b,c,L,par,init)
[X, info, perf] = linhuber(......)

Input parameters

A,b m× n matrix and m-vector, respectively.
c n-vector or empty. In the latter case the term cT x is omitted.
L Matrix with n-columns or empty. In the case µ = =par(2) > 0 an empty

L is treated as L = I, the identity matrix.
par Vector with one, two or three elements.

par(1) γ, Huber threshold.
par(2) µ; default: µ = 0.
par(3) Choice of Huber function,

1 : one-sided, ρ(r) = 0 for r > 0.
2 : one-sided, all ri ≤ γ are active.
Otherwise: standard Huber (default), ie equations with |ri| ≤ γ are active.
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init Choice of starting point:
init is a vector : Given x0.
init is a struct like info below : given active set and factorization.
init is not present : x0 is the least squares solution to Ax ' b.

Output parameters

X If perf is present, then X is an array, holding the iterates columnwise, with the
computed solution in the last column.
Otherwise, X returns the computed solution vector.

info Struct with information of the performance and computed solution. Fields
pf: Vector [ f(x̂), ‖∇f(x̂)‖∞, no. iterations, no. factorizations ] .

pf(1) = −∞ indicates an unbounded problem.
S: Struct with the Huber active set at the solution. Fields

s: Huber sign vector,
A: active set (indices of small residuals),
N: inactive set (indices of large residuals),
L: [length(S.A) length(S.N)].

R: n×n matrix with Cholesky factor of active set.
p: Permutation vector used in the factorization.

perf Iteration history. Struct with fields
f: values of f(x),
ng: values of ‖∇f(x)‖∞.
nA: number of active equations.

2.2.2. User’s guide to nonlinhuber

This function is an implementation of [4, Algorithm 7.14]. Basically it is just the function
marquardt with the objective function given by (2.2) instead of f(x) = 1

2‖r(x)‖2
2. With the

default γ-value all the equations are active.

Typical calls are [X, S, info] = nonlinhuber(fun, x0)
[X, S, info] = nonlinhuber(fun, x0, opts, p1,p2,...)
[X, S, info, perf] = nonlinhuber(.....)

Input parameters
fun Handle to the function discussed at (2.3).
x0 Starting guess for Huber estimator.
opts Either a struct with fields ’gamma’, ’Htype’, ’tau’, ’tolg’, ’tolx’ and

’maxeval’, or a vector with the values of these options,
opts = [gamma Htype tau tolg tolx maxeval] .

gamma Huber threshold γ .
Htype Choice of Huber function,

Htype = 1: One-sided, ri > 0 are neglected,
2: one-sided, all ri ≤ γ are active,
otherwise: standard Huber, ie equations with |ri| ≤ γ are active.

tau used in starting value for Marquardt parameter:
µ = τ ·max{(J(x0)T J(x0)

)
ii
} .

The other options are used in the stopping criteria (3.1),
‖∇f(x)‖∞ ≤ tolg or
‖δx‖2 ≤ tolx (tolx + ‖x‖2) or
no. of function evaluations exceeds maxeval.
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Default gamma = ‖r(x0)‖∞ Htype = 0 tau = 10−3

tolg = 10−4 tolx = 10−8 maxeval = 100
If the input opts has less than 6 elements, it is augmented by the default values.
Also, zeros and negative elements are replaced by the default values.

p1,p2,... are passed directly to the function fun .

Output parameters
X If perf is present, then X is an array, holding the iterates columnwise, with the

computed solution in the last column.
Otherwise, X returns the computed solution vector.

S Struct with the Huber active set for the last col. in X. Fields
s: Huber sign vector,
A: active set (indices of small components in r),
N: vector [length(S.A), length(S.N)] .

info Performance information, vector with 7 elements:
info(1:4) Final values of[

f(x), ‖∇f(x)‖∞, ‖δx‖2,
µ

max{(J(x)T J(x))ii}
]

.

info(5:6) No. of iteration steps and function evaluations.
info(7) = 1: Stopped by a small gradient.

