Embedding and Spectrum of Graphs

Ali Shokoufandeh,

Department of Computer Science, Drexel University

Overview

Approximation Algorithms

Geometry of Graphs and Graphs Encoding the Geometry

Spectral Graph Theory

- □ **Objective:** Designing efficient combinatorial methods for solving decision or optimization problems.
 - Runs in polynomial number of steps in terms of size of the graph; n=|V(G)| and m=|E(G)|.
 - Optimality of solution.
- **Bad news:** most of the combinatorial optimization problems involving graphs are computationally intractable:
 - traveling salesman problem, maximum cut problem, independent set problem, maximum clique problem, minimum vertex cover problem, maximum independent set problem, multidimensional matching problem,...

- Dealing with the intractability:
 - Bounded approximation algorithms
 - Suboptimal heuristics.

Bounded approximation algorithms

- ■Example: Vertex cover problem:
 - A vertex cover of an undirected graph G=(V,E) is a subset V' of V such that if (u,v) is an edge in E, then u or v (or both) belong to V'.

Bounded approximation algorithms

- ■Example: Vertex cover problem:
 - A *vertex cover* of an undirected graph G=(V,E) is a subset V' of V such that if (u,v) is an edge in E, then u or v (or both) belong to V'.
 - The *vertex cover problem* is to find a vertex cover of minimum size in a given undirected graph.

Bounded approximation algorithms

■Example: Vertex cover problem:

A *vertex cover* of an undirected graph G=(V,E) is a subset V' of V such that if (u,v) is an edge in E, then u or v (or both) belong to V'.

☐ The *vertex cover problem* is to find a vertex cover of **minimum** size in a given

undirected graph.

Bounded approximation algorithms

■Example: Vertex cover problem:

A *vertex cover* of an undirected graph G=(V,E) is a subset V' of V such that if (u,v) is an edge in E, then u or v (or both) belong to V'.

The *vertex cover problem* is to find a vertex cover of **minimum** size in a given

undirected graph.

Bounded approximation algorithms

- Example: Vertex cover problem:
 - A *vertex cover* of an undirected graph G=(V,E) is a subset V' of V such that if (u,v) is an edge in E, then u or v (or both) belong to V'.
 - The size of a vertex cover is the number of vertices in it.
 - The *vertex cover problem* is to find a vertex cover of **minimum** size in a given undirected graph.
 - We call such a vertex cover an *optimal vertex cover*.
 - ☐ The vertex cover problem was shown to be NP-complete.

Vertex cover problem:

- The following approximation algorithm takes as input an undirected graph *G* and returns a vertex cover whose size is guaranteed no more than twice the size of optimal vertex cover:
 - 1. $C \neg \mathcal{A}$
 - $2. E' \neg E[G]$
 - 3. While $E'^{1} \not\in do$
 - 4. Let (u, v) be an arbitrary edge in E'
 - 5. $C \neg C \to \{u, v\}$
 - 6. Remove from E' every edge incident on either u or v
 - 7. Return *C*

The Vertex Cover Problem

The Vertex Cover Problem

Theorem: Approximate vertex cover has a ratio bound of 2.

□ Proof:

- \blacksquare It is easy to see that C is a vertex cover.
- \square To show that the size of C is twice the size of optimal vertex cover.
- \square Let A be the set of edges picked in line 4 of algorithm.
- No two edges in A share an endpoint, therefore each new edge adds two new vertices to C, so |C|=2|A|.
- Any vertex cover should cover the edges in A, which means at least one of the end points of each edge in A belongs to C^* .
- \square So, $|A| <= |C^*|$, which will imply the desired bound.

Bounded approximation algorithms

■Example: Vertex cover problem:

A *vertex cover* of an undirected graph G=(V,E) is a subset V' of V such that if (u,v) is an edge in E, then u or v (or both) belong to V'.

The *vertex cover problem* is to find a vertex cover of **minimum** size in a given

undirected graph.

Overview

Geometry of Graphs and Graphs Encoding the Geometry

Spectral Graph Theory

Motivation:

- In some scenarios geometrical problem in a finite metric space is easier to solve (approximate) than the corresponding combinatorial or optimization problem.
- Example: Many-to-many graph matching.

Motivation:

- □ In some scenarios geometrical problem in a finite metric space is easier to solve (approximate) than the corresponding combinatorial or optimization problem.
- Example: Many-to-many graph matching.

Motivation:

- In some scenarios geometrical problem in a finite metric space is easier to solve (approximate) than the corresponding combinatorial or optimization problem.
- Example: Many-to-many graph matching.

