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Algorithmic Graph Theory:

Objective: Designing efficient combinatorial methods for solving
decision or optimization problems.

O Runs in polynomial number of steps in terms of size of the graph; n=|\V(G)|
and m=|E(G)|.

O Optimality of solution.

Bad news: most of the combinatorial optimization problems involving
graphs are computationally intractable:

O traveling salesman problem, maximum cut problem, independent set problem,
maximum cligue problem, minimum vertex cover problem, maximum
independent set problem, multidimensional matching problem,...



Algorithmic Graph Theory:

Dealing with the intractability:
O Bounded approximation algorithms
O Suboptimal heuristics.
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Bounded approximation algorithms

Example: Vertex cover problem:

O A vertex cover of an undirected graph G=(VE) is a subset V’ of Vsuch
that if (u,v) is an edge in E| then u or v (or both) belong to V.
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Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

O A vertex cover of an undirected graph G=(V,E) is a subset V' of V
such that if (u,v) is an edge in E, then u or v (or both) belong to V.

IJ The size of a vertex cover is the number of vertices in it.

O The vertex cover problem is to find a vertex cover of minimum
size in a given undirected graph.

O We call such a vertex cover an optimal vertex cover.

O The vertex cover problem was shown to be NP-complete.



Algorithmic Graph Theory:

Vertex cover problem:

O The following approximation algorithm takes as input an undirected graph
G and returns a vertex cover whose size is guaranteed no more than twice
the size of optimal vertex cover:

1.C~ A

2. E'- E[G]

3. While £'t Ado

4.  Let (u,v) be an arbitrary edge in E’

5. C- CE{uv}

6. Remove from E' every edge incident on either

uorvy

/. Return C



Algorithmic Graph Theory:










Algorithmic Graph Theory:

Theorem: Approximate vertex cover has a ratio bound of 2.

Proof:

O It s easy to see that C Is a vertex cover.

0 Toshowt
O LetAbet

nat the size of C is twice the size of optimal vertex cover.
ne set of edges picked in line 4 of algorithm.

J No two ed

ges in A share an endpoint, therefore each new edge adds two

new vertices to C, so [C|=2|A|.
O Any vertex cover should cover the edges in A, which means at least one

of the end

points of each edge In A belongs to C*.

O So, |A|l<=|C*|, which will imply the desired bound.
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Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

O A vertex cover of an undirected graph G=(V;E) is a subset V' of V'such that if
(1,v) is an edge in E, then u or v (or both) belong to V.

O The vertex cover problem is to find a vertex cover of minimum size in a given

undirected graph. S
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.
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In some scenarios geometrical problem in a finite metric space Is
easler to solve (approximate) than the corresponding
combinatorial or optimization problem.

Example: Many-to-many graph matching.
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Motivation:

In some scenarios geometrical problem in a finite metric space Is
easler to solve (approximate) than the corresponding
combinatorial or optimization problem.

Example: Many-to-many graph matching.

EMD

Create DAG Embed DAG



Some Formalifies:

(semi) metric(M, p): M a (finite) set of points, p a distance function satisfying
forall x,y, z In M:

O p(x,x)=0,
O p(xy)=p(y.x),
O p(X,2)< p(x,y)*+p(y,2).

Embedding: a mapping f:(M, p)>(H,v) of a metric space M into a host
metric space H, that (possibly) preserves the geometry (distances) of M.

Distortion of embedding f: the least K> 1 for which exists C > 0 such that for
all X, y in M:

Cxp(X,y) < v(XY) < K«Cxp(X,y)



Non-embedability:

Given: p the (Shortest Path) metric of the graph C,, a cycle on four nodes.

Question: Is there an iIsometric embedding of C, in Euclidean space?



Non-embedability:

Given: p the (Shortest Path) metric of the graph C,, a cycle on four nodes.

Question: Is there an iIsometric embedding of C, in Euclidean space?

NO:

O Denote the verticesonthe C,by a,, ..., a,.

Suppose an isometric embedding exists.

Note that p(a,, a;) = p(a, a,) + p(a,, a;), hence the triangle inequality holds with
equality, which means (for Euclidean spaces) that f(a,) is in the middle of the segment

[f(ay), T(as)].



Non-embedability:

Given: p the (Shortest Path) metric of the graph C,, a cycle on four nodes.