2: Stopped by a small x-step,
3: No. of function evaluations exceeds maxeval

perf Struct with fields
f: values of f(xk) ,
ng: values of ‖∇f(xk)‖∞ ,
mu: values of damping parameter µ.

2.2.3. User’s guide to huberobj

This function can be used to compute values of f and its gradient, where f(x) is the simple
version of ((2.2)),

f(x) =
m∑

i=1

φ(ri(x)) . (2.4)

φ is the Huber function, and r is a vector function.

Typical calls are [f, S, r] = huberobj(fun, x, gamma)
[f, S, r] = huberobj(fun, x, gamma, Htype, p1,p2,...)
[f, S, r, J, g] = huberobj(.....)

Input parameters

fun Handle to the function discussed at (2.3).
x n-vector. Argument.
gamma Huber threshold.
Htype Choice of Huber function,

1 : one-sided, ρ(ri) = 0 for ri > 0.
2 : one-sided, all ri ≤ γ are active.
Otherwise: standard Huber (default), ie equations with |ri| ≤ γ are active.

p1,p2,... are passed directly to the function fun.
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Output parameters

f Huber objective function.
S Struct with the Huber active set at the solution. Fields

s: Huber sign vector,
A: active set (indices of small elements in r),
N: inactive set (indices of large elements in r),
L: [length(S.A) length(S.N)].

r,J Output from the evaluation of fun.
If nargout<4, then fun only needs to return r(x), and the gradient is not computed.

g Gradient, g = ∇f(x).

2.2.4. Example

The data set efit2.dat provided in the toolbox can be modelled by the function

M(x, t) = x1e
−10t + x2e

−5t + x3 .

The following program computes the Huber estimator for γ = 0.015.

ty = load(’efit2.dat’); m = size(ty,1);
A = [exp(ty(:,1)*[-10 -5]) ones(m,1)];
[x info] = linhuber(A, ty(:,2), [], [], 0.015)
S = info.S

The results are

x = -0.99897 info = pf: [0.28914 0 2 2] S = s: [1x40 double]
0.99901 S: [1x1 struct] A: [1x37 double]
0.20001 R: [3x3 double] N: [7 22 37]

p: [3 2 1] L: [37 3]

Thus, the solution is found after two iteration steps and there are three ”wild points”. They are
marked by stars in the figure below, and the dotted lines indicate that their influence on the fit
is as if they were on the boundary of the shaded region between M(xγ , t)− γ and M(xγ , t) + γ.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

Next, consider the above fitting model with unknown exponents

M(x, t) = x3e
−x1t + x4e

−x2t + x5 .

The corresponding fun for use in nonlinhuber and huberobj may eg have the form
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function [r, J] = myfun2(x, ty)
x = x(:); t = ty(:,1); m = length(t);
E = exp(t*(-x(1:2)’)); F = [E ones(m,1)];
r = ty(:,2) - F*x(3:5);
if nargout > 1 % Jacobian

J = [(t * x(3:4)’).*E -F];
end

With the data in efit2 we want to find the Huber estimator for γ = 0.015 and γ = 10−5 :

ty = load(’efit2.dat’); x0 = [10 5 -1 1 0.2];
[x1 S1 info1] = nonlinhuber(@myfun2, x0, 1.5e-2, ty)
[x2 S2 info2] = nonlinhuber(@myfun2, x0, 1e-5, ty)

the results are

x1’ = 10.15384 4.89230 -0.95188 0.95307 0.19885
x2’ = 9.86634 5.06794 -1.01994 1.02529 0.20106

S1 = s: [1x40 double] S2 = s: [1x40 double]
A: [1x37 double] A: [4 8 11 18 33]
N: [7 22 37] N: [1x35 double]
L: [37 3] L: [5 35]

info1 = 0.289 1.05e-05 8.70e-04 2.61e-07 9 9 1
info2 = 0.451 2.86e-06 2.45e-05 1.11e-06 12 18 1

Notice that we only provide γ, the first element in opts. The other 5 options are assigned their
default values, and in both cases iterations are stopped by a small gradient. The solution with
γ = 0.015 has the same active set as the solution found with linhuber, while the active set with
γ = 10−5 only has 5 elements.

