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Motivation

Many problems in computer vision share the 

following common theme:

“Given a large data set select a subset of its elements that

best represent the original set.”

This reduction is usually driven by the requirements 

of a particular application or domain:

 Reducing the space complexity of the data

 Improving the performance of the algorithms

 Dealing with oversampled, noisy data
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Overview

 Sample applications 

 How clustering algorithms help

 Need for direct feature selection

How optimization helps?

 Discrete formulation

 Complexity of discrete problems

 Approximate algorithms for subset selection
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A Typical Scenario: 
View-based 3D Recognition

Representation model

 A 3D object will be represented with a set of 2D views.

 This results in significant reduction in dimensionality when comparing objects. 
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Downside of View-based Recognition
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The recognition algorithm compares 2D views 

rather than comparing 3D objects. 



A Typical Scenario: 
View-based 3D Recognition
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All the gain in dimensionality reduction seems to have 

vanished as a result of number of necessary 

comparisons. 



Redundancy Helps

The need for efficiency forces us to use a minimal 

set of views for representation; views are 

redundant to some degree.
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The reduced set is the result 

of a process such as 

clustering. 

The representative elements 

are centroid of clusters.  



2D View Selection

Is it necessary to use clustering  to select highly 
informative 2D views of a 3D object
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Distance Measure
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We assume there exists 

a similarity measure to 

compare the 2D 

views.

M. F. Demirci, A. Shokoufandeh,  and S. Dickinson. cviu 2011



Discriminating among Multiple Objects

 Selecting views for recognition will become 

subset selection for class discrimination.
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C. M. Cyr and B. B. Kimia, A similarity-based aspect-
graph approach to 3D object recognition, IJCV, 

vol. 57, pp. 5-22, April 2004.



Discriminating among Multiple Objects

 Selecting views for recognition will become subset 

selection for class discrimination.

 Techniques such as LDA and FDA are more relevant 

for subset selection, i.e., selecting subsets directly.
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C. M. Cyr and B. B. Kimia, A similarity-based aspect-
graph approach to 3D object recognition, IJCV, 

vol. 57, pp. 5-22, April 2004.

T. Denton, Shokoufandeh, CVPR 2005.



Appearance-based Representation

Rely on the affinity  of the projected intensity image 

among neighboring views and use some form of PCA 

on images, to determine the principal direction of 

variations.

Only a subset of information will be retained as 

advocated by the eigenmodels.
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M. Tarr and D. Kriegman. “What defines a view?” Vision Research, 2001.



Distance Measure

1. Silhouettes are converted to graphs

2. Graphs are embedded into d-dimensional Euclidean space 

3. Distribution based metric similar to EMD is used to calculate the distance between 
weighted point sets
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M. F. Demirci, A. Shokoufandeh,  and S. Dickinson. cviu 2011

• We do need a distance measure to 

compare 2D views: 



Shape Averaging:

 Generating a new views out of 

existing ones.

 The pair-wise average shapes in 

a cluster can be utilized to 

organize views for efficient 

search.
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Demirci, Shokoufandeh, Dickinson, Member, Skeletal Shape Abstraction from 

Examples, IEEE PAMI 2009.



Another Scenario: 
Feature Selection for Recognition 

 Given a set of 

appearance features 

associated with different 

views of an object.

 Find a small subset of 

features, invariant under 

minor changes in view 

points that best

characterize the views.    
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Blobs and ridges detected 
in scale-space

SIFT features (red) showing orientation direction and 
scale



Feature selection for recognition 

Discrimination across objects. 
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Flexibility in Imposing Constraints

 The feature selection process should allow for imposing 

constrains:

 Spatial constraints to deal with occlusion

 Stability constraints to deal with noise. 
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Denton, Shokoufandeh, Novatnack, and Nishino.  (2008).



