Many to Many Matching in Graphs

Ali Shokoufandeh,

Department of Computer Science, Drexel University

Object Recognition

[Lebie et al., CVPR, 2003].

Feature Extraction and Correspondence

The Role of Graph Matching

Matching Problem

۲

G Feature matching is an important step in recognition systems.

One to one matching

- Most approaches to shape matching assume a one-toone correspondence between image features and model features.
- This restriction pushes object recognition toward exemplar-based recognition.

Gold and Rangarajan, A Graduated Assignment Algorithm for Graph Matching, IEEE PAMI, Volume 18, Number 4, April 1996.

Graph Matching

- Graph matching is an important component in many object recognition algorithms.
- Two main types of graph matching algorithms:
 - One-to-One
 - Many-to-Many

Motivation

- But different exemplars belonging to the same category may not share a single low-level feature (e.g., interest point, contour, region, etc.).
- Only at higher-levels of abstraction does within-class one-to-one feature correspondence occur.

Medial Axis Representation

Multi-Scale Qualitative Shape Description

Shokoufandeh, Dickinson, Jönsson, Bretzner, Lindeberg (ECCV '02) Scale-space representation of image signal

 $L(\cdot;t) = g(\cdot;t) * f(\cdot)$

Blobs (compact regions) are detected as local maxima in scalespace of the square of:

$$\nabla_{norm}^2 L = t(L_{xx} + L_{yy})$$

Ridges (elongated structures) are detected as local maxima of

$$R_{norm} L = t^{3/2} (L_{pp} - L_{qq})^2$$

= $t^{3/2} ((L_{xx} - L_{yy})^2 + 4L_{xy}^2)$

The Need for Many-to-Many Matching

One-to-one correspondence ... may be not!

Similar objects, but extracted features do not match one-to-one!

Problem Statement

Compute many-to-many feature correspondences between graph pairs.

Combinatorial challenge!

Proposed Many-to-Many Approach

Embedding

2. Dimension of the target space

Tree Metric Construction Example

original graph

complete graph with edge weights equal to Euclidean distance between region centroids

resulting low-distortion tree metric with additional vertices.

Caterpillar Decomposition

Assume all edge weights are equal to 1.

Repeat the same algorithm for every sub tree

Graph-Dependent Embedding

Better Cases:

The features have a natural representation as a tree!

There are more efficient combinatorial algorithms for embedding metric distances defined on a tree!

Embedding through Spherical Coding

a(0,0), b(0,1.0), c(0,1.5), d(2.0,0), e(2.5,0.87), f(3.5,0), g(3.93,0.25), and h(4.5,0)

Graph-Dependent Embedding

Problems :

- Dimensionality of the embedding is graph dependent!
- Dimensionality reduction technique is required prior to matching.

Embedding

high-dimensional vector space

[*]Many-to-Many Feature Matching Using Spherical Coding of Directed Graphs, CVPR 2004

Dimensionality of the Embedding Space

The distortion rapidly decreases when increasing the dimensionality in the beginning, but hardly decreases after the 30th dimension.

Caterpillar Decomposition under I₁

M. F. Demirci, Y. Osmanoglou, A. Shokoufandeh, and S. Dickinson. cviu 2011

Proposed Many-to-Many Approach

Set 2

Image 2

Many-to-Many Feature Matching Using Spherical Coding of Directed Graphs, Demirci et. al. ECCV2004

Matching Distributions

The Earth Mover's Distance (EMD)

- Distance between two point sets.
- Many-to-many point correspondences

• Let $P = \{(p_1, w_{p_1}), \dots, (p_m, w_{p_m})\}$ and $Q = \{(q_1, w_{q_1}), \dots, (q_n, w_{q_n})\}$ be distributions.

• Let $P = \{(p_1, w_{p_1}), \dots, (p_m, w_{p_m})\}$ and $Q = \{(q_1, w_{q_1}), \dots, (q_n, w_{q_n})\}$ be distributions.