Finally, in an attempt to see what happens as γ → 0 we might try γ = 10−15 :

[x3 S3 info3] = nonlinhuber(@myfun2, x0, 1e-15, ty)

This, however, gives an error return

??? Error using ==> huberobj at 46
gamma must be at least 6.12e-14

Error in ==> nonlinhuber at 68
[f S r J g] = huberobj(fun,x,gamma,Htype,varargin:); neval = 1;

The background for this message is that the effect of rounding errors on the elements in r(x)
may be larger than this small value of γ, with the meaningless effect, eg, that the active set may
be considered as empty.
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2.3. Multiexponential Fitting

A fitting model of the form

M0(x, t) =
p∑

j=1

cje
−zjt or M1(x, t) =

p∑

j=1

cje
−zjt + cp+1 , x =

(
z
c

)
, (2.5)

occurs so frequently in practice that it has its own name, multiexponential model, and deserves
a special Matlab function, which exploits that about half the parameters (the coefficients
c) occur linearly. The special-purpose method is known as separable least squares, cf eg [4,
Example 6.20], [2], [11], and is implemented in mexpfit.

2.3.1. User’s guide to mexpfit

This function is based on the algorithm de-
scribed in [11]. With given data {(ti, yi)}m

i=1

the model (2.5) corresponds to

F (z)c(z) ' y , 0 0.3 0.6 0.9
0

0.2

0.4

where c(z) is the (possibly weighted) least squares solution to this overdetermined system of
equations. We use the Levenberg–Marquardt algorithm with the objective function (1.1) changed
expressed as f(z) = 1

2‖y − F (z)c(z)‖2
2.

Typical calls are [Z, c, info] = mexpfit(tyw, z0)
[Z, c, info] = mexpfit(tyw, z0, opts)
[Z, c, info, perf] = mexpfit(...)

Input parameters
tyw Data points and weights. Array with 2 or 3 columns,

tyw(:,1:2) Abscissas and ordinates of data points.
tyw(:,3) Weights. If tyw has less than 3 columns, then all weights are set to 1.

z0 Starting guess for z .
opts Either a struct with fields ’const’, ’tau’, ’tolg’, ’tolx’, and ’maxeval’, or a vector

with the values of these options, opts = [const tau tolg tolx maxeval].
const If positive then there is a constant term.
tau Used in starting value for Marquardt parameter for the optimization,

µ = tau ∗max{ [J(z0)T J(z0)]ii}.
The other options are used in stopping criteria:

‖∇f(z)‖∞ ≤ tolg or

‖δz‖2 ≤ tolx (tolx + ‖z‖2) or

no. of function evaluations exceeds maxeval

Default const = 0, tau = 10−3, tolg = 10−6, tolx = 10−10, maxeval = 100.
If the input opts has less than 5 elements, it is augmented by the default values.
Also, zeros and negative elements are replaced by the default values.

Output parameters
Z If perf is present, then Z is an array, holding the iterates columnwise, with the com-

puted solution in the last column.
Otherwise, Z returns the computed solution vector.
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c If info.fail = 0, then c holds coefficients [c1, . . . , cq], where
opts.const > 0 : q = p+1; cq is the constant term,

otherwise : q = p.
info Struct with information on performance. Fields

fail: Successful run if fail = 0. Otherwise info.msg tells what went wrong.
msg: Text message about performance.

vals: Vector with final values of f(z), ‖∇f(z)‖∞, ‖δz‖2.
its: Vector with number of iterations and function evaluations.

perf Struct with fields
f: values of f(zk) ,

ng: values of ‖∇f(zk)‖∞ ,
mu: values of damping parameter µ.

