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Object Recognition

Recognition

Query

?

[Lebie et al., CVPR, 2003].

Database



Feature Extraction and Correspondence



The Role of Graph Matching

Graph Matching
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Matching Problem

 Feature matching is an important step in  recognition systems.



One to one matching

 Most approaches to shape matching assume a one-to-

one correspondence between image features and model 

features. 

 This restriction pushes object recognition toward 

exemplar-based recognition. 

Gold and Rangarajan, A Graduated Assignment Algorithm for Graph Matching, IEEE 

PAMI, Volume 18, Number 4, April 1996. 



Graph Matching

Graph matching is an important component in many 

object recognition algorithms. 

Two main types of graph matching algorithms:

One-to-One

Many-to-Many



Motivation

 But different exemplars belonging to the 

same category may not share a single low-

level feature (e.g., interest point, contour, 

region, etc.). 

 Only at higher-levels 

of abstraction does 

within-class one-to-one 

feature correspondence 

occur.



Medial Axis Representation



 Scale-space representation of image 

signal

 Blobs (compact regions) are 

detected as local maxima in scale-

space of the square of:

 Ridges (elongated structures) are 

detected as local maxima of  
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Description

Shokoufandeh, Dickinson, Jönsson, 

Bretzner, Lindeberg (ECCV ‘02)



The Need for Many-to-Many Matching

One-to-one correspondence … may be not! 

Similar objects, but extracted features do not match one-to-one!



Problem Statement

 Compute many-to-many feature correspondences between graph pairs.

Combinatorial challenge!

MTM



Proposed Many-to-Many Approach

Embedding

in

Vector Space

Matching 

Point Sets



Embedding
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Two important isues:

1. Distortion:  

2. Dimension of the target space
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Tree Metric Construction Example

original graph
complete graph with edge 

weights equal to 

Euclidean distance 

between region centroids

resulting low-distortion 

tree metric with 

additional vertices.



Caterpillar Decomposition

Assume all edge weights are equal to 1.

Repeat the same algorithm for every sub tree



Graph-Dependent Embedding
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Better Cases:

The features have a natural 

representation as a tree!

There are more efficient  

combinatorial  algorithms for 

embedding metric distances 

defined on a tree!



a(0,0), b(0,1.0), c(0,1.5), d(2.0,0) , e(2.5,0.87), f(3.5,0) , g(3.93,0.25) , and h(4.5,0)

Embedding through Spherical Coding
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Graph-Dependent Embedding

Problems :

Dimensionality of the embedding is graph 

dependent!

Dimensionality reduction technique is required 

prior to matching.



Embedding

[*]Many-to-Many Feature Matching Using Spherical Coding of Directed Graphs, 

CVPR 2004

high-dimensional vector space

Point Set



Dimensionality of the Embedding Space

The distortion rapidly 
decreases when 
increasing the 
dimensionality in the 
beginning, but hardly 
decreases after the 
30th dimension.



Caterpillar Decomposition under l1

M. F. Demirci, Y. Osmanoglou, A. Shokoufandeh,  and S. Dickinson. cviu 2011



Proposed Many-to-Many Approach

Embedding

in

Vector Space

Matching 

Point Sets



distance

embedding

M
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MImage 1

Image 2

Set 1

Set 2

high-dimensional vector space

Set 1

Set 2

embedding

So far!

Either the features are 

in a space that dij’s are 

easy to compute,

Or, will be embedded 

to a vector space.

Many-to-Many Feature Matching Using Spherical Coding of Directed Graphs, Demirci et. al. ECCV2004



Matching Distributions

 The Earth Mover’s Distance (EMD)

 Distance between two point sets.

 Many-to-many point correspondences

[Rubner et al., IJCV, 2000].
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Matching – Mathematical  

Formulation

• Let P={(p1,wp1
),…,(pm,wpm)}  and Q={(q1,wq1

),…(qn,wqn)}    

be distributions.



Matching – Mathematical  
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Mass for Shock points



Mass fo blob and Ridge Rigons

Example Relations Relational Context



A simple Matching Setup
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EMD under transformation

 Iterative process for an optimal Flow and optimal 

Transformation.

 Finding transformation for weighted point sets.

 Least Squares Estimation

[Cohen et al., ICCV, 1999].

[Umeyama, PAMI, 1991].

[Keselman, Shokoufandeh, Demirci, Dickinson, CVPR, 2003].