• Find a flow matrix F = [fij] that minimizes:

$$Work(P,Q,F) = \mathop{\text{a}}\limits_{i=1}^{m} \mathop{\text{a}}\limits_{j=1}^{n} f_{ij}d_{ij}$$

• Let $P = \{(p_1, w_{p_1}), \dots, (p_m, w_{p_m})\}$ and $Q = \{(q_1, w_{q_1}), \dots, (q_n, w_{q_n})\}$ be distributions.

• Find a flow matrix F = [fij] that minimizes:

• subject to:

$$Work(P,Q,F) = \overset{m}{\underset{i=1}{\overset{n}{\Rightarrow}}} \overset{n}{\underset{j=1}{\overset{n}{\Rightarrow}}} f_{ij}d_{ij}$$

$$f_{ij} \stackrel{3}{\Rightarrow} 0,1 \stackrel{f}{\underset{i=1}{\overset{i}{\Rightarrow}}} i \stackrel{f}{\underset{i=1}{\overset{m}{\Rightarrow}}} j \stackrel{f}{\underset{i=1}{\overset{n}{\Rightarrow}}} n$$

• Let $P = \{(p_1, w_{p_1}), \dots, (p_m, w_{p_m})\}$ and $Q = \{(q_1, w_{q_1}), \dots, (q_n, w_{q_n})\}$ be distributions.

• Find a flow matrix F = [fij] that minimizes:

Work
$$(P,Q,F) = \overset{m}{\underset{i=1}{a}} \overset{n}{\underset{j=1}{a}} f_{ij} d_{ij}$$

$$f_{ij} \stackrel{3}{=} 0,1 \notin i \notin m,1 \notin j \notin n$$

$$\overset{n}{\underset{j=1}{a}} f_{ij} \notin w_{pi},1 \notin i \notin m$$

$$\overset{n}{\underset{i=1}{a}} f_{ij} \notin w_{qi},1 \notin j \notin n$$

• subject to:

• Let $P = \{(p_1, w_{p_1}), \dots, (p_m, w_{p_m})\}$ and $Q = \{(q_1, w_{q_1}), \dots, (q_n, w_{q_n})\}$ be distributions.

• Find a flow matrix F = [fij] that minimizes:

• subject to:

$$Work(P,Q,F) = \bigotimes_{i=1}^{m} \bigotimes_{j=1}^{n} f_{ij} d_{ij}$$
• subject to:

$$f_{ij} \stackrel{3}{=} 0,1 \notin i \notin m, 1 \notin j \notin n$$

$$\bigotimes_{j=1}^{n} f_{ij} \notin w_{pi}, 1 \notin i \notin m$$

$$\bigotimes_{i=1}^{m} f_{ij} \notin w_{qi}, 1 \notin j \notin n$$

$$\bigotimes_{i=1}^{m} \bigotimes_{j=1}^{n} f_{ij} = \min(\bigotimes_{i=1}^{m} w_{pi}, \bigotimes_{j=1}^{n} w_{qj})$$

Mass for Shock points

Mass fo blob and Ridge Rigons

A simple Matching Setup

EMD under transformation

- Iterative process for an optimal Flow and optimal Transformation.
- Finding transformation for weighted point sets.
- Least Squares Estimation

[Cohen et al., ICCV, 1999].[Umeyama, PAMI, 1991].[Keselman, Shokoufandeh, Demirci, Dickinson, CVPR, 2003].

Mass of Top-Points

- We can calculate the variance of the displacement of toppoints under noise.
- We define the mass of the toppoints as:
 - Exp[-(stability volume)]
- This yields a mass between 0 and 1.

Experiments

Example Correspondences

Demirci, Shokoufandeh, Dickinson, IJCV 2006

Demonstration

Results of Many-to-Many Matching

Demirci, Shokoufandeh, Dickinson, IJCV 2006

Experiments

COIL-20 (Columbia University Image Library) database consisting of 72 views per object.