2.3.2. Example

As in Example 2.2.4 we consider the data set efit2.dat, for which we know that with a proper
choice of z1:2 and c1:3 the model

M(x, t) = c1e
−z1t + c2e

−z2t + c3

is a good approximation to the background function. In Example 2.2.4 we saw that data point
nos. 3, 22 and 37 are “wild”, ie they have exceptionally large errors, and we shall neglect them
in this example. Finally, we take the poor starting guess z0 = [5 3], and except for const = 1
we use the default opts-values.

ty = load(’efit2.dat’);
w = ones(size(ty(:,1))); w([7 22 37]) = 0;
[z c info] = mexpfit([ty w], [5 3], 1)

The results are

z = 10.013 c = -0.94005
4.8556 0.94466

0.19990

info = fail: 0
msg: ’Iterations stopped by a small gradient’

vals: [8.42e-04 9.80e-07 1.28e-01]
its: [5 6]

Thus, 5 iterations give us almost the same solution as in Example 2.2.4. We have changed the
objective function a little, and cannot expect better agreement.
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3. Miscellaneous

3.1. Nonlinear Systems of Equations
We seek a root x̂ of a vector function r, as given by a Matlab function with a header of the
form

function r = fun(x,p1,p2,...)

The function should return r(x) as a column vector in r.
(p1,p2,... are possible parameters of r).

nonlinsys can be used to solve such a problem. If the Jacobian of the system is available, we
recommend to use dogleg instead.

3.1.1. User’s guide to nonlinsys

This function is based on Powell’s dog-leg algorithm,
as described eg in [4, Section 6.5]. A root x̂ of the
vector function r(x) is a minimizer of

φ(x) = 1
2r(x)T r(x)

The gradient of φ and the Newton step for r are given
by respectively

∇φ = Jr and hGN = −J−1r .

Approximations to both the Jacobian and its inverse
are successively updated.

∆
αh

sd

h
GN

h
DL

Typical calls are [X, info] = nonlinsys(fun, x0)
[X, info] = nonlinsys(fun, x0, opts)
[X, info] = nonlinsys(fun, x0, opts, B0, p1,p2,...)
[X, info, perf] = nonlinsys(.....)

Input parameters

fun Handle to the function.
x0 Starting guess for x̂.
opts Vector with five elements,

opts(1) initial trust region radius ∆0.
opts(2:4) used in stopping criteria:

‖∇r(x)‖∞ ≤ opts(2) or
‖δx‖2 ≤ opts(3) (opts(3) + ‖x‖2) or
no. of function evaluations exceeds opts(4) <= update!

opts(5) ”relative” step length for difference approximations.
Default opts = [0.1(1 + ‖x0‖) 1e-6 1e-8 100 1e-6]

23
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If the input opts has less than 5 elements, it is augmented by the default values.
Also, non-positive elements are replaced by the default values.

B0
Initial approximation to the Jacobian of Jr(x0). If B0 is not given, a forward
difference approximation to Jr(x0) is used.

p1,p2,... are passed directly to the function fun .

Output parameters

X If perf is present, then X is an array, holding the iterates columnwise, with the
computed solution in the last column.
Otherwise, X returns the computed solution vector.

info Performance information, vector with 6 elements:
info(1:3) Final values of ‖r(x)‖∞, ‖∇r(x)‖∞, ‖δx‖2, ∆ .
info(4:5) Number of iteration steps and function evaluations.
info(6) = 1: Stopped by small r-vector.

2: Stopped by a small x-step,
3: No. of function evaluations exceeds opts(4) <= update!

-1: x is not a real valued vector.
-2: r is not a real valued column vector.
-3: Dimension mismatch in x, r, B0.
-4: Maybe started at a saddle point.
-5: Overflow during computation.

perf Array, holding
perf(1,:) values of ‖r(x)‖∞ ,
perf(2,:) values of ∆ .

