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Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving 

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)| 

and m=|E(G)|. 

 Optimality of solution.

 Bad news: most of the combinatorial optimization problems involving 

graphs are  computationally intractable:

 traveling salesman problem, maximum cut problem, independent set problem, 

maximum clique problem, minimum vertex cover problem, maximum 

independent set problem, multidimensional matching problem,…



Algorithmic Graph Theory:

 Dealing with the intractability:

 Bounded approximation algorithms

 Suboptimal heuristics.
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Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of  an undirected graph G=(V,E) is a subset V’ of  V
such that if  (u,v) is an edge in E, then u or v (or both) belong to V’. 

 The size of  a vertex cover is the number of  vertices in it.

 The vertex cover problem is to find a vertex cover of  minimum
size in a given undirected graph. 

 We call such a vertex cover an optimal vertex cover.

 The vertex cover problem was shown to be NP-complete. 



Algorithmic Graph Theory:

Vertex cover problem:

 The following approximation algorithm takes as input an undirected graph 

G and returns a vertex cover whose size is guaranteed no more than twice  

the size of  optimal vertex cover:

1. C ¬ Æ

2. E ' ¬ E[G]

3. While E ' ¹ Æ do

4.      Let (u, v) be an arbitrary edge in E'

5.      C ¬ C È{u, v}

6.      Remove from E' every edge incident on either 

         u or v

7. Return C



Algorithmic Graph Theory:
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The Vertex Cover Problem
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The Vertex Cover Problem
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Algorithmic Graph Theory:

14

Theorem: Approximate vertex cover has a ratio bound of 2.

Proof: 

 It is easy to see that C is a vertex cover. 

 To show that the size of C is twice the size of optimal vertex cover. 

 Let A be the set of edges picked in line 4  of algorithm.

 No two edges in A share an endpoint, therefore each new edge adds two 
new vertices to C, so |C|=2|A|. 

 Any vertex cover should cover the edges in A, which means at least one 
of the end points of  each edge in A belongs to C*. 

 So, |A|<=|C*|, which will imply the desired bound.



Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of  an undirected graph G=(V,E) is a subset V’ of  V such that if  
(u,v) is an edge in E, then u or v (or both) belong to V’. 

 The vertex cover problem is to find a vertex cover of  minimum size in a given 
undirected graph. 



Overview

Geometry of Graphs and Graphs Encoding the Geometry

Spectral Graph Theory



Motivation:

 In some scenarios geometrical problem in a finite metric space is 

easier to solve (approximate) than the corresponding 

combinatorial or optimization problem.

 Example: Many-to-many graph matching. 
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Motivation:

 In some scenarios geometrical problem in a finite metric space is 

easier to solve (approximate) than the corresponding 

combinatorial or optimization problem.

 Example: Many-to-many graph matching. 



Some Formalities:

(semi) metric(M, ρ): M a (finite) set of points, ρ a distance function satisfying 

for all x, y, z in M: 

 ρ(x,x)=0, 

 ρ(x,y)=ρ(y,x), 

 ρ(x,z)≤ ρ(x,y)+ρ(y,z).

Embedding: a mapping f:(M, ρ)(H,ν) of a metric space M into a host 

metric space H, that (possibly) preserves the geometry (distances) of M. 

Distortion of embedding  f: the least K ≥ 1 for which exists C > 0 such that for 

all x, y in M:

C×ρ(x,y) ≤ ν(x,y) ≤ K×C×ρ(x,y)
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 Given: ρ the (Shortest Path) metric of the graph C4, a cycle on four nodes. 
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Non-embedability:

 Given: ρ the (Shortest Path) metric of the graph C4, a cycle on four nodes. 

 Question: Is there an isometric embedding of C4 in Euclidean space? 

 No:

 Denote the vertices on the C4 by a1, . . . , a4. 

 Suppose an isometric embedding exists. 

 Note that ρ(a1, a3) = ρ(a1, a2) + ρ(a2, a3), hence the triangle inequality holds with 

equality, which means (for Euclidean spaces) that f(a2) is in the middle of the segment 

[f(a1), f(a3)]. 