Question: Is there an iIsometric embedding of C, in Euclidean space?

NO:

O Denote the verticesonthe C,by a,, ..., a,.

Suppose an isometric embedding exists.

Note that p(a,, a;) = p(a, a,) + p(a,, a;), hence the triangle inequality holds with
equality, which means (for Euclidean spaces) that f(a,) is in the middle of the segment

[f(a,), T(as)].
Analogously, f(a,) is in the middle of the segment [f(a,),f(a5)].
Hence f(a,) = f(a,). > €



Non-embedability:

Given: p the (Shortest Path) metric of the graph C,, a cycle on four nodes.

Question: Is there an iIsometric embedding of C, in Euclidean space?

0 No.

Embedding of C, as a square In the plain is the best embedding in Hilbert space,
(distortion= 2).



Example Application:

Sparsest Cut and Flux Minimization Problem:
A cut in graph G = (V,E) Is a partition of V into two nonempty subsets A and B=V-A.

The density or flux of the cut (A,B) is

Y (4,B)=-44B)
| | 4|4 B

where e(A,B) Is the number (or the weight) of edges crossing the cut.

The sparsity of an (A,B)-cut will be defined as

e(A4, B)

a(A’B):min(|A|,|B|)




Example Application:

Sparsest Cut and Flux Minimization Problem:

It 1S not hard to see that

AAB) ¢y (4 gy 2284 B)
4 4



Example Application:

Sparsest Cut Problem:
In sparsest cut problem we look for a cut of the smallest possible density.
This problem is known to be NP-hard.

As optimization problems this are minimization problems and intractable.



Example Application:

Sparsest Cut Problem:
In sparsest cut problem we look for a cut of the smallest possible density.
This problem is known to be NP-hard.

As optimization problems this are minimization problems and intractable.

Shi and Malik, 1999



Example Application:

Flux Minimization Problem:

The flux problem can be formulated as embedding:
Find a mapping ¢: V =»{0,1} that minimizes:

a |f@w)- ()]

(u)l E
O

a [7(u)-7()]

(u, )1 &




Example Application:

Flux minimization problem:

a |fw)- ()]

min e
Foa [f(u)- 1)
(u,v)l &

Simple modification of the flux formulation:

O letting d, = [(u) - §(v),
O Setting denominator & |7(w)- F(v)]? 1

(uv)l V?

O Enforcing triangle inequality d,, <d,,* d,,



Example Application:

Flux minimization problem:

Simple modification of the flux formulation:
O letting d, = |(u) - &(v),

O Setting denominator @ |7()- F(v)|31
O Enforcing trlangle m%vqluVallty duy <dy.* dyy
O Relax thed,, ! {01} and solve: ]
min a 4,
(u) E
- 4,21
| (u) vV
s.t. 1| d £a’ +d
I
| O£d LE1L
T



Example Application:

Now what?
The solution of LP gives us a metric (V,d).

We can use Bourgain’s theorem:

For any metric space (V,d) with |V|=n there Is an embedding
into RUegM™2 ynder L, with O(log n) distortion. And we can
construct this embedding In poly-time using a randomized
algorithm.




Example Application:

Now what?
The solution of LP gives us a metric (V,d).

We can use Bourgain’s theorem:

For any metric space (V,d) with |V|=n there is an embedding into R(°9""*2 ynder L, with
O(log n) distortion. And we can construct this embedding in poly-time using a randomized
algorithm.

Suppose w:V> RlgN*2js such an embedding, we have

dy., < lo(u) - oV)|< d,,xlog?n



Example Application:

Now what?

Form the cut S;; = (A;;,B;;) , for jin {1, ..., n-1} as follows:
O Fixacoordinateiin {1, ..., log? n}.
O Order the vector with respect to their i-th coordinate w;(u)
O Take the first j points as A, ;

O Take the other n-j points as Bi,j



Example Application:

Now what?

Form the cut S;; = (A;;,B;;) , for jin {1, ..., n-1} as follows:
O Fixacoordinateiin {1, ..., log?n}.
O Order the vector with respect to their i-th coordinate w;(u)
O Take the first j points as A, ;

O Take the other n-J points as B;;
This will result in nxlog® n cuts of the form S; ;.
Choose the one the give the minimum flux value.