3.1.2. Example

The following Matlab function implements the example from [1, Section 4.8]. in B1.

function r = rr(x)
r = [4*x(1)^2 + 9*x(2)^2 - 36 ; 16*x(1)^2 - 9*x(2)^2 - 36];

In the call

[x ii] = nonlinsys(@rr, [1 1])

we use the starting point x0 = (1, 1), default values for opts and an empty B0. We get the
following results,

x = 1.8974
1.5492

ii = 3.9703e-07 1.8401e-05 2.2481 7 14 1

Thus, we find an approximate solution (with ‖r(x)‖∞ = 3.97 · 10−7) after 7 iteration steps,
involving 14 evaluations of r(x).

For comparison, if we extend rr so that it also returns the Jacobian, and use dogleg with the
same starting point and default opts-values, we get the same solution (to 8 digits accuracy),
but ‖r(x)‖∞ = 1.14 · 10−13. This costs 7 evaluations of r(x) and the Jacobian J(x).
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3.2. Auxiliary Programs

The function immoptset helps the user setting the options that are required by a number of
the immoptibox functions, and checkgrad can be used to check the user’s implementation of a
gradient or Jacobian or Hessian.

3.2.1. User’s guide to immoptset

The ideas behind this function are due to PhD student Carsten Völcker, DTU Informatics.

The following table gives the 9 functions that are handled by immoptset and the associated
option names.

dampnewton ’tau’ ’tolg’ ’tolx’ ’maxeval’
linesearch ’choice’ ’cp1’ ’cp2’ ’maxeval’ ’amax’
ucminf ’Delta’ ’tolg’ ’tolx’ ’maxeval’
dogleg ’Delta’ ’tolg’ ’tolx’ ’tolr’ ’maxeval’
marquardt ’tau’ ’tolg’ ’tolx’ ’maxeval’
smarquardt ’tau’ ’tolg’ ’tolx’ ’maxeval’ ’relstep’
nonlinhuber ’gamma’ ’Htype’ ’tau’ ’tolg’ ’tolx’ ’maxeval’
mexpfit ’const’ ’tau’ ’tolg’ ’tolx’ ’maxeval’
nonlinsys ’Delta’ ’tolg’ ’tolx’ ’maxeval’ ’relstep’

Most cases include the option names ’tolg’, ’tolx’ and ’maxeval’, which correspond to the
stopping criteria

‖∇f(x)‖∞ ≤ tolg or

‖δx‖2 ≤ tolx (tolx + ‖x‖2) or

no. of function evaluations exceeds maxeval

(3.1)

The other options are explained in connection with the function.

A typical call is opts = immoptset(mlfun, p1,v1, p2,v2, ...)

Input parameters

mlfun String with the name of the function or a handle to it.
p1,p2,... Strings with option names
v1,v2,... Real numbers with the values of the options.

output parameters

opts Struct with the option names and their values. Options that do not appear as input
are assigned their default value.
The values are not checked for feasibility; this is done in the function defined by
mlfun.
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3.2.2. User’s guide to checkgrad

The user’s implementation of partial derivatives are
controlled by approximating forward and backward
differences and extrapolations of these, DF , DB, and
DE , respectively. Let p denote the value of the par-
tial derivative and u = p−D. The implementation is
probably correct if

uB ' −1
2uF

and uE is orders of magnitude smaller. For details see
[6] or the example in [1, pp 156 – 158]. x−½h x x+h

D
B

D
F

D
E

A typical call is [maxJ, err, index] = checkgrad(fun, x, h, p1,p2,...)

Input parameters

fun Handle to the function.
x The point where we wish to check the derivatives.
h Step length used in difference approximations.

May be a vector with h(j) used in the j’th coordinate direction.
hj ' 10−6|xj | is generally a good choice.

p1,p2,... are passed directly to the function fun .

Output parameters

maxJ Largest element in the vector (or matrix) of partial derivatives.
err Vector with three elements. The maximal absolute value of uF , uB and uE , respectively.
index 3× 2 array, with index(k,:) giving the position in matrix of partial derivatives, where

err(k) occurs.