Some Formalities:

(semi) metric(M, ρ): M a (finite) set of points, ρ a distance function satisfying for all x, y, z in M:

- $\rho(x,x)=0,$

Embedding: a mapping $f:(M, \rho) \rightarrow (H, v)$ of a metric space M into a host metric space H, that (possibly) preserves the geometry (distances) of M.

Distortion of embedding f: the least $K \ge 1$ for which exists C > 0 such that for all x, y in M:

$$C \times \rho(x,y) \leq v(x,y) \leq K \times C \times \rho(x,y)$$

- **Given:** ρ the (Shortest Path) metric of the graph C_4 , a cycle on four nodes.
- Question: Is there an isometric embedding of C_4 in Euclidean space?

- **Given:** ρ the (Shortest Path) metric of the graph C_4 , a cycle on four nodes.
- Question: Is there an isometric embedding of C_4 in Euclidean space?
- □ No:
 - Denote the vertices on the C_4 by a_1, \ldots, a_4 .
 - Suppose an *isometric* embedding exists.
 - Note that $\rho(a_1, a_3) = \rho(a_1, a_2) + \rho(a_2, a_3)$, hence the triangle inequality holds with equality, which means (for Euclidean spaces) that $f(a_2)$ is in the middle of the segment $[f(a_1), f(a_3)]$.

- **Given:** ρ the (Shortest Path) metric of the graph C_4 , a cycle on four nodes.
- Question: Is there an isometric embedding of C_4 in Euclidean space?
- □ No:
 - Denote the vertices on the C_4 by a_1, \ldots, a_4 .
 - Suppose an *isometric* embedding exists.
 - Note that $\rho(a_1, a_3) = \rho(a_1, a_2) + \rho(a_2, a_3)$, hence the triangle inequality holds with equality, which means (for Euclidean spaces) that $f(a_2)$ is in the middle of the segment $[f(a_1), f(a_3)]$.
 - Analogously, $f(a_4)$ is in the middle of the segment $[f(a_1), f(a_3)]$.
 - $\blacksquare \quad \text{Hence } f(a_2) = f(a_4). \rightarrow \leftarrow$

- **Given:** ρ the (Shortest Path) metric of the graph C_4 , a cycle on four nodes.
- Question: Is there an isometric embedding of C_4 in Euclidean space?
 - □ No.
- Embedding of C_4 as a square in the plain is the best embedding in Hilbert space, (distortion= $\sqrt{2}$).

Sparsest Cut and Flux Minimization Problem:

- A cut in graph G = (V, E) is a partition of V into two nonempty subsets A and B = V A.
- The density or flux of the cut (A,B) is

$$Y(A,B) = \frac{e(A,B)}{|A| \times |B|}$$

where e(A,B) is the number (or the weight) of edges crossing the cut.

The sparsity of an (A,B)-cut will be defined as

$$\mathcal{A}(A,B) = \frac{e(A,B)}{\min(|A|,|B|)}$$

Sparsest Cut and Flux Minimization Problem:

It is not hard to see that

$$\frac{\partial(A,B)}{|V|} \, \mathsf{E} \, \mathsf{Y}(A,B) \, \mathsf{E} \, \frac{2 \times \partial(A,B)}{|V|}$$

Sparsest Cut Problem:

- In sparsest cut problem we look for a cut of the smallest possible density.
- This problem is known to be **NP**-hard.
- As optimization problems this are **minimization** problems and intractable.

Sparsest Cut Problem:

- In sparsest cut problem we look for a cut of the smallest possible density.
- This problem is known to be **NP**-hard.
- As optimization problems this are **minimization** problems and intractable.

Shi and Malik, 1999

Flux Minimization Problem:

□ The flux problem can be formulated as embedding:

Find a mapping ϕ : $V \rightarrow \{0,1\}$ that minimizes:

$$\frac{|f(u) - f(v)|}{|f(u,v)|^{\frac{(u,v)|}{E}}} \frac{|f(u) - f(v)|}{|f(u,v)|^{\frac{(u,v)|}{E}}}$$

Flux minimization problem:

$$\frac{\mathring{a} |f(u) - f(v)|}{\min_{f} \frac{(u,v)\widehat{|} E}{\mathring{a} |f(u) - f(v)|}}$$

$$\frac{(u,v)\widehat{|} V^{2}}{(u,v)\widehat{|} V^{2}}$$

- Simple modification of the flux formulation:
 - letting $d_{u,v} = |\boldsymbol{\phi}(u) \boldsymbol{\phi}(v)|$,

