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Motivation

Many problems in computer vision share the 

following common theme:

“Given a large data set select a subset of its elements that

best represent the original set.”

This reduction is usually driven by the requirements 

of a particular application or domain:

 Reducing the space complexity of the data

 Improving the performance of the algorithms

 Dealing with oversampled, noisy data
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Overview

 Sample applications 

 How clustering algorithms help

 Need for direct feature selection

How optimization helps?

 Discrete formulation

 Complexity of discrete problems

 Approximate algorithms for subset selection

3



A Typical Scenario: 
View-based 3D Recognition

Representation model

 A 3D object will be represented with a set of 2D views.

 This results in significant reduction in dimensionality when comparing objects. 
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Downside of View-based Recognition
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The recognition algorithm compares 2D views 

rather than comparing 3D objects. 



A Typical Scenario: 
View-based 3D Recognition
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All the gain in dimensionality reduction seems to have 

vanished as a result of number of necessary 

comparisons. 



Redundancy Helps

The need for efficiency forces us to use a minimal 

set of views for representation; views are 

redundant to some degree.
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The reduced set is the result 

of a process such as 

clustering. 

The representative elements 

are centroid of clusters.  



2D View Selection

Is it necessary to use clustering  to select highly 
informative 2D views of a 3D object
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Distance Measure
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We assume there exists 

a similarity measure to 

compare the 2D 

views.

M. F. Demirci, A. Shokoufandeh,  and S. Dickinson. cviu 2011



Discriminating among Multiple Objects

 Selecting views for recognition will become 

subset selection for class discrimination.
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C. M. Cyr and B. B. Kimia, A similarity-based aspect-
graph approach to 3D object recognition, IJCV, 

vol. 57, pp. 5-22, April 2004.



Discriminating among Multiple Objects

 Selecting views for recognition will become subset 

selection for class discrimination.

 Techniques such as LDA and FDA are more relevant 

for subset selection, i.e., selecting subsets directly.
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C. M. Cyr and B. B. Kimia, A similarity-based aspect-
graph approach to 3D object recognition, IJCV, 

vol. 57, pp. 5-22, April 2004.

T. Denton, Shokoufandeh, CVPR 2005.



Appearance-based Representation

Rely on the affinity  of the projected intensity image 

among neighboring views and use some form of PCA 

on images, to determine the principal direction of 

variations.

Only a subset of information will be retained as 

advocated by the eigenmodels.
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M. Tarr and D. Kriegman. “What defines a view?” Vision Research, 2001.



Distance Measure

1. Silhouettes are converted to graphs

2. Graphs are embedded into d-dimensional Euclidean space 

3. Distribution based metric similar to EMD is used to calculate the distance between 
weighted point sets
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M. F. Demirci, A. Shokoufandeh,  and S. Dickinson. cviu 2011

• We do need a distance measure to 

compare 2D views: 



Shape Averaging:

 Generating a new views out of 

existing ones.

 The pair-wise average shapes in 

a cluster can be utilized to 

organize views for efficient 

search.
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Demirci, Shokoufandeh, Dickinson, Member, Skeletal Shape Abstraction from 

Examples, IEEE PAMI 2009.



Another Scenario: 
Feature Selection for Recognition 

 Given a set of 

appearance features 

associated with different 

views of an object.

 Find a small subset of 

features, invariant under 

minor changes in view 

points that best

characterize the views.    
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Blobs and ridges detected 
in scale-space

SIFT features (red) showing orientation direction and 
scale



Feature selection for recognition 

Discrimination across objects. 
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Flexibility in Imposing Constraints

 The feature selection process should allow for imposing 

constrains:

 Spatial constraints to deal with occlusion

 Stability constraints to deal with noise. 
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Denton, Shokoufandeh, Novatnack, and Nishino.  (2008).