Mass of Top-Points

We can calculate the variance 

of the displacement of top-

points under noise.

We define the mass of the top-

points as: 

Exp[-(stability volume)]

This yields a mass between 0 

and 1.



Experiments



Example Correspondences

Demirci, Shokoufandeh, Dickinson, IJCV 2006



Demonstration



Results of Many-to-Many Matching

Demirci, Shokoufandeh, Dickinson, IJCV 2006



Experiments

COIL-20 (Columbia University Image Library) database 
consisting of 72 views per object. 



Experiments (cont’d)

 For the 72 views of each object, every second view serves as a 

query view, with remaining 36 views added to the database. 

 Compute the distance between each query view and each 

database view. 

 Ideally, for view i of object j, recognition trial is correct if

closest view is vi+1,j or vi-1,j.



In all but 10.7% of the 
experiments, the closest 
match selected by our 
algorithm was a neighboring 
view.

Among the mismatches, the 
closest view belonged to the 
correct object 80% of the 
time. 

These results ignore the 
effects of symmetry, and can 
be considered worst-case.

COIL Results



View-Based Object Recognition

MPEG-7 (1400 SHAPES, 70 

CLASSES)



View-Based Object Recognition

DB1-7 (16250 VIEWS)



Results

Percentage recall values of the no distortion using L1and low-distortion (baseline) techniques 

for Db1-7 (a) and the MPEG-7 dataset (b)



Sensitivity to Noise

The set of query images is the database with 1%, 2%, 
4%, 8% and 16% Gaussian noise added.

Use the original database to match against.

We count the match as correct if the distance between the 
perturbed image and the original image is the smallest of 
all images in the database.
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Results of Matching under Noise

Noise

1% 2% 4% 8% 16%

Score 97% 93% 87% 83.5% 74%



Stability under Within-class 

Variation

D
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ab
as

e

Query Image

matching

ETC.



Best match

Worst match

If the graph representation is 

invariant to within-class 

deformation, then a query should 

match to another image from the 

same individual. Which is the 

case here.



Contributions

 Developed a general framework for many-to-many 

matching:
 Proposed a deterministic variation of spherical embedding.

 Embedding into a fixed dimension under l1.

 Precluding the need for a dimensionality reduction process.

 Showed that MTM matching with EMD achieves meaningful MTM 

matching between graph nodes. 

 Showed that directed edge information can be folded into the nodes as 

local histograms and can be used in the matching process.
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Caterpillar Decomposition:

A monotone path P in tree T is a sunset of 

some root-leaf path P’.

P’

P

A caterpillar decomposition is a 

partition F={P1,…,Pt} of the edge set 

of T such that each Pi is a monotone 

path .
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Caterpillar Dimension:
A decomposition F has dimension m if for any 

root-leaf path P in T, P has a nonempty 
intersection with at most m of Pi’s.

We will use cdmin(T) to denote the 

smallest width of any decomposition of 

tree T, and refer to this quantity as 

caterpillar dimension. 

The cdmin(T)  is bounded by O(log l(T)), l(T) is the 

number of leaves in T,  and can be computed in 

polynomial time using dynamic programming [Matousek 

1998]. 
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Using Caterpillar Decomposition:

 The reason for large contraction for naïve 
embedding is that we have a large number of 
bends on long paths.

 The contraction is propositional to square root of 
number of bends.

 Let F={P1,…,Pt} be caterpillar decomposition of 
width O(log l(T)), and associate a dimension ui with 
the path Pi .

 For each edge e E we will find the path Pi with 
e Pi, and set v(e)=w(e)ui.
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Distortion:

 As before the expansion will be again 1.

 Since the number of bends of any path is at most 
O(log l(T)), the shrinkage will be at most O((log 
l(T))1/2).

 So, the distortion will be at most O((log l(T))1/2).

 The problem is we are using orthogonal vectors for 
ui’s , and this is the limit for distortion. 

 Modification: Use l(T) vectors with small inner 
products. This will decrease the distortion by a log 
factor. 
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Finally

 Assume we have already determined about the 

dimensionality of  host space d.

 Modification: Use l(T) vectors with small inner 

products. This will decrease the distortion by a log 

factor

 For a given fixed d, use the previous idea:

 Find a set of l(T) vectors (in d dimensions) which 
are as far apart as they can be, and use them 

to embed the tree.