 - Setting denominator $\mathring{a}_{(u,v)^{\hat{1}}V^2}|f(u)-f(v)|^31$ Enforcing triangle inequality $d_{u,v} \leq d_{u,w} + d_{w,v}$

Flux minimization problem:

- Simple modification of the flux formulation:
 - letting $d_{u,v} = |\boldsymbol{\phi}(u) \boldsymbol{\phi}(v)|$,
 - Setting denominator $\mathring{a} |f(u) f(v)|^3 1$
 - Enforcing triangle inequality $d_{u,v} \le d_{u,w} + d_{w,v}$
 - Relax the $d_{u,v}$ $\{0,1\}$ and solve:

min
$$\mathop{\mathring{a}}_{(u,v)\widehat{\vdash} E} d_{u,v}$$

$$\mathop{\ddot{\vdash}}_{(u,v)\widehat{\vdash} E} d_{u,v} \stackrel{3}{1}$$
s.t. $\mathop{\dot{\vdash}}_{\dot{\vdash}} d_{u,v} \stackrel{1}{\vdash} d_{u,w} + d_{w,v}$

$$\mathop{\ddot{\vdash}}_{\dot{\vdash}} 0 \stackrel{1}{\vdash} d_{u,v} \stackrel{1}{\vdash} 1$$

Now what?

- \square The solution of LP gives us a metric (V,d).
- We can use Bourgain's theorem:

For any metric space (V,d) with |V|=n there is an embedding into $R^{(\log n)^{\wedge 2}}$ under L_1 with $O(\log n)$ distortion. And we can construct this embedding in poly-time using a randomized algorithm.

Now what?

- \square The solution of LP gives us a metric (V,d).
- We can use Bourgain's theorem:

For any metric space (V,d) with |V|=n there is an embedding into $R^{(\log n)^2}$ under L_1 with $O(\log n)$ distortion. And we can construct this embedding in poly-time using a randomized algorithm.

□ Suppose ω : V → $R^{(\log n)^2}$ is such an embedding, we have

$$d_{u,v} \le |\omega(u) - \omega(v)| \le d_{u,v} \times \log^2 n$$

Now what?

- □ Form the cut $S_{i,j} = (A_{i,j}, B_{i,j})$, for j in $\{1, ..., n-1\}$ as follows:
 - Fix a coordinate i in $\{1, ..., \log^2 n\}$.
 - Order the vector with respect to their *i*-th coordinate $\omega_i(u)$
 - Take the first j points as $A_{i,j}$
 - Take the other n-j points as $B_{i,j}$

Now what?

- □ Form the cut $S_{i,j} = (A_{i,j}, B_{i,j})$, for j in $\{1, ..., n-1\}$ as follows:
 - Fix a coordinate i in $\{1, ..., \log^2 n\}$.
 - Order the vector with respect to their *i*-th coordinate $\omega_i(u)$
 - \square Take the first j points as $A_{i,j}$
 - Take the other n-j points as $B_{i,j}$
- □ This will result in $n \times \log^2 n$ cuts of the form $S_{i,j}$.
- Choose the one the give the minimum flux value.
- **Theorem:** The procedure described above generates a cut within a factor of $O(\log n)$ to the optimal in poly-time.

Overview

Geometry of Graphs and Graphs Encoding the Geometry

Spectral Graph Theory

Introduction:

- Spectral graph theory is a branch of Algebraic graph Theory (the study of matrices associated with a graph).
- Spectral graph theory deals with studying spectral operators associated with a graph:
 - For an $n \times n$ matrix A having a basis of right-eigenvalues v_1, \dots, v_n means:

$$Av_i = I_i v_i$$

Assuming $x = c_1 v_1 + ... + c_n v_n$, as an operator, the behavior of A on vector x can be expressed as

$$A^k x = \mathop{a}_{i} c_i A^k v_i = \mathop{a}_{i} c_i / {}^k v_i$$

Notations:

Adjacency operator:

$$A_G(i,j) = \begin{cases} 1 & \text{if } (i,j) \hat{I} \ E(G) \\ \uparrow & 0 \text{ Otherwise} \end{cases}$$

 \square Observer that for a vector x:

$$(A_G x)(u) = \mathop{\text{a}}_{b:(u,v)^{\widehat{\mathsf{I}}}} x(v)$$

Define $d(v)=|\{u|(u,v) \text{ in } E(G)\}|$ then degree matrix

$$D_{G}(u,v) = \int_{1}^{n} d(u) \quad \text{if } (u,v) \cap E(G)$$

$$\uparrow \quad 0 \quad \text{Otherwise}$$

Notations:

Using Degree matrix

$$D_{G}(u,v) = \int_{1}^{n} d(u) \quad \text{if } (u,v) \hat{I} \quad E(G)$$

$$\uparrow \quad 0 \quad \text{Otherwise}$$

Diffusion matrix operator:

$$W_G = A_G D_G^{-1}$$

 \square The action of this operator on a vector x:

$$(W_G x)(u) = \mathop{\text{a}}_{v:(u,v)^{\widehat{|}} E} x(v) / d(u)$$

Quadratic forms:

Laplacian forms:

$$x^{T}L_{G}x = \mathop{\text{a}}_{(u,v)}^{\bullet} L_{G}(u,v) \times (x(u) - x(v))^{2}$$

- Motivation:
 - measures the smoothness of walk denoted by function x (its value is small if x does not change dramatically along each edge).
 - As a matrix operator:

$$L_G = D_G - A_G$$

Normalized version

$$N_G = D^{-1/2} L_G D^{-1/2} = I - D^{-1/2} A_G D^{-1/2}$$

Courant-Fisher Theorem:

The Rayleigh quotient of a nonzero vector \mathbf{x} with resect to symmetric matrix \mathbf{A} : $\chi^T A \chi$

$$\overline{x^T x}$$

Theorem: Let A be a symmetric matrix with spectrum $\alpha_1 \ge ... \ge \alpha_n$. Then

$$\partial_{k} = \max_{\substack{S \subseteq R^{n} \\ \dim(S) = k}} \min_{\substack{x \in S \\ x \neq 0}} \frac{x^{T} A x}{x^{T} x} = \min_{\substack{T \subseteq R^{n} \\ \dim(T) = n - k + 1}} \max_{\substack{x \in S \\ x \neq 0}} \frac{x^{T} A x}{x^{T} x}$$

Low-rank Approximation:

- Eigenvalues and eigenvectors provide low-rank approximation of a matrix.
- \square Recall, for matrix A with spectrum $\alpha_1 \ge ... \ge \alpha_n$:

$$A = \mathop{\hat{\triangle}}_{i} \partial_{i} v_{i} v_{i}^{T}$$

- Consequence of Courant-Fischer:
 - For every k, the best approximation of A by a rank k matrix can be obtained by

$$\hat{A} = \mathop{\mathring{\mathbf{a}}}_{i-1}^{k} \partial_i v_i v_i^T$$

rank(B)=k

i.e $\hat{A} = \underset{F}{\operatorname{arg\,min}} \|A - B\|_{F}$

Notes:

- \square The all-ones vector is an eigenvector of L_G .
- Let $\alpha_1 \ge ... \ge \alpha_n$ denote the spectrum of A_G , then:

$$\overline{d}(G) \le a_1 \le D(G)$$
.

- \square The all-ones is an eigenvector of A_G only if G is a regular graph.
- Multiplicity of $\mathbf{0}$ eigenvalue of L_G is the number of connected components of G.
- Let $\lambda_1 \ge ... \ge \lambda_n$ denote the spectrum of L_G , then:

$$I_1 \leq 2 \times D(G)$$
.

If $\alpha_1 = -\alpha_n$ only if G is a bipartite graph.

Matching Spectral Abstractions of Graph Structures

- ☐ Image features and their relations can be conveniently represented by labeled graphs.
- When features are multi-scale, or when part/whole relations exist between features, resulting graphs can be represented as directed acyclic graphs.
- Object recognition can therefore be formulated as hierarchical graph matching.
- □ Using spectral graph theory, we embed discrete graphs into low-dimensional continuous spaces.

Matching Spectral Abstractions of Graph Structures

The Eigenspace and Isomorphism

- ☐ If two graphs have different spectra (equivalently, different characteristic polynomials) of the adjacency matrix, then they are not isomorphic
- However, non-isomorphic graphs can be co-spectral!
- □ But, are they unique? No, but co-spectral graphs are not that common.

$$p(x) = x^6 - 7x^4 - 4x^3 + 7x^2 + 4x - 1$$

The Eigenspace and Isomorphism

- □ Clearly, isomorphic graphs must have the same adjacency and Laplacian spectrum (i.e., Laplacian characteristic polynomial)
- **Bad news**: non-isomorphic graphs can be adjacency or Laplacian cospectral
- □ [Schwenk 73], [McKay 77] For almost all trees *T* there is a non-isomorphic tree *T'* that has both the same adjacency spectrum and the same Lapalcian spectrum

Idea:

■ Use the spectrum of all subgraphs associated with a graph for its characterization.