Setting up the Optimization Problem

 Given

 Dataset P

 Pair-wise similarity function (similarity between related pairs of data points can 

be determined)

 Find a subset P* that best represents P
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Constraints to Optimize

The combinatorial properties of algorithms for subset 

selection:

 Generates a compact form of original data

 Highly representative subset

 Less sensitive to outliers

 No requirement for the number of clusters

 Easy to incorporate domain knowledge such as stability, spatial 

distribution, etc.
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Discrete representation

Represent the set as graph:

 Vertices: data points

 Edges: similarity of vertices

 Intra

 Cut

 Extra
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Indicator Variables and Property Formulation

 For each element pi, create an indicator variable:
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Indicator Variables and Property Formulation

 For each element pi, create an indicator variable:

 Using the indicator variables we can define properties such as 

Cut(P*) the sum of the weights of the cut edges as
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Properties

 Size(P*) : Number of vertices in 
canonical set

Cut(P*): Sum of cut edge weights

 Intra(P*): Sum of intra edge 
weights

Extra(P*) : Sum of extra edge 
weights

 Stability(P*): Sum of vertex 
weights in canonical set
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Inverse Properties

We can also define inverse properties:

 Such as Cut-1(P*) : Sum of uncut edge weights 

 Minimizing Cut(P*) is the same as maximizing Cut-1(P*)

 Inverse properties 

designed for switching 

between minimization 

and maximization for 

ms:



Some Possible strategies for Selecting 
subsets

Bounded Canonical Set

Stable Bounded Canonical Set
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Bounded Canonical Set (BCS)

 BCS

 Elements in canonical set are minimally similar 

 Elements in canonical set are maximally similar to elements not in canonical set 

 Size of canonical set is at least kmin and at most kmax
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Stable Bounded Canonical Set (SBCS)

 Stability value associated with each data point

 Data points in canonical set are minimally similar 
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 Data points in canonical set 

are maximally similar to 

data points not in canonical 

set 

 Data points in canonical set 

are maximally stable

 Size of canonical set is at 

least kmin and at most kmax



Stable Bounded Canonical Set (SBCS)

 Stability value associated with each data point

 Data points in canonical set are minimally similar 
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 Data points in canonical set 

are maximally similar to 

data points not in canonical 

set 

 Data points in canonical set 

are maximally stable

 Size of canonical set is at 

least kmin and at most kmax



Effect of Distance Measure on BCS
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Tree 1 Tree 2

Spiral Spiral Manifold Fully Connected Grid

Lattice



Combining Objective Functions

The functions are all convex and may be combined 

using Pareto optimality (Essentially a weighted  combination):

 Solution is a Pareto optimal point for a given set of weights

 Solutions for different weightings might not be comparable
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Maximize   l1 Intra-1(P*)[ ] + l2 Cut(P*)[ ] 

Subject to   Size(P*) - kmin ³ 0,

                   kmax -Size(P*) ³ 0,

Where         l1 + l2 =1

Pareto weighting parameters



Intractability

Using a simple Karp reduction it can be shown 
that the BCS is NP-Hard;
Reduction to the Bounded Canonical Set from  

dominating set problem

The minimum dominating set problem is known to be 
NP-Hard
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Approximation Methods

BCS problem is NP-hard!

Approximate solution can be found using 

 Semidefinite programming (SDP)

• Primal/Dual Method of SDP.

 Quadratic programming (QP)
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SDP Approximations

 Max-Cut

 Goemans and Williamson 1994 used SDP to generate approximation to 

Max-Cut that is at least 0.878 of optimal

 Subgraph matching (Schellewald et al. 2003)

 Image segmentation (Keuchel et al. 2004)

 Shape from shading (Zhu et al. 2006)
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40

Vector Relaxation

To prepare for SDP we perform a relaxation where we 

replace each integer variable y
i
with a unit length 

vector x
i

n+1
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Vector Relaxation

To prepare for SDP we perform a relaxation where we 

replace each integer variable y
i
with a unit length 

vector x
i

n+1

Define the matrix V to be the matrix obtained from 

concatenating the column vectors xi
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Vector Relaxation

To prepare for SDP we perform a relaxation where we 

replace each integer variable y
i
with a unit length 

vector x
i

n+1

Define the matrix V to be the matrix obtained from 

concatenating the column vectors xi

Define the matrix X to be VTV
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Vector Relaxation

 To prepare for SDP we perform a relaxation where 

we replace each integer variable y
i
with a unit length 

vector x
i

n+1

 Define the matrix V to be the matrix obtained from 

concatenating the column vectors xi

 Define the matrix X to be VTV

 X is semidefinite



Semidefinite Programming (SDP)

 Optimization of a matrix inner product form
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Maximize   C · X

Subject to   A j · X £ b j ,   " j Î 1,… ,m{ },

                   X is positive  semidefinite



Fast Implementation:

Instead of using an SDP solver we can establish a 

primal dual SDP pair:

 starts with a trivial candidate for a primal solution (possibly 

infeasible), viz. X(1) =(1/n) I. 

 iteratively generates primal solutions X(2),X(3), . . . 