3.2.3. Example

The calls opts1 = immoptset(@marquardt) and opts = immoptset(’marquardt’)
both give the default values opts = tau: 0.001

tolg: 0.0001
tolx: 1e-008

maxeval: 100

opts2 = immoptset(@Marquardt, ’Tau’,1e-6) gives opts2 = tau: 1e-006
tolg: 0.0001
tolx: 1e-008

maxeval: 100
Notice that upper/lower case is ignored.

Finally, opts3 = immoptset(@marquart, 1e-6,’tau’) gives

??? Error using ==> immoptset at 48
IMMOPTSET is not prepared for marquart

and opts4 = immoptset(@marquardt, 1e-6,’tau’) gives

??? Error using ==> immoptset at 56
The value 1e-06 is not assigned to an option



3.3. Test Problems 27

In order to demonstrate checkgrad consider the function

function [f, g] = myfun(x)
e = exp(-x(1)^2); f = e*cos(x(2));
if nargout > 1

g = [-2*x(1)*f; -e*sin(x(2))];
end

The call [maxJ, err, index] = checkgrad(@myfun, [1 2], 1e-6) gives

maxJ = 0.33451 err = -1.5308e-007 index = 1 1
7.6485e-008 1 1
-3.7605e-011 1 1

The values in err behave as discussed above. The implementation of the gradient seems to be
correct.

Now suppose that the gradient had been implemented as

g = [-2*x(1)*f; e*sin(x(2))];

Then the same call would give

maxJ = 0.33451 err = -0.66902 index = 1 2
-0.66902 1 2
-0.66902 1 2

The three values in err are identical. This indicates an error, and the second element in index
shows that this is in the derivative with respect to x2.

3.3. Test Problems

This section contains a problem generator uctpget which gives the choice between 22 small and
medium sized unconstrained optimization problems. The function uctpval is constructed so
that it can be used as fun in the Matlab functions of sections 1.1 and 1.2.

3.3.1. User’s guide to uctpget

This function can be used to define a test prob-
lem. There is a choice between 22 problems, as
described in [13]. With some of the problems it
is possible to vary the size of the problem.
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Problem no. 10
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pno Name m n

1 Linear function, full rank m ≥ n variable
2 Linear function, rank 1 m ≥ n variable
3 Linear function, rank 1. m ≥ n variable

Zero columns and rows n ≥ 3
4 Rosenbrock 2 2
5 Helical Valley 3 3
6 Powell singular function 4 4
7 Freudenstein and Roth 2 2
8 Bard 15 3
9 Kowalik and Osborne 11 4
10 Meyer 16 3
11 Watson 31 2 ≤ n ≤ 31
12 Box 3-dimensional m ≥ 3 3
13 Jennrich and Sampson m ≥ 2 2
14 Brown and Dennis m ≥ 4 4
15 Chebyquad m ≥ n variable
16 Brown almost linear m = n variable
17 Osborne 1 33 5
18 Exponential fit 45 4
19 Exponential fit, separated 45 2
20 Modified Meyer 16 3
21 Separated Meyer 16 2
22 Exp and squares 1 variable

A typical call is [par, x0, tau0, delta0] = uctpget(pno, m, n)

Input parameters

pno Problem number. Integer in the range [1, 22].
m,n Number of components in the vectors r(x) when pno ≤ 21 and x, respectively.

Not variable in all problems.

Output parameters

par Struct defining the problem.
par.p Problem number.
par.pt = 0 signifies a least squares problem, otherwise a general problem.
par.xm Solution. (NaNs if m or n is free).
For some problems par has more fields.

x0 Standard starting point.
tau0 Standard value for ’tau’ in the Marquardt-type functions of the toolbox.
delta0 Standard value for ’Delta’ in the DogLeg-type functions of the toolbox.