Setting up the Optimization Problem

 Given

 Dataset P

 Pair-wise similarity function (similarity between related pairs of data points can 

be determined)

 Find a subset P* that best represents P
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Constraints to Optimize

The combinatorial properties of algorithms for subset 

selection:

 Generates a compact form of original data

 Highly representative subset

 Less sensitive to outliers

 No requirement for the number of clusters

 Easy to incorporate domain knowledge such as stability, spatial 

distribution, etc.
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Discrete representation

Represent the set as graph:

 Vertices: data points

 Edges: similarity of vertices

 Intra

 Cut

 Extra
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Indicator Variables and Property Formulation

 For each element pi, create an indicator variable:
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Indicator Variables and Property Formulation

 For each element pi, create an indicator variable:

 Using the indicator variables we can define properties such as 

Cut(P*) the sum of the weights of the cut edges as
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Properties

 Size(P*) : Number of vertices in 
canonical set

Cut(P*): Sum of cut edge weights

 Intra(P*): Sum of intra edge 
weights

Extra(P*) : Sum of extra edge 
weights

 Stability(P*): Sum of vertex 
weights in canonical set
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Inverse Properties

We can also define inverse properties:

 Such as Cut-1(P*) : Sum of uncut edge weights 

 Minimizing Cut(P*) is the same as maximizing Cut-1(P*)

 Inverse properties 

designed for switching 

between minimization 

and maximization for 

ms:



Some Possible strategies for Selecting 
subsets

Bounded Canonical Set

Stable Bounded Canonical Set
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Bounded Canonical Set (BCS)

 BCS

 Elements in canonical set are minimally similar 

 Elements in canonical set are maximally similar to elements not in canonical set 

 Size of canonical set is at least kmin and at most kmax
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Stable Bounded Canonical Set (SBCS)

 Stability value associated with each data point

 Data points in canonical set are minimally similar 
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 Data points in canonical set 

are maximally similar to 

data points not in canonical 

set 

 Data points in canonical set 

are maximally stable

 Size of canonical set is at 

least kmin and at most kmax



Stable Bounded Canonical Set (SBCS)

 Stability value associated with each data point

 Data points in canonical set are minimally similar 
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 Data points in canonical set 

are maximally similar to 

data points not in canonical 

set 

 Data points in canonical set 

are maximally stable

 Size of canonical set is at 

least kmin and at most kmax



Effect of Distance Measure on BCS
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Tree 1 Tree 2

Spiral Spiral Manifold Fully Connected Grid

Lattice



Combining Objective Functions

The functions are all convex and may be combined 

using Pareto optimality (Essentially a weighted  combination):

 Solution is a Pareto optimal point for a given set of weights

 Solutions for different weightings might not be comparable
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Maximize   l1 Intra-1(P*)[ ] + l2 Cut(P*)[ ] 

Subject to   Size(P*) - kmin ³ 0,

                   kmax -Size(P*) ³ 0,

Where         l1 + l2 =1

Pareto weighting parameters



Intractability

Using a simple Karp reduction it can be shown 
that the BCS is NP-Hard;
Reduction to the Bounded Canonical Set from  

dominating set problem

The minimum dominating set problem is known to be 
NP-Hard
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Approximation Methods

BCS problem is NP-hard!

Approximate solution can be found using 

 Semidefinite programming (SDP)

• Primal/Dual Method of SDP.

 Quadratic programming (QP)
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SDP Approximations

 Max-Cut

 Goemans and Williamson 1994 used SDP to generate approximation to 

Max-Cut that is at least 0.878 of optimal

 Subgraph matching (Schellewald et al. 2003)

 Image segmentation (Keuchel et al. 2004)

 Shape from shading (Zhu et al. 2006)
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40

Vector Relaxation

To prepare for SDP we perform a relaxation where we 

replace each integer variable y
i
with a unit length 

vector x
i

n+1
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Vector Relaxation

To prepare for SDP we perform a relaxation where we 

replace each integer variable y
i
with a unit length 

vector x
i

n+1

Define the matrix V to be the matrix obtained from 

concatenating the column vectors xi
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Vector Relaxation

To prepare for SDP we perform a relaxation where we 

replace each integer variable y
i
with a unit length 

vector x
i

n+1

Define the matrix V to be the matrix obtained from 

concatenating the column vectors xi

Define the matrix X to be VTV
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Vector Relaxation

 To prepare for SDP we perform a relaxation where 

we replace each integer variable y
i
with a unit length 

vector x
i

n+1

 Define the matrix V to be the matrix obtained from 

concatenating the column vectors xi

 Define the matrix X to be VTV

 X is semidefinite



Semidefinite Programming (SDP)

 Optimization of a matrix inner product form
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Maximize   C · X

Subject to   A j · X £ b j ,   " j Î 1,… ,m{ },

                   X is positive  semidefinite



Fast Implementation:

Instead of using an SDP solver we can establish a 

primal dual SDP pair:

 starts with a trivial candidate for a primal solution (possibly 

infeasible), viz. X(1) =(1/n) I. 

 iteratively generates primal solutions X(2),X(3), . . . 