Perturbation

□ How robust is the spectrum under noise and minor structural

perturbation?

G (original)

	a	b	c	
a	0	1	1	0
b	-1	0	0	0
С	-1	0	0	0
	0	0	0	0

+

E (noise)

	a	b	c	d
a	0	0	0	0
b	0	0	0	0
С	0	0	0	1
d	0	0	-1	0

$$A_{E}$$

H (perturbed)

	a	b	c	
a	0	1	1	0
b	-1	0	0	0
c	-1	0	0	1
	0	0	-1	0

 A_{H}

Perturbation:

- Let S denote a subset of vertices V(G), A(X), the induced sub-matrix corresponding to set X, and A(X,Y) the adjacency matrix between sets X and Y.
- □ We have

 \square How the eigenvalues of A are related to those of the other matrices?

Perturbation:

- Let X and Y denote two symmetric matrices with eigenvalues $\alpha_1 \ge ... \ge \alpha_n$ and $\beta_1 \ge ... \ge \beta_n$, respectively, and let M = X Y.
- **□** Weyl's theorem:
 - \square *M* is symmetric.
 - \square $|\alpha_i \beta_i| \le ||M||$ for all i=1,...,n, where ||M|| is the largest eigenvalue of M.
- More generally:
 - Let $v_1, ..., v_n$ be an orthonormal basis of eigenvectors of A corresponding to $\alpha_1, ..., \alpha_n$ and let $u_1, ..., u_n$ be an orthonormal basis of eigenvectors of B corresponding to $\beta_1, ..., \beta_n$. Let θ_i be the angle between v_i and w_i . Then,

$$\frac{1}{2}\sin 2q_i \, \stackrel{\|M\|}{\min_{j^1i} \left| \partial_i - \partial_j \right|}$$

Perturbation

□ How robust is the spectrum under noise and minor structural

perturbation?

G (original)

	a	b	c	
a	0	1	1	0
b	-1	0	0	0
С	-1	0	0	0
	0	0	0	0

+

E (noise)

	a	b	c	d
a	0	0	0	0
b	0	0	0	0
С	0	0	0	1
d	0	0	-1	0

$$A_{E}$$

H (perturbed)

	a	b	c	
a	0	1	1	0
b	-1	0	0	0
c	-1	0	0	1
	0	0	-1	0

 A_{H}

Perturbation

□ [Wilkinson] If *A* and *A* + *E* are $n \times n$ symmetric matrices, then for all k in $\{1, \dots, n\}$, and eigenvalues $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n$:

$$\lambda_k(A) + \lambda_k(E) \le \lambda_k(A + E) \le \lambda_k(A) + \lambda_1(E)$$
.

- This is also know as Courant's interlacing theorem
- \square [Marcini et al.] For H (perturbed graph) and G (original graph), the above theorem yields (after manipulation):

$$\left|\lambda_k(A_H) - \lambda_k(\Psi(A_G))\right| \le \left|\lambda_1(A_E)\right|$$

They also extended this result to directed acyclic graphs.

The Eigenvalues are Stable Now What?

We *could* compute the graph's eigenvalues, sort them, and let them become the components of a vector assigned to the graph.

The Eigenvalues are Stable Now What?

We *could* compute the graph's eigenvalues, sort them, and let them become the components of a vector assigned to the graph.

But:

- 1. Dimensionality grows with size of graph.
- 2. Eigenvalues are global! Therefore, can't accommodate occlusion or clutter.

Forming a Structural Signature

$$V = [S_1, S_2, S_3, ..., S_{\Delta}], S_1 \ge S_2 \ge S_3 \ge ... S_{\Delta}$$
 $S_i = |\lambda_1| + |\lambda_2| + ... |\lambda_{k_i}|$

Why Sum the *k* largest Eigenvalues?

- 1. Summing reduces dimensionality.
- 2. <u>Largest</u> eigenvalues most informative.
- 3. Sums are "normalized" according to richness (\underline{k}_i) of branching structure.

Matching Spectral Abstractions of Graph Structure

Matching Problem:

Matching: Consider a bipartite graph matching formulation, in which the edges in the query and model graphs are discarded.