Theorem: The procedure described above generates a cut within a factor of
O(log n) to the optimal in poly-time.
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INntfroduction:

Spectral graph theory Is a branch of Algebraic graph Theory (the
study of matrices associated with a graph).

Spectral graph theory deals with studying spectral operators
associated with a graph:

O For an nxn matrix A having a basis of right-eigenvalues v,...,v, means:
Av,=1v

O Assuming x = ¢,v,+...+C.V,, as an operator, the behavior of A on vector x
can be expressed as

A x = é c, A%y, = é c.l v,

l l



Adjacency operator: N _ -
y (ij):I' 1 if(, )T E(G)
o T 0 Otherwise

Observer that for a vector x:
O
(Ax)w)= a x(v)
bi(u)l E
Define d(v)=|{ul| (u,v) in E(G)}| then degree matrix

D (a V):}' d(u) if (uv)1 E(G)
o T 0  Otherwise



Using Degree matrix

b (s V):';[ d(w) if uv)T E(G)
o T 0  Otherwise

Diffusion matrix operator:
— -1
WG — AGDG

The action of this operator on a vector X:

Wx)w)= a x(v)/d(u)

vi(u,v)l E



Quadratic forms:

Laplacian forms:

x'L.x= a L (u,v){x(u) - x(v))’

(u)l E
Motivation:

O measures the smoothness of walk denoted by function x (its value is small if
X does not change dramatically along each edge).

LG :DG' AG

O As a matrix operator:

0 Normalized version

N,=D"L.D"=I-D"4.D"



Courant-Fisher Theorem:

The Rayleigh quotient of a nonzero vector x with resect to symmetric
. 7
matrix A: x! Ax

T
X X
Theorem: Let A be a symmetric matrix with spectrum a,>...>a..
Then

T T
. X Ax . x Ax
a,= max min——= min  max—;
ScR" X€§5 X X TcR" x€S X X
dim(s)=k **0 dim(T)=n- k+1  x#0




Low-rank Approximation:

Eigenvalues and eigenvectors provide low-rank approximation of a
matrix.

Recall, for matrix A with spectrum a,>...>a,:
— T
A=aavyv,

l

Consequence of Courant-Fischer:

O For every K, the best approximation of A by a rank k matrix can be obtained
by ~ & .
A=aQ ayvy,

711
i=1

A=argmin||4- B|,

rank(B)=k

O e



The all-ones vector Is an eigenvector of L.

Let a,>...>a, denote the spectrum of Ag, then:
d(G) < a, <D(G).
The all-ones is an eigenvector of A; only if G iIs a regular graph.

Multiplicity of O eigenvalue of L Is the number of connected components
of G.

Let A, >...> A denote the spectrum of L, then:
[, <2xD(G).

If a,=-a, only If G Is a bipartite graph.



Matching Spectral Abstractions of Graph

Structures

Image features and their relations can be conveniently represented
by labeled graphs.

When features are multi-scale, or when part/whole relations exist
between features, resulting graphs can be represented as directed
acyclic graphs.

Object recognition can therefore be formulated as hierarchical graph
matching.

Using spectral graph theory, we embed discrete graphs into low-
dimensional continuous spaces.



Matching Spectral Abstractions of Graph
Structures




The Eigenspace and [somorphism

If two graphs have different spectra (equivalently, different

characteristic polynomials) of the adjacency matrix, then they are not
Isomorphic

However, non-isomorphic graphs can be co-spectral!

But, are they unigue? No, but co-spectral graphs are not that common.

1 P

P(X) = X® =7x4—4x3 + Tx*+4x—1



The Eigenspace and [somorphism

Clearly, isomorphic graphs must have the same adjacency and
Laplacian spectrum (i.e., Laplacian characteristic polynomial)

Bad news: non-isomorphic graphs can be adjacency or Laplacian
cospectral

[Schwenk 73], [McKay 77] For almost all trees T there Is a non-
Isomorphic tree T’ that has both the same adjacency spectrum and
the same Lapalcian spectrum

ldea:

O Use the spectrum of all subgraphs associated with a graph for Its
characterization.