 Analogously, f(a4) is in the middle of the segment [f(a1),f(a3)]. 

 Hence f(a2) = f(a4). 



Non-embedability:

 Given: ρ the (Shortest Path) metric of the graph C4, a cycle on four nodes. 

 Question: Is there an isometric embedding of C4 in Euclidean space? 

 No.

 Embedding of C4 as a square in the plain is the best embedding in Hilbert space, 

(distortion= √2).



Example Application:

Sparsest Cut and Flux Minimization Problem:

 A cut in graph G = (V,E) is a partition of V into two nonempty subsets A and B=V-A.

 The density or flux of the cut (A,B) is 

where e(A,B) is the number (or the weight) of edges crossing the cut. 

 The sparsity of an (A,B)-cut will be defined as 

a(A, B) =
e(A, B)

min | A |, | B |( )

Y(A, B) =
e(A, B)

| A | × | B |



Example Application:

Sparsest Cut and Flux Minimization Problem:

 It is not hard to see that 

a(A, B)

|V |
£ Y(A, B) £

2 ×a(A, B)

|V |



Example Application:

Sparsest Cut Problem:

 In sparsest cut problem we look for a cut of the smallest possible density. 

 This problem is known to be NP-hard. 

 As optimization problems this are minimization problems and intractable. 



Example Application:

Shi and Malik, 1999

Sparsest Cut Problem:

 In sparsest cut problem we look for a cut of the smallest possible density. 

 This problem is known to be NP-hard. 

 As optimization problems this are minimization problems and intractable. 



Example Application:

Flux Minimization Problem:

The flux problem can be formulated as embedding:

Find a mapping ϕ: V {0,1} that minimizes:

|f(u)-f(v) |
(u,v)ÎE

å

|f(u)-f(v) |
(u,v)ÎV 2

å



Example Application:

Flux minimization problem:

Simple modification of the flux formulation:

 letting du,v= |ϕ(u) - ϕ(v)|,  

 Setting denominator  

 Enforcing triangle inequality  du,v ≤ du,w+ dw,v

|f(u)-f(v) |
(u,v)ÎV 2

å ³1

min
f
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Example Application:

Flux minimization problem:

Simple modification of the flux formulation:

 letting du,v= |ϕ(u) - ϕ(v)|,  

 Setting denominator  

 Enforcing triangle inequality  du,v ≤ du,w+ dw,v

 Relax the                  and solve:

|f(u)-f(v) |
(u,v)ÎV 2

å ³1

du,v Î 0,1{ }

min du,v                 
(u,v)ÎE

å

s.t.

du,v

(u,v)ÎV 2

å ³1    

du,v £ du,w + dw,v

0 £ du,v £1      

ì

í

ï
ïï

î

ï
ï
ï



Example Application:

Now what?

The solution of LP gives us a metric (V,d).

We can use Bourgain’s theorem:

For any metric space (V,d) with |V|=n there is an embedding 

into R(log n)^2 under L1 with O(log n) distortion. And we can 

construct this embedding in poly-time using a randomized 

algorithm.



Example Application:

Now what?

The solution of LP gives us a metric (V,d).

We can use Bourgain’s theorem:

For any metric space (V,d) with |V|=n there is an embedding into R(log n)^2 under L1 with 

O(log n) distortion. And we can construct this embedding in poly-time using a randomized 

algorithm.

Suppose ω:V R(log n)^2 is such an embedding, we have 

du,v ≤ |ω(u) - ω(v)|≤ du,v×log2 n



Example Application:

Now what?

Form the cut Si,j = (Ai,j,Bi,j) , for j in {1, …, n-1} as follows:

 Fix a coordinate i in {1, … , log2 n}.

 Order the vector with respect to their i-th coordinate ωi(u)

 Take the first j points as Ai,j

 Take the other n-j points as Bi,j



Example Application:

Now what?

Form the cut Si,j = (Ai,j,Bi,j) , for j in {1, …, n-1} as follows:

 Fix a coordinate i in {1, … , log2 n}.

 Order the vector with respect to their i-th coordinate ωi(u)

 Take the first j points as Ai,j

 Take the other n-j points as Bi,j

This will result in n×log2 n cuts of the form Si,j. 