Hierarchical structure is seemingly lost, but can be encoded in the edge weights: $-(i, i) + \alpha_{2}d \qquad (i, i)$

 $W(i, j) = e^{-\left(\mathbf{q}_{1} d_{struct}(i, j) + \alpha_{2} d_{geom}(i, j) \right)}$

Sample Matches

Connectivity:

- □ Is there a relationship between eigenvalue distribution and structure of a graph?
- □ Not hard to show that $\lambda_2(G) > 0$ iff G is connected.
- □ Fiedler eigenvalue problem: Better connected graphs have higher second eigenvalues!
- □ There is an eigen-embedding algorithm due to Fiedler (extended by Holst):
 - \square Compute the eigenvector x_2 corresponding to $\lambda_2(G)$

 - \blacksquare Fiedler showed the set S_t forms a (strongly) connected subgraph.

Cuts and Clustering:

- Recall a cut in a graph is a partition of the vertices to two sets S, V-S.
- For a weighted graph a weight can be associated with the cut:

$$\P(S) = \operatorname{cut}(S, V - S) = \mathop{\mathring{a}}_{i\hat{l}} \mathop{\mathring{a}}_{V-S} w_{ij}$$

Connectivity and Graph Cut:

□ Recall the tradeoff function for sparsest cut or min flux cut (ratio of cut) is:

$$R(S) = \frac{|\P S|}{|S| |V - S|}.$$

Arr R(S) is at least $\lambda_2(G)/n$ and eigenvector v_2 corresponding to second eigenvalue is related to indicator vector for a set S that minimizes R(S):

Connectivity and Graph Cut:

Recall the tradeoff function for sparsest cut or min flux cut (ratio of cut) is:

$$R(S) = \frac{|\P|S|}{|S| |V-S|}.$$

- \square R(S) is at least $\lambda_2(G)/n$ and eigenvector v_2 corresponding to second eigenvalue is related to indicator vector for a set S that minimizes R(S):
 - \blacksquare Let x_S be the characteristic vector for S.
 - $\square \text{ We know } x_S^T L_G x_S = |\P(S)|.$

$$So R(S) = \frac{x_S^T L_G x_S}{\mathring{a} (x_S(u) - x_S(v))^2}$$

Connectivity and Partitioning:

Recall the tradeoff function for sparse or min flux cut (ratio of cut) is:

$$R(S) = \frac{|\P|S|}{|S| |V-S|}.$$

- \square R(S) is at least $\lambda_2(G)/n$ and eigenvector v_2 corresponding to second eigenvalue is related to indicator vector for a set S that minimizes R(S):
 - \square Let x_S be the characteristic vector for S.
 - $\square \text{ We know } x_S^T L_G x_S = |\P(S)|,$

Fideler's eigenvalue problem

$$I_{2}(G) = n \cdot \min_{x^{10}} \frac{x_{S}^{T} L_{G} x_{S}}{\frac{\partial}{\partial (x_{S}(u) - x_{S}(v))^{2}}}$$

Connectivity and Partitioning:

- Restricting the entries of vector x being a 0-1 will result in the cut that minimizes R(S) and is the desirable min cut [Hagen and Kahng].
- The weighted variation of the R(S) can be stated as

$$F(S) = \frac{w(\P(S))}{d(S) \ d(V - S)}$$

Which is proportional to normalized cut measure (Lawler and Sokal)

$$\frac{w(\P(S))}{d(S)} + \frac{w(\P(V-S))}{d(V-S)}$$

We will see that this is the objective function used by Shi and Malik for their segmentation algorithm.

- Methods that use the spectrum of the affinity matrix to cluster are known as *spectral clustering*.
- Normalized cuts, Average cuts, Average association make use of the eigenvectors of the affinity matrix.

.71	
.71	
0	
0	

0
0
.71
.71

 $\lambda_1 = 2$ $\lambda_2 = 2$ $\lambda_3 = 0$

 $\lambda_{4}=0$

- Methods that use the spectrum of the affinity matrix to cluster are known as *spectral clustering*.
- Normalized cuts, Average cuts, Average association make use of the eigenvectors of the affinity matrix.

1	1	.2	0
1	1	0	2
.2	0	1	1
0	2	1	1

.71	
.69	
.14	
0	

 $\lambda_1 = 2.02$

.71

 $\lambda_2 = 2.02$ $\lambda_3 = -0.02$ $\lambda_4 = -0.02$

We can use k eigenvectors for embedding of vertices into vector space.

k-eigenvectors

We can use k eigenvectors for embedding of vertices into vector space.

Each Row represents a data point in the eigenvector space.

We can use k eigenvectors for embedding of vertices into vector space.

Each Row represents a data point in the eigenvector space.