Perturbation

How robust Is the spectrum under noise and minor structural
perturbation? @

‘a e
@ © o -© @
0

G (original) E (noise) H (perturbed)
a b C a b C d a b C
a |0 |1]1]0 a|0|0]O0]|oO a |0 |1]1]0
b |-1]0]| 0] O -+ b|l|o|0]|]O0]|O — b |-1]0]|0]|O0
c|-1|l0]01|o0O c|O0|0]oO0|1 c|-1|0]0|1
0|0 |O0]O d|O0|0]|-1]0 0|0 |-1]0
A A



Perturbation:

et S denote a subset of vertices V(G), A(X), the induced sub-matrix
corresponding to set X, and A(X,Y) the adjacency matrix between

sets X and Y.

We have
0 A(S,V - 5) 3

AV - 8, S) 0§

) 0

( +
0 AWV-S) f

A(G):

> CD> (D~
G\ CN O
a> > -

How the eigenvalues of A are related to those of the other matrices?



Perturbation:

Let Xand Y denote two symmetric matrices with eigenvalues a,> ... > a,
and B,>... >, respectively, and let M =X - Y.

Weyl’s theorem:
O M is symmetric.
O |o,—B;| <||M|| forall I=1,...,n, where ||M|| Is the largest eigenvalue of M.

More generally:

O Letv,,..., Vv, bean orthonormal basis of eigenvectors of A corresponding to
a,,...,0, and let u,,...,u.be an orthonormal basis of eigenvectors of B
corresponding to B,,....B,,. Let . be the angle between v; and w;. Then,

|M]

min|a; - a|

1 .
—sin2qg. £
> q.




Perturbation

How robust Is the spectrum under noise and minor structural
perturbation? @

‘a e
@ © o -© @
0

G (original) E (noise) H (perturbed)
a b C a b C d a b C
a |0 |1]1]0 a|0|0]O0]|oO a |0 |1]1]0
b |-1]0]| 0] O -+ b|l|o|0]|]O0]|O — b |-1]0]|0]|O0
c|-1|l0]01|o0O c|O0|0]oO0|1 c|-1|0]0|1
0|0 |O0]O d|O0|0]|-1]0 0|0 |-1]0
A A



Perturbation

[Wilkinson] If A and A + E are nxn symmetric matrices, then for all
kin{1,---,n}, and eigenvalues A;> A,> --->A.:

}’k (A) + /Ik (E) < j‘k (A-|- E) < j“k (A) + ﬂl(E)
This 1s also know as Courant’s interlacing theorem

[Marcini et al.] For H (perturbed graph) and G (original graph), the
above theorem yields (after manipulation):

A (Ay) = A4 (P (4p))] < |4 (4g)

They also extended this result to directed acyclic graphs.



The Eigenvalues are Stable Now Whate

We could compute the graph’s
elgenvalues, sort them, and let
them become the components of
a vector assigned to the graph.




The Eigenvalues are Stable Now Whate

We could compute the graph’s
elgenvalues, sort them, and let
them become the components of
a vector assigned to the graph.

But:

Dimensionality grows with size of graph.

IEigenvalues are global! Therefore, can't accommodate occlusion or
clutter.
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Forming a Structural Signature

Sal. $125,2552...5, S =|A|+|A[+.. |4,

Why Sum the k largest Eigenvalues?

1. Summing reduces dimensionality.
2. Largest eigenvalues most informative.
3. Sums are “normalized” according to richness (k;) of branching structure.




Matching Spectral Abstractions of Graph
Structure




Matching Problem:

;!g, *}ge :

Matching: Consider a bipartite graph matching formulation, in which the
edges in the query and model graphs are discarded.

Hierarchical structure is seemingly lost, but can be encoded in the edge

welights: ) - N
W(|, J) — ‘Cldstruct(lij)‘F ngeom(lij)/
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Connectivity:

Is there a relationship between eigenvalue distribution and structure of a
graph?

Not hard to show that 4,(G)>0 iff G is connected.

Fiedler eigenvalue problem: Better connected graphs have higher
second eigenvalues!

There is an eigen-embedding algorithm due to Fiedler (extended by
Holst):

O Compute the eigenvector x, corresponding to 4,(G)

O Formacutby Sy ={ulx,(u) >t} (and VA S))
O Fiedler showed the set S, forms a (strongly) connected subgraph.



Cuts and Clustering:

Recall a cut in a graph Is a partition of the vertices to two sets
S, V-S.