Choose the one the give the minimum flux value.

Theorem: The procedure described above generates a cut within a factor of          

O(log n) to the optimal in poly-time.
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Introduction:

 Spectral graph theory is a branch of Algebraic graph Theory (the 

study of matrices associated with a graph).

 Spectral graph theory deals with studying spectral operators 

associated with a graph:

 For an n×n matrix A having a basis of right-eigenvalues v1,…,vn means:

 Assuming x = c1v1+…+cnvn , as an operator, the behavior of A on vector x

can be expressed as 

Avi = livi

Ak x = ciA
kvi

i

å = cil
kvi

i

å



Notations:

 Adjacency operator:

 Observer that for a vector x:

 Define d(v)=|{u| (u,v) in E(G)}| then degree matrix

AG (i, j) =
1 if (i, j) Î E(G)

0 Otherwise       

ì
í
ï

îï

DG (u,v) =
d(u) if (u, v) Î E(G)

0 Otherwise        

ì
í
ï

îï

(AGx)(u) = x(v)
b:(u,v)ÎE

å



Notations:

 Using Degree matrix

 Diffusion matrix operator: 

 The action of this operator on a vector x:

DG (u,v) =
d(u) if (u, v) Î E(G)

0 Otherwise        

ì
í
ï

îï

WG = AGDG

-1

(WGx)(u) = x(v) / d(u)
v:(u,v)ÎE

å



Quadratic forms:

 Laplacian forms:

 Motivation: 

 measures the smoothness of walk denoted by function x (its value is small if 

x does not change dramatically along each edge).

 As a matrix operator: 

 Normalized version 

xT LGx = LG (u,v) × (x(u)- x(v))2

(u,v)ÎE

å

LG = DG - AG

NG = D-1/2LGD-1/2 = I - D-1/2AGD-1/2



Courant-Fisher Theorem:

 The Rayleigh quotient of a nonzero vector x with resect to symmetric 

matrix A:

 Theorem: Let A be a symmetric matrix with spectrum α1≥…≥αn. 

Then

xT Ax

xT x

ak = max
SÍRn

dim(S )=k

min
xÎS

x¹0

xT Ax

xT x
= min

TÍR
n

dim(T )=n-k+1

max
xÎS

x¹0

xT Ax

xT x



Low-rank Approximation:

 Eigenvalues and eigenvectors provide low-rank approximation of a 

matrix.

 Recall, for matrix A with spectrum α1≥…≥αn:

 Consequence of Courant-Fischer:

 For every k, the best approximation of A by a rank k matrix can be obtained 

by 

 i.e

A = aivivi

T

i

å

Â = aivivi

T

i=1

k

å

Â = argmin
rank(B)=k

A - B
F



Notes:

 The all-ones vector is an eigenvector of LG. 

 Let α1≥…≥αn denote the spectrum of AG, then:

 The all-ones is an eigenvector of AG only if G is a regular graph.

 Multiplicity of 0 eigenvalue of LG is the number of connected components 

of G.

 Let λ1 ≥…≥ λn denote the spectrum of LG, then:

 If α1=-αn only if G is a bipartite graph.  

d (G)£a1 £ D(G).

l1 £ 2´D(G).



Matching Spectral Abstractions of Graph 

Structures

 Image features and their relations can be conveniently represented 

by labeled graphs.

 When features are multi-scale, or when part/whole relations exist 

between features, resulting graphs can be represented as directed 

acyclic graphs.

 Object recognition can therefore be formulated as hierarchical graph 

matching.

 Using spectral graph theory, we embed discrete graphs into low-

dimensional continuous spaces.



Matching Spectral Abstractions of Graph 

Structures



The Eigenspace and Isomorphism

 If two graphs have different spectra (equivalently, different 

characteristic polynomials) of the adjacency matrix, then they are not 

isomorphic

 However, non-isomorphic graphs can be co-spectral!