Graph-based Image Segmentation

$$G=(V,E)$$

V: graph nodes

E: edges connection nodes

Pixels

Pixel similarity

Slides from Jianbo Shi

Cuts and segmentation

■ Similarity matrix:

$$W = \oint w_{i,j} \theta$$

$$\frac{-\|X_{(i)} - X_{(j)}\|_{2}^{2}}{S_{X}^{2}}$$

$$w_{i,j} = e^{-\frac{\|X_{(i)} - X_{(j)}\|_{2}^{2}}{S_{X}^{2}}}$$

Graph terminology

Degree of node:

$$d_i = \mathop{\mathring{\mathbf{a}}}_{i,j} w_{i,j}$$

Graph terminology

□ Volume of set:

$$vol(A) = assoc(A, V) = \sum_{i \in A} d_i, A \subseteq V$$

Slides from Jianbo Shi

Similarity functions

Intensity
$$\frac{-\left\|I_{(i)}-I_{(j)}\right\|_{2}^{2}}{\sigma_{I}^{2}}$$

$$W(i,j)=e^{-\left\|I_{(i)}-I_{(j)}\right\|_{2}^{2}}$$

Distance
$$\frac{-\|X_{(i)} - X_{(j)}\|_{2}^{2}}{\sigma_{X}^{2}}$$

$$W(i, j) = e^{-\frac{\|X_{(i)} - X_{(j)}\|_{2}^{2}}{\sigma_{X}^{2}}}$$

Texture
$$\frac{-\left\|c_{(i)}-c_{(j)}\right\|_{2}^{2}}{\sigma_{c}^{2}}$$

$$W(i,j)=e^{-\left\|c_{(i)}-c_{(j)}\right\|_{2}^{2}}$$

Minimum cut

$$\min cut(A, B) = \min_{A, B} \mathop{\partial}_{u\hat{I}} w(u, v)$$

Minimum cut

$$\min cut(A,B) = \min_{A,B} \mathop{\partial}_{u\hat{I}} w(u,v)$$

$$Cut(BCDE, A) = 0.17$$

Normalized Cut

□ Define normalized cut: "a fraction of the total edge connections to all the nodes in the graph":

$$Ncut(A,B) = \frac{cut(A,B)}{assoc(A,V)} + \frac{cut(A,B)}{assoc(B,V)}$$

Normalized Cut

Define normalized cut: "a fraction of the total edge connections to all the nodes in the graph":

$$Ncut(A,B) = \frac{cut(A,B)}{assoc(A,V)} + \frac{cut(A,B)}{assoc(B,V)}$$

Minimal (bi-partition) normalized cut.

$$\min \frac{Cut(C_1, C_2)}{Vol(C_1)} + \frac{Cut(C_1, C_2)}{Vol(C_2)} = \min \left(\frac{1}{Vol(C_1)} + \frac{1}{Vol(C_2)}\right) Cut(C_1, C_2)$$

Minimal (bi-partition) normalized cut.

$$\min \frac{Cut(C_1, C_2)}{Vol(C_1)} + \frac{Cut(C_1, C_2)}{Vol(C_2)} = \min \left(\frac{1}{Vol(C_1)} + \frac{1}{Vol(C_2)}\right) Cut(C_1, C_2)$$

□ This can be restated in matrix form as

$$NCut(A,B) = \frac{y^{T}(D-W)y}{y^{T}Dy}$$

- \square **D** is the diagonal (weighted) degree matrix
- lacksquare W is the weighetd adjacency matrix
- \square **D-W** is the Laplacian matrix

☐ Minimal (bi-partition) normalized cut.

$$\min \frac{Cut(C_1, C_2)}{Vol(C_1)} + \frac{Cut(C_1, C_2)}{Vol(C_2)} = \min \left(\frac{1}{Vol(C_1)} + \frac{1}{Vol(C_2)}\right) Cut(C_1, C_2)$$

□ This can be restated in matrix form as

$$NCut(A, B) = \frac{y^{T}(D - W)y}{y^{T}Dy}$$

As an optimization problem:

$$\min_{y} y^{T} (D - W) y \text{ subject to } y^{T} D y = 1$$

☐ Minimal (bi-partition) normalized cut.

$$\min \frac{Cut(C_1, C_2)}{Vol(C_1)} + \frac{Cut(C_1, C_2)}{Vol(C_2)} = \min \left(\frac{1}{Vol(C_1)} + \frac{1}{Vol(C_2)}\right) Cut(C_1, C_2)$$