Experiments (cont'd)

- For the 72 views of each object, every second view serves as a query view, with remaining 36 views added to the database.
- Compute the distance between each query view and each database view.
- Ideally, for view *i* of object *j*, recognition trial is correct if closest view is $v_{i+1,j}$ or $v_{i-1,j}$.

In all but 10.7% of the experiments, the closest match selected by our algorithm was a neighboring view.

Among the mismatches, the closest view belonged to the correct object 80% of the time.

These results ignore the effects of symmetry, and can be considered worst-case.

View-Based Object Recognition

● よう ラブノト ポ ラーイ! ~ 」 -0-- -

MPEG-7 (1400 SHAPES, 70 CLASSES)

View-Based Object Recognition

DB1-7 (16250 VIEWS)

Results

Percentage recall values of the no distortion using L1and low-distortion (baseline) techniques for Db1-7 (a) and the MPEG-7 dataset (b)

Sensitivity to Noise

- The set of query images is the database with 1%, 2%, 4%, 8% and 16% Gaussian noise added.
- Use the original database to match against.
- We count the match as correct if the distance between the perturbed image and the original image is the smallest of all images in the database.

Results of Matching under Noise

Noise	1%	2%	4%	8%	16%
Score	97%	93%	87%	83.5%	74%

Stability under Within-class Variation

If the graph representation is invariant to within-class deformation, then a query should match to another image from the same individual. Which is the case here.

Contributions

- Developed a general framework for many-to-many matching:
 - Proposed a deterministic variation of spherical embedding.
 - **\square** Embedding into a fixed dimension under l_1 .
 - Precluding the need for a dimensionality reduction process.
 - Showed that MTM matching with EMD achieves meaningful MTM matching between graph nodes.
 - Showed that directed edge information can be folded into the nodes as local histograms and can be used in the matching process.

Credits:

- Fatih Demirci (Drexel)
- Sven Dickinson (U. of Toronto)
- Yakov Keselman (Mircosoft)
- Tony Lindeberg, Lars Bretzner (KTH)
- Kaleem Siddiqi (McGill)
- Steven Zucker (Yale)
- Luc Florack (Eindhoven)
- Bram Platel

Acknowledgment:

Caterpillar Decomposition:

- A monotone path P in tree T is a sunset of some root-leaf path P'.
- A caterpillar decomposition is a partition $F = \{P_1, ..., P_t\}$ of the edge set of T such that each P_i is a monotone path.

Caterpillar Dimension:

- A decomposition F has dimension m if for any root-leaf path P in T, P has a nonempty intersection with at most m of P_i's.
- We will use *cdmin(T)* to denote the smallest width of any decomposition of tree T, and refer to this quantity as *caterpillar dimension*.
- The *cdmin(T)* is bounded by *O*(log *l(T))*, *l(T)* is the number of leaves in *T*, and can be computed in polynomial time using dynamic programming [Matousek 1998].

Using Caterpillar Decomposition:

- The reason for large contraction for naïve embedding is that we have a large number of bends on long paths.
- The contraction is propositional to square root of number of bends.
- Let $F=\{P_1,\ldots,P_t\}$ be caterpillar decomposition of width $O(\log I(T))$, and associate a dimension u_i with the path P_i .
- For each edge $e \in E$ we will find the path P_i with $e \in P_i$, and set $v(e) = w(e)u_i$.

Distortion:

- As before the expansion will be again 1.
- Since the number of bends of any path is at most O(log I(T)), the shrinkage will be at most O((log I(T))^{1/2}).
- So, the distortion will be at most $O((\log I(T))^{1/2})$.
- The problem is we are using orthogonal vectors for *u_i*'s , and this is the limit for distortion.
- Modification: Use I(T) vectors with small inner products. This will decrease the distortion by a log factor.

Finally

- Assume we have already determined about the dimensionality of host space d.
- Modification: Use I(T) vectors with small inner products. This will decrease the distortion by a log factor
- For a given fixed *d*, use the previous idea:
 - Find a set of *I(T)* vectors (in d dimensions) which are as far apart as they can be, and use them to embed the tree.