 But, are they unique? No, but co-spectral graphs are not that common.

p(x) = x6 −7x4−4x3 + 7x2+4x−1



The Eigenspace and Isomorphism

 Clearly, isomorphic graphs must have the same adjacency and 

Laplacian spectrum (i.e., Laplacian characteristic polynomial)

 Bad news: non-isomorphic graphs can be adjacency or Laplacian 

cospectral

 [Schwenk 73], [McKay 77] For almost all trees T there is a non-

isomorphic tree T’ that has both the same adjacency spectrum and 

the same Lapalcian spectrum

 Idea: 

 Use the spectrum of all subgraphs associated with a graph for its 

characterization. 



Perturbation

 How robust is the spectrum under noise and minor structural 

perturbation? 

a

cb

G (original) H (perturbed)

a

cb

d

=

a b c

a 0 1 1 0

b -1 0 0 0

c -1 0 0 0

0 0 0 0

a b c d

a 0 0 0 0

b 0 0 0 0

c 0 0 0 1

d 0 0 -1 0

+

E (noise)

c

d

a b c

a 0 1 1 0

b -1 0 0 0

c -1 0 0 1

0 0 -1 0

+ =

(AG) AE AH



Perturbation:

 Let S denote a subset of vertices V(G), A(X), the induced sub-matrix 

corresponding to set X, and A(X,Y) the adjacency matrix between 

sets X and Y. 

 We have

 How the eigenvalues of A are related to those of the other matrices?

A G( ) =
A(S) 0

0 A(V - S)

é

ë

ê
ê

ù

û

ú
ú
+

0 A(S,V - s)

A(V - S, S) 0

é

ë

ê
ê

ù

û

ú
ú



Perturbation:

 Let X and �Y denote two symmetric matrices with eigenvalues α1 ≥ … ≥ αn

and  β1 ≥ … ≥ βn, respectively, and let M =X - Y.

 Weyl’s theorem:

 M is symmetric.

 |αi – βi| ≤ ||M|| for all i=1,…,n, where ||M|| is the largest eigenvalue of M.

 More generally:

 Let v1,…, vn be an orthonormal basis of eigenvectors of A corresponding to 

α1,…,αn and let u1,…,unbe an orthonormal basis of eigenvectors of B

corresponding to β1,…,βn. Let θi be the angle between vi and wi. Then,

1

2
sin2qi £

M

min
j¹i

ai -a j



Perturbation

 How robust is the spectrum under noise and minor structural 

perturbation? 
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Perturbation

 [Wilkinson] If A and A + E are n×n symmetric matrices, then for all 

k in {1,L,n}, and eigenvalues  1 ≥  2 ≥  L ≥ n:

 This is also know as Courant’s interlacing theorem 

 [Marcini et al.] For H (perturbed graph) and G (original graph), the  

above theorem yields (after manipulation):

 They also extended this result to directed acyclic graphs. 

).()()()()( 1 EλAλEAλEλAλ kkkk

1( ) ( ( )) ( )k H k G Eλ A λ A λ A



The Eigenvalues are Stable Now What?

We could compute the graph’s 

eigenvalues, sort them, and let 

them become the components of 

a vector assigned to the graph. 



nλλλ ,,, 21 



The Eigenvalues are Stable Now What?

We could compute the graph’s 

eigenvalues, sort them, and let 

them become the components of 

a vector assigned to the graph. 



nλλλ ,,, 21 

But:

1.Dimensionality grows with size of graph.

2.Eigenvalues are global! Therefore, can’t accommodate occlusion or 
clutter.
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Forming a Structural Signature


1S 2S S

k1

a

c

d

b

SSSSSSSSV  321321    ],,,,,[
ik21 λλλSi 

Why Sum the k largest Eigenvalues?
1. Summing reduces dimensionality.

2. Largest eigenvalues most informative.

3. Sums are “normalized” according to richness (ki) of branching structure.

…a…b...…c…d…
.
a
.
b
.
c
.
.
d
.



Matching Spectral Abstractions of Graph 

Structure



Matching Problem:

Matching: Consider a bipartite graph matching formulation, in which the 

edges in the query and model graphs are discarded.

Hierarchical structure is seemingly lost, but can be encoded in the edge 

weights:
),(),(

),(
jidαjidα geom2struct1ejiW
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Sample Matches



Connectivity:

 Is there a relationship between eigenvalue distribution and structure of a 

graph?