For a weighted graph a weight can be associated with the cut:

D \J D

D, J/ b
D, D

1(S) =cut(S, V- S) :(';01 é W,

il Sjlv-s




Connectivity and Graph Cut:

Recall the tradeoff function for sparsest cut or min flux cut (ratio of cut) Is:

115
ST V-S|

R(S) =

R(S) Is at least 4,(G)/n and eigenvector v, corresponding to second eigenvalue Is
related to indicator vector for a set S that minimizes R(S):



Connectivity and Graph Cut:

Recall the tradeoff function for sparsest cut or min flux cut (ratio of cut) Is:

115
ST V-S|

R(S) =

R(S) Is at least 4,(G)/n and eigenvector v, corresponding to second eigenvalue Is
related to indicator vector for a set S that minimizes R(S):

O Let Xg be the characteristic vector for S.
T —
O We know xSLGxS —‘ﬂ(S)‘

O And é (xs(u)' xs("))2 :\SHV' S"

u<vy

xiL.x
R(S) =~ stgts :
o s a (xs(u)' XS(V))

u<vy




Connectivity and Partitioning:

Recall the tradeoff function for sparse or min flux cut (ratio of cut) Is:

115
ST V-S|

R(S) =

R(S) Is at least 4,(G)/n and eigenvector v, corresponding to second eigenvalue Is
related to indicator vector for a set S that minimizes R(S):

O Let xg be the characteristic vector for S.

O We know ngGxS :‘ﬂ(S)‘,
Fideler’s eigenvalue problem

O And é (xs(u)' XS(V))2 :‘SHV' S" XL xg

U<y [,(G)=n" mlm o 2
s Ry Lot i (OO
SO = o u<y

a (‘xS (u)- xg (V))Z

u<vy



Connectivity and Partitioning:

Restricting the entries of vector x being a 0-1will result in the cut that minimizes
R(S) and is the desirable min cut [Hagen and Kahng].

The weighted variation of the R(S) can be stated as

(5= WI(S)
d(S) d(V - S)

Which is proportional to normalized cut measure (Lawler and Sokal)
w(T(S)) , w(l(¥ - 5))
d(S) d(V - S)

We will see that this is the objective function used by Shi and Malik for their
segmentation algorithm.




Spectral Clustering

Methods that use the spectrum of the affinity matrix to cluster
are known as spectral clustering.

Normalized cuts, Average cuts, Average association make use
of the eigenvectors of the affinity matrix.

® O
1 1 0 0 q1 0
1 1 0 0 g1 0
O O Spectrum
0 0 1 1 0 A1
0 A1
0 0 1 1




Spectral Clustering

Methods that use the spectrum of the affinity matrix to cluster
are known as spectral clustering.

Normalized cuts, Average cuts, Average association make use
of the eigenvectors of the affinity matrix.

Spectrum >

A= 2.02

A= 2.02

71

0

.69

-.14

14

.69

0

71

A;=-0.02 A,=-0.02



Spectral Clustering

We can use k eigenvectors for embedding of vertices into vector

space. |
k-eigenvectors




Spectral Clustering

We can use k eigenvectors for embedding of vertices into vector

space. |
k-eigenvectors

n-data points

Each Row represents a data point in the eigenvector space.



Spectral Clustering

We can use k eigenvectors for embedding of vertices into vector
space.

.69
0 1

oSO lp|IPFP |-
)
R, O
_I
ol N
— |[o
A~ Jo
@
N

Each Row represents a data point in the eigenvector space.



Graph-based Image Segmentation

G=(V.E)

V: graph nodes — Pixels
E: edges connection N0JeS )y Pixel similarity




Cuts and segmentation

Similarity matrix:

W:@/vi,jt

1X)- X(j)”i
_ 5%

Slides from Jianbo Shi



Graph terminology

Degree of node:

di :é- Wi,j

Slides from Jianbo Shi



Graph terminology

Volume of set:

vol(A) =assoc(A4,V) = Zdl., AcV

ieA




Similarity functions

Intensity —H Liy=1¢j) Hi
] _ 2
W(,j)=e 7

Distance XX,

_ ] 2
W(, j)=e

2

Texture Jeay el

W(,j)=e



MIniMum cut

mincut(A,B):rL)Ln an_ w(u,v)

ul A,vT B <}:; |
A

B




MIniMum cut

mincut(A,B):rL)Ln an_ w(u,v)

ul A,vT B <}:; |
A

E@ 24
19 B
1 .08
| .22 45

C

Cut(BCDE,A) =0.17



Normalized Cut

Define normalized cut: “a fraction of the total edge connections to all
the nodes in the graph”:

NCut(A B) = 0 a;;c;o'(é,'v'> e




Normalized Cut

Define normalized cut: “a fraction of the total edge connections to all
the nodes in the graph”:

NCUt(A B) —=CUUAB) | | CU(AB) | |
7 lassoqAV) assoqB,V) 5
E
24
13\1\9 % 08

NormCut(BCDE, A) = 1.067
NormCut(ABC, DE) = 1.038



FiInding the cut:

Minimal (bi-partition) normalized cut.

min CUt(Cl, CQ) n CUt(Cl, 02) — min 1 n
Vol(Cy) Vol(Cy) Vol(Cy)  Vol(Cy)

) Cut(Ch, Cs)



FiInding the cut:

Minimal (bi-partition) normalized cut.

min Cut((]l, 02) 1 Cut(Cl, 02) — min 1 X 1
VOZ(Cl) VOZ(CQ) N VOZ(Cl) VOZ(CQ)

) Cut(Ch, Cs)

This can be restated in matrix form as

T
y (D —W)y
N A.B) =

O D is the diagonal (weighted) degree matrix
O W is the weighetd adjacency matrix

O D-W is the Laplacian matrix




FiInding the cut:

Minimal (bi-partition) normalized cut.

min Cut((]l, 02) 1 Cut(Cl, 02) — min 1 X 1
VOZ(Cl) VOZ(CQ) N VOZ(Cl) VOZ(CQ)

) Cut(Ch, Cs)

This can be restated in matrix form as

T
y' (D —W)y
N A.B) =
Cut(A, B) Dy

As an optimization problem:

miny* (D — W)y subject to y* Dy = 1
Y




FiInding the cut:

Minimal (bi-partition) normalized cut.

. C’ut(Cl,C'g) C’ut(Cl,C'g) 1 1

A R (. (voucl) TV ol(Cy)
This can be restated in matrix form as

T
y' (D — W)y
N A.B) =

As an optimization problem:

miny* (D — W)y subject to y* Dy = 1
Y

Which 1s a generalized eigenvalue problem:
(D — W)y = ADy

) Cut(Ch, Cs)



Recall

L = D-W Positive semi-definite z7' Lz > 0
The first eigenvalue is 0, eigenvector is T

The second eigenvalue contains the solution
- Cut(4A, B) | Cut(A, B)
Al |B]
The corresponding eigenvector contains the cluster indicator
for each data point

A2



Random walks:

Recall W denotes the normalized Laplacian of G.

Let o, >...> o, the spectrum of W; where o, Is equal to 1 and has
multiplicity 1. Let d denote eigenvector corresponding to ,. \We can

define a probability distribution vector z for graph G as follows:

1
G)=g—— d
p(G) 2w

O If o, # -1, then the distribution of every walk will converge to =.

O The rate of converge Is a function of |- max(|,|,|®,)|

O Specifically, let x,(v) denote the state of the system after t steps for a walk
starting at u:

d(v)
p.(b)- p(d)|£ o (L- max(|us




Synthetic Images:

=) () fol

) (&) ()




Experiments

Weather radar:

=] 1 19|



(e) (d) () (f) gl



Coloring:

Valid coloring:

O Given a graph G, assign a color to every vertex of G so that the endpoints of
each edge receive distinct colors.

As an optimization the objective is to use minimum number of colors.
The chromatic number y(G) is the least k for which G has a valid k-coloring.
[Wilf] Let a,> ... > a,, denote the spectrum of graph then
c(G)El+a,
[Hoffman] If G Is a graph with at least one edge, then

c(G)3 1+_"’;1

n




INndependent Sets:

An independent set of vertices of graph G, Is a subset of vertices S such that
no edge has both its end points in S.

As an optimization the objective Is to find a maximum size independent set,
denoted by p(G).

Note that the vertices of any color class of a grapg G form an independent set:

r(G)3 CEIG)

[Hoffman] If G is a degree d regular graph, then
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