 X(t+1) is obtain X(t), through auxiliary Oracle.
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Primal Dual Oracle

 The Oracle tries to certify the validity of the current X(t).

 Oracle searches for a vector y from the polytope Dα={y:y ≥ 0, b·y ≤ α} 

such that

 if Oracle succeeds in finding such a y then we claim X(t) is either primal infeasible 

or has value C•X(t) ≤ α.

 if there is no vector y in D, then it can be seen that X(t) must be a primal feasible 

solution of objective value.
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SDP Solution

 The output of the SDP solver is the matrix X.

 We then use a Cholesky decomposition to obtain the matrix V

(X = VTV )

 The columns of matrix V are our unit length vectors x
i

n+1



Approximation

 Define a binary indicator vector z n+1

We use a rounding technique to approximate z
i
from the ith 

column of matrix V.

 Pick a random vector r to be uniformly distributed on the 

unit sphere (V. Vazirani)

 For each column v
i
of V

   

zi =
1 if v i × r ³ 0

-1 otherwis   

ì 
í 
î 

r

xj

xk

Hr

θj

θk



Finally

If z
i
=z

n+1
then vertex i is in the canonical set

Thus the indicator vector z tells which of the vertices of 

P is in the canonical set: that is, the subset P' that best 

represents P

This process can be de-randomized using the 

expectation maximization



Quadratic Programming (QP)

Quadratic objective

Linear constraints
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Maximize   l1 Intra-1(P*)[ ] + l2 Cut(P*)[ ] 

Subject to   Size(P*) - kmin ³ 0,

                   kmax -Size(P*) ³ 0,

Where         l1 + l2 =1



Quadratic Programming (QP)

Quadratic objective

Linear constraints
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Maximize   1
2
xTHx+ f T x

Subject to  Ax £ b

                  l £ x £ u



52

Bounds

It has been shown that (for any particular set of λ1and  

λ2) the expected value of the approximate solution is 

at least 0.878*OPTBCS. 

The guarantee only applies to the objective value. 



Objective Performance

 Exhaustive search compared to approximation

 Experimental results confirm the quality of the approximation
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Test Number



Comparing SDP vs. QP on Localization 
Task

 The average ratio of objective values, QP/SDP was 1.003, and the ratio of 

execution times was 0.17.

 For technical reasons both algorithms were run as minimizations, thus lower 

values indicate better performance.
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Localization Results
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Query Target Matching Localization

Denton, Shokoufandeh, Novatnack, and Nishino. CVIU 
(2008).



Object Localization in Occluded Scenes 
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Conclusion:

 Bad news:

 Almost every nontrivial feature selection problem is computationally 

intractable.

 Good news: 

 Good approximation algorithms (objective performance guarantees of 0.878 

of optimal) exist.

 Provided that constraints are in  first order logic statement (∧,∨,¬, etc.)

 Objective Function can be complex

 Size of approximate solutions (subsets) can be derived from optimization

 Fast QP and primal-dual approximations exist
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Thank You.
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SDP formulation of BCS
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Exact Formulation
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BCS as QP
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BCS as QP
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Primal Dual Oracle
 The Oracle tries to certify the validity of the current X(t).

 Oracle searches for a vector y from the polytope   Dα={y:y 

≥ 0, b·y ≤ α} such that

 if Oracle succeeds in finding such a y then we claim X(t) is either 

primal infeasible or has value C•X(t) ≤ α.

 if there is no vector y in D, then it can be seen that X(t) must be a 

primal feasible solution of objective value.
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Objective Performance

 Exhaustive search compared to approximation

 Experimental results confirm the quality of the 

approximation
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Test Number



Comparing SDP vs. QP on 
Localization Task

 The average ratio of objective values, QP/SDP was 1.003, and the ratio 

of execution times was 0.17.

 For technical reasons both algorithms were run as minimizations, thus 

lower values indicate better performance.
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