 Not hard to show that λ2(G)>0 iff G is connected.

 Fiedler eigenvalue problem: Better connected graphs have higher 

second eigenvalues!

 There is an eigen-embedding algorithm due to Fiedler (extended by 

Holst):

 Compute the eigenvector x2 corresponding to  λ2(G)

 Form a cut by  St(≤0) = {u| x2(u) > t} (and V\ St)

 Fiedler showed the set St forms a (strongly) connected subgraph.  



Cuts and Clustering:

 Recall a cut in a graph is a partition of the vertices to two sets 

S, V-S.

 For a weighted graph a weight can be associated with the cut: 

¶(S) = cut(S,V - S) = wij

jÎV-S

å
iÎS

å



Connectivity and Graph Cut:

 Recall the tradeoff function for sparsest cut or min flux cut (ratio of cut) is: 

 R(S) is at least λ2(G)/n and eigenvector v2 corresponding to second eigenvalue is 

related to indicator vector for a set S that minimizes R(S):

R(S) =
|¶S |

| S |  |V - S |
.



Connectivity and Graph Cut:

 Recall the tradeoff function for sparsest cut or min flux cut (ratio of cut) is: 

 R(S) is at least λ2(G)/n and eigenvector v2 corresponding to second eigenvalue is 

related to indicator vector for a set S that minimizes R(S):

 Let xS  be the characteristic vector for S.

 We know 

 And

 So 

R(S) =
|¶S |

| S |  |V - S |
.

xS

T LGxS = ¶(S) .

xS (u)- xS (v)( )
2

u<v

å = S V - S .

R(S) =
xS

T LGxS

xS (u)- xS (v)( )
2

u<v

å



Connectivity and Partitioning:

 Recall the tradeoff function for sparse or min flux cut (ratio of cut) is: 

 R(S) is at least λ2(G)/n and eigenvector v2 corresponding to second eigenvalue is 

related to indicator vector for a set S that minimizes R(S):

 Let xS  be the characteristic vector for S.

 We know 

 And

 So 

R(S) =
|¶S |

| S |  |V - S |
.

xS

T LGxS = ¶(S) ,

xS (u)- xS (v)( )
2

u<v

å = S V - S .

R(S) =
xS

T LGxS

xS (u)- xS (v)( )
2

u<v

å

Fideler’s eigenvalue problem

l2 (G) = n ´ min
x¹0

xS

T LGxS

xS (u)- xS (v)( )
2

u<v

å



Connectivity and Partitioning:

 Restricting the entries of vector x being a 0-1will result in the cut that minimizes 

R(S) and is the desirable min cut [Hagen and Kahng].

 The weighted variation of the R(S) can be stated as 

 Which is proportional to normalized cut measure (Lawler and Sokal)

We will see that this is the objective function used by Shi and Malik for their 

segmentation algorithm. 

F(S) =
w(¶(S))

d(S) d(V - S)

w(¶(S))

d(S)
+

w(¶(V - S))

d(V - S)



Spectral Clustering

 Methods that use the spectrum of the affinity matrix to cluster 

are known as spectral clustering.

 Normalized cuts, Average cuts, Average association make use 

of the eigenvectors of the affinity matrix.

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

Spectrum

.71

.71

0

0

0

0

.71

.71

1= 2 2= 2 3= 0 4= 0



Spectral Clustering

 Methods that use the spectrum of the affinity matrix to cluster 

are known as spectral clustering.

 Normalized cuts, Average cuts, Average association make use 

of the eigenvectors of the affinity matrix.

Spectrum

1= 2.02 2= 2.02

1 1 .2 0

1 1 0 -.2

.2 0 1 1

0 -.2 1 1

.71

.69

.14

0

0

-.14

.69

.71

3= -0.02 4= -0.02



Spectral Clustering

 We can use k eigenvectors for embedding of vertices into vector 

space.
k-eigenvectors

…



Spectral Clustering

 We can use k eigenvectors for embedding of vertices into vector 

space.

 Each Row represents a data point in the eigenvector space.

k-eigenvectors

n-data points

…



Spectral Clustering

 We can use k eigenvectors for embedding of vertices into vector 

space.