 X(t+1) is obtain X(t), through auxiliary Oracle.
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Primal Dual Oracle

 The Oracle tries to certify the validity of the current X(t).

 Oracle searches for a vector y from the polytope Dα={y:y ≥ 0, b·y ≤ α} 

such that

 if Oracle succeeds in finding such a y then we claim X(t) is either primal infeasible 

or has value C•X(t) ≤ α.

 if there is no vector y in D, then it can be seen that X(t) must be a primal feasible 

solution of objective value.
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SDP Solution

 The output of the SDP solver is the matrix X.

 We then use a Cholesky decomposition to obtain the matrix V

(X = VTV )

 The columns of matrix V are our unit length vectors x
i

n+1



Approximation

 Define a binary indicator vector z n+1

We use a rounding technique to approximate z
i
from the ith 

column of matrix V.

 Pick a random vector r to be uniformly distributed on the 

unit sphere (V. Vazirani)

 For each column v
i
of V

   

zi =
1 if v i × r ³ 0

-1 otherwis   

ì 
í 
î 

r

xj

xk

Hr

θj

θk



Finally

If z
i
=z

n+1
then vertex i is in the canonical set

Thus the indicator vector z tells which of the vertices of 

P is in the canonical set: that is, the subset P' that best 

represents P

This process can be de-randomized using the 

expectation maximization



Quadratic Programming (QP)

Quadratic objective

Linear constraints
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Maximize   l1 Intra-1(P*)[ ] + l2 Cut(P*)[ ] 

Subject to   Size(P*) - kmin ³ 0,

                   kmax -Size(P*) ³ 0,

Where         l1 + l2 =1



Quadratic Programming (QP)

Quadratic objective

Linear constraints
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Maximize   1
2
xTHx+ f T x

Subject to  Ax £ b

                  l £ x £ u
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Bounds

It has been shown that (for any particular set of λ1and  

λ2) the expected value of the approximate solution is 

at least 0.878*OPTBCS. 

The guarantee only applies to the objective value. 



Objective Performance

 Exhaustive search compared to approximation

 Experimental results confirm the quality of the approximation
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Test Number



Comparing SDP vs. QP on Localization 
Task

 The average ratio of objective values, QP/SDP was 1.003, and the ratio of 

execution times was 0.17.

 For technical reasons both algorithms were run as minimizations, thus lower 

values indicate better performance.
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Localization Results
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Query Target Matching Localization

Denton, Shokoufandeh, Novatnack, and Nishino. CVIU 
(2008).



Object Localization in Occluded Scenes 
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Conclusion:

 Bad news:

 Almost every nontrivial feature selection problem is computationally 

intractable.

 Good news: 

 Good approximation algorithms (objective performance guarantees of 0.878 

of optimal) exist.

 Provided that constraints are in  first order logic statement (∧,∨,¬, etc.)

 Objective Function can be complex

 Size of approximate solutions (subsets) can be derived from optimization

 Fast QP and primal-dual approximations exist
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Thank You.
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SDP formulation of BCS
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Exact Formulation
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BCS as QP
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BCS as QP
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Primal Dual Oracle
 The Oracle tries to certify the validity of the current X(t).

 Oracle searches for a vector y from the polytope   Dα={y:y 

≥ 0, b·y ≤ α} such that

 if Oracle succeeds in finding such a y then we claim X(t) is either 

primal infeasible or has value C•X(t) ≤ α.

 if there is no vector y in D, then it can be seen that X(t) must be a 

primal feasible solution of objective value.

65



Objective Performance

 Exhaustive search compared to approximation

 Experimental results confirm the quality of the 

approximation
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Test Number



Comparing SDP vs. QP on 
Localization Task

 The average ratio of objective values, QP/SDP was 1.003, and the ratio 

of execution times was 0.17.

 For technical reasons both algorithms were run as minimizations, thus 

lower values indicate better performance.
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