□ This can be restated in matrix form as

$$NCut(A, B) = \frac{y^{T}(D - W)y}{y^{T}Dy}$$

As an optimization problem:

$$\min_{y} y^{T} (D - W) y \text{ subject to } y^{T} D y = 1$$

Which is a generalized eigenvalue problem:

$$(D - W)y = \lambda Dy$$

Recall

- $\square L = D W$ Positive semi-definite $x^T L x \ge 0$
- \square The first eigenvalue is 0, eigenvector is $\vec{1}$
- □ The second eigenvalue contains the solution

$$\lambda_2 = \frac{Cut(A,B)}{|A|} + \frac{Cut(A,B)}{|B|}$$

The corresponding eigenvector contains the cluster indicator for each data point

Random walks:

- \square Recall W_G denotes the normalized Laplacian of G.
- Let $\omega_1 \ge ... \ge \omega_n$ the spectrum of W_G ; where ω_1 is equal to 1 and has multiplicity 1. Let d denote eigenvector corresponding to ω_1 . We can define a probability distribution vector π for graph G as follows:

$$p(G) = \frac{1}{\mathring{a}d(u)} d$$

- If $\omega_n \neq -1$, then the distribution of every walk will converge to π .
- The rate of converge is a function of $|\omega_1$ max $(|\omega_2|, |\omega_{n/})|$.
- Specifically, let $x_t(v)$ denote the state of the system after t steps for a walk starting at u:

$$|p_t(b) - p(b)| \in \sqrt{\frac{d(v)}{d(u)}} \left(1 - \max(|W_2|, |W_n|)\right)$$

Experiments

Synthetic images:

Experiments

□ Weather radar:

Experiments

Coloring:

- Valid coloring:
 - Given a graph G, assign a color to every vertex of G so that the endpoints of each edge receive distinct colors.
- As an optimization the objective is to use minimum number of colors.
- The chromatic number $\chi(G)$ is the least k for which G has a valid k-coloring.
- □ [Wilf] Let $\alpha_1 \ge ... \ge \alpha_n$ denote the spectrum of graph then

$$C(G)$$
£1+ a_1

 \square [**Hoffman**] If G is a graph with at least one edge, then

$$C(G)$$
 ³ $1 + \frac{\partial_1}{\partial_n}$

Independent Sets:

- An independent set of vertices of graph G, is a subset of vertices S such that no edge has both its end points in S.
- As an optimization the objective is to find a maximum size independent set, denoted by $\rho(G)$.
- □ Note that the vertices of any color class of a grapg G form an independent set:

$$\Gamma(G)$$
 3 $\frac{n}{C(G)}$

 \square [**Hoffman**] If G is a degree d regular graph, then

$$r(G) \in n \cdot \frac{-\partial_n}{d - \partial_n}$$

References

- Doyle, P. G. and Snell, J. L., Random Walks and Electric Networks, Vol. 22 of Carus Mathematical Monographs, Mathematical Association of America, 1984.
- Chung, F. R. K., Spectral Graph Theory, American Mathematical Society, 1997.
- van der Holst, H., Lov`asz, L., and Schrijver, A., "The Colin de Verdi`ere Graph Parameter," Bolyai Soc. Math. Stud., Vol. 7, 1999, pp. 29–85.
- Cvetkovi'c, D. M., Doob, M., and Sachs, H., Spectra of Graphs, Academic Press, 1978.
- Fiedler., M., "Algebraic connectivity of graphs," Czechoslovak Mathematical Journal, Vol. 23, No. 98, 1973, pp. 298–305.
- Fiedler, M., "A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory," Czechoslovak Mathematical Journal, Vol. 25, No. 100, 1975, pp. 618–633.

References

- Lov'asz, L., "Random walks on graphs: a survey," Combinatorics, Paul Erd"os is Eighty, Vol. 2, edited by T. S. D. Miklos, V. T. Sos, Janos B'olyai Mathematical Society, Budapest, 1996, pp. 353–398.
- Wilf, H. S., "The Eigenvalues of a Graph and its Chromatic Number," J. London math. Soc., Vol. 42, 1967, pp. 330–332.
- Hoffman, A. J., "On eigenvalues and colorings of graphs," Graph Theory and its Applications, Academic Press, New York, 1970, pp. 79–92.
- Dodziuk, J., "Difference Equations, Isoperimetric Inequality and Transience of Certain Random Walks," Transactions of the American Mathematical Society, Vol. 284, No. 2, 1984, pp. 787–794.
- Pothen, A., Simon, H. D., and Liou, K.-P., "Partitioning Sparse Matrices with Eigenvectors of Graphs," SIAM Journal on Matrix Analysis and Applications, Vol. 11, No. 3, 1990, pp. 430–452.