 Each Row represents a data point in the eigenvector space.

1 1 .2 0

1 1 0 -.2

.2 0 1 1

0 -.2 1 1
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.69

.14

0

0

-.14

.69
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e2
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Graph-based Image Segmentation

V: graph nodes

E: edges connection nodes

G=(V,E)

Pixels

Pixel similarity
Slides from Jianbo Shi



Cuts and segmentation

 Similarity matrix:

Slides from Jianbo Shi

wi, j = e

- X( i )-X( j ) 2

2

s X
2

W = wi, j
éë ùû



Graph terminology

Degree of node:

Slides from Jianbo Shi

di = wi, j

j

å



Graph terminology

Volume of set:

Slides from Jianbo Shi

vol(A) = assoc(A,V ) = di, AÍV
iÎA

å



Similarity functions

Intensity

Texture

Distance
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 Criterion for partition:
Minimum cut

mincut(A, B) = min
A,B

w(u,v)
uÎA,vÎB

å
A

B



 Criterion for partition:
Minimum cut

mincut(A, B) = min
A,B

w(u,v)
uÎA,vÎB

å
A

B
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Normalized Cut

 Define normalized cut: “a fraction of the total edge connections to all 
the nodes in the graph”:
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BAcut

VAassoc

BAcut
BANcut
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Normalized Cut

 Define normalized cut: “a fraction of the total edge connections to all 
the nodes in the graph”:

),(

),(

),(

),(
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BAcut

VAassoc

BAcut
BANcut

A

B

1

.2D
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A

.08

.09

E



Finding the cut:

 Minimal (bi-partition) normalized cut.



Finding the cut:

Minimal (bi-partition) normalized cut.

This can be restated in matrix form as 

 D is the diagonal (weighted) degree matrix

 W is the weighetd adjacency matrix

 D-W is the Laplacian matrix  



Finding the cut:

Minimal (bi-partition) normalized cut.

This can be restated in matrix form as 

As an optimization problem: 



Finding the cut:

Minimal (bi-partition) normalized cut.

This can be restated in matrix form as 

As an optimization problem: 

Which is a generalized eigenvalue problem:



Recall

L = D-W Positive semi-definite

The first eigenvalue is 0, eigenvector is

The second eigenvalue contains the solution

 The corresponding eigenvector contains the cluster indicator 

for each data point



Random walks:

 Recall WG denotes the normalized Laplacian of G.

 Let ω1 ≥…≥ ωn the spectrum of WG; where ω1 is equal to 1 and has 

multiplicity 1.  Let d denote eigenvector corresponding to ω1. We can 

define a probability distribution vector π for graph G as follows:

 If ωn ≠ -1, then the distribution of every walk will converge to π. 

 The rate of converge is a function of |ω1- max(|ω2|,|ωn|)|.

 Specifically, let xt(v) denote the state of the system after t steps for a walk 

starting at u: 

p (G) =
1

d(u)
u

å
´ d

pt (b)-p (b) £
d(v)

d(u)
1- max w2 , wn( )( )



Experiments

 Synthetic images:



Experiments

 Weather radar:



Experiments

 Motion segmentation



Coloring:

 Valid coloring:

 Given a graph G, assign a color to every vertex of G so that the endpoints of 

each edge receive distinct colors. 

 As an optimization the objective is to use minimum number of colors. 

 The chromatic number χ(G) is the least k for which G has a valid k-coloring. 

 [Wilf] Let α1 ≥ … ≥ αn denote the spectrum of graph  then

 [Hoffman]  If G is a graph with at least one edge, then

c G( ) ³1+
a1

-an

c G( ) £1+a1



Independent Sets:

 An independent set of vertices of graph G, is a subset of vertices S such that 

no edge has both its end points in S.   

 As an optimization the objective is to find a maximum size independent set, 

denoted by ρ(G). 

 Note that the vertices of any color class of a grapg G form an independent set: 

 [Hoffman]  If G is a degree d regular graph, then

r G( ) £ n ´
-an

d -an

r G( ) ³
n

c G( )
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