3.3.2. User’s guide to uctpval

This function can be used to evaluate a test problem, as defined by uctpget. If the problem is
“born” as a least squares problem, and par.pt is changed to 1 before the call, then uctpval
returns the function value f(x) and the gradient ∇f(x) as defined by

f(x) = 1
2

m∑

i=1

ri(x)2 = r(x)T r(x) , ∇f(x) = J(x)T r(x) .
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Typical calls are f = uctpval(x, par)
[f, Df] = uctpval(x, par)
[f, Df, D2f] = uctpval(x, par)

Input parameters

x Argument vector x.
par Struct defining the problem, cf uctpget.

Output parameters

f If par.p ≤ 21 and par.pt = 0, then f holds the vector r(x),
otherwise f holds the scalar f(x).

Df If par.p ≤ 21 and par.pt = 0, then Df holds the Jacobian J(x),
otherwise Df holds the gradient ∇f(x).

D2F Presumes par.pt 6= 0. Hessian matrix ∇2f(x).

3.3.3. Example

Suppose that we want to compare marquardt and
ucminf applied to Rosenbrock’s problem with the
starting point x0 = (−1.2, 1) and demand that
the gradient be smaller than 10−6. This can be
done as follows.

[par x0 tau] = uctpget(4,2,2);
[xm infom] = marquardt(@uctpval, x0, [tau 1e-6 1e-12 100], par);
par.pt = 1;
[xu infou] = ucminf(@uctpval,x0,[1 1e-6 1e-12 100],[],par);

Both xm and xu are close to the solution x̂ = (1, 1), and

infom = 4.91e-16 1.43e-08 9.47e-06 1.23e-06 23 1
infou = 1.45e-17 6.38e-08 6.99e-07 35 39 1

show that in both cases the desired accuracy was obtained after respectively 24 evaluations of
r and J and 39 evaluations of f and ∇f .

3.3.4. Data sets

The toolbox contains a number of data sets, which can be used to check a data fitting algorithm.

optic.dat

0 10 20 30

0

10

20
wild.dat

−1 −0.5 0 0.5 1
0

0.5

1

1.5
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peaks.dat

0 1 2 3 4 5
0

4

8

12
efit1.dat

0 0.3 0.6 0.9
0

0.1

0.2

0.3

0.4

efit2.dat

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6
osl.dat

0 200 400 600 800

10
2

10
3

10
4

The command load optic.dat gives an m×2 array optic, in which the first column holds
values of the independent variable, and the second column holds the corresponding values of the
dependent variable. Similar for the other data sets.

The data in osl.dat (notice the semilogarithmic scale) are an example of the the fitting problem
discussed in [4, Examples 5.14 and 6.22].

Also see the standard Matlab function titanium.
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4. History
Changes since previous version

Version 2.2. November 2010

• Default γ in nonlinhuber has been changed from ∞ to ‖r(x0)‖∞.

Version 2.1. November 2010
• The “homepage” has been changed from html to the present pdf format.

• Notation for objective function, gradient and Hessian has been changed to agree with the
textbook K. Madsen & H.B. Nielsen, 2010.

• Options in a number of functions has been changed from vector format to the choice between
vector and struct format.

• The function nlshybrid has been removed from the toolbox.

• The functions nonlinhuber, mexpfit and immoptset and the data set osl.dat have been
added to the toolbox.

Version 1.7. July 2009

• Corrected some broken links in the references.

Version 1.6. November 2006

• Corrected a bug in ucminf connected with the starting point satisfying the stopping criteria.

Version 1.5. September 2006

• Corrected a bug in linesearch so that it also finds a solution if the starting guess is beyond
a local maximizer in the search direction.

• Corrected a bug in ucminf connected with stopping with a zeros step.

Version 1.4. November 2005
• Corrected a bug in ucminf that made it fail if the starting guess was an acceptable approx-

imation to a local minimizer.

Version 1.3. October 2005

• Minor changes in the help parts of linhuber and ucminf.

Version 1.2. September 2004

• Section 3.2. Robust estimation has been added.

• Two data sets for exponential fitting have been added.

• dampnewton has been modified so that it can handle a zero initial Hessian.

• dogleg has been modified so that when perf is present the matrix X returns the trial sites
instead of the currently best sites.

Version 1.1. August 2004
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