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A graph G is a triple consisting of a vertex set V(G), an edge set
E(G), and a relation (weight function) W(G) associates with
each edge. The two vertices of each edge will be called its
endpoints (not necessarily distinct).
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A graph G is a triple consisting of a vertex set V(G), an edge set
E(G), and a relation (weight function) W(G) associates with
each edge. The two vertices of each edge will be called its
endpoints (not necessarily distinct).

Vertex \ @ @

Relation between

endpoints v; and v, §

(v) \ﬁ

n
&

0 \Edge between endpoints v; and v,



We will only consider finite graphs, 1.e. graphs for which V(G) and E(G)
are finite sets.
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O Example: an independent set in a graph Is a set of vertices that are pairwise
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A <u,v>-path is a simple graph that begins at u and ends at v,
whose vertices can be ordered so that two vertices are adjacent If
and only If they are consecutive In the ordering.

OO 02020

A cycle is a simple path whose vertices can be cyclically ordered
with overlapping endpoints (u=v).




Given a graph G=(V,E), where
O Vs its vertex set, |V|=n,
O E is its edge set, with |[E|[=m=0(n?).

In an undirected graph an edge (u,v)=(v,u).
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Given a graph G=(V,E), where
O Vs its vertex set, |V|=n,
O E is its edge set, with |[E|[=m=0(n?).

In an undirected graph an edge (u,v)=(v,u).
In directed graph (u,v) is different from (v,u).

In a weighted graph the labels are the weights associated with edges
and/or vertices.

Running time of graph algorithms are usually expressed in terms of
norm.
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Notations:

A graph G is connected If for every u,v in V(G) there exists a
<u,v>-path in G (otherwise G is disconnected).

The maximal connected subgraphs of G are called its connected
components.

The degree of a vertex v in a graph G, denoted deg(Vv), Is the
number of edges in G which have v as an endpoint.

k is the degree of v; Neighborhood of v




Important Graphs:

A complete graph iIs a simple graph whose vertices are pairwise
adjacent. The complete graph with n vertices Is denoted K,,.
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A graph G is bipartite if V(G) is the union of two disjoint (possibly
empty) independent sets, called partite sets of G.




Important Graphs:

A complete graph iIs a simple graph whose vertices are pairwise
adjacent. The complete graph with n vertices Is denoted K,,.
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A graph G is bipartite iIf V(G) Is the union of two disjoint (possibly
empty) independent sets, called partite sets of G.

A graph is k-partite If V(G) Is the union of k
disjoint independent sets.




Important Graphs:

A Tree Is a connected acyclic graph.




Important Graphs:

A Tree Is a connected acyclic graph.

A graph iIs planar If it can be drawn In the plane without crossings.

A graph that is so drawn In the plane is also said to be embedded In
the plane.
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Graph Representation:

The adjacency matrix of a graph G, denoted by A; Is an nxn
defined as follows:

1 if@i,j)eE

A '":< _
alir /] 0 ifG))eE

If G is directed then A Is asymmetric.

G 1 , .
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Number of 1’s in A5 Is m If G iIs directed; If Its
undirected, then number of 1°s Is 2m.

Degree of a vertex Is the sum of entries In
corresponding row of Ag

If G Is undirected then sum of all degree is 2m.

In a directed graph sum of the out degrees Is equal to m.
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Shock Graphs

Representing shape properties.




Variations in Reresentation:

Representing shape properties.

Representing appearance features.
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Why Graphse

Many reasons:

O Intuitive (representation)

0 Compactness (representation)
O Generative (morphologically)
O Capturing distributions.

O Makes computational tasks easier!



Sample Computational Tasks:

Shape matching reduced to graph /\
matchi ng
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Sample Computational Tasks:

Shape matching reduced to graph
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Sample Computational Tasks:

I Shape matching reduced to graph
matching.

. Object recognition (cluttered scene).
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Sample Computational Tasks:

Shape matching reduced to graph
matching.

Object recognition
Localization.
Shape abstraction

Segmentation

Felzenszwalb and Huttenlocher 2004



Why Is representation harde

What is the right level of abstraction?
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Hardness of Representation

What is the right level of abstraction?

O Lowest _ O
Generic model construction requires \ X”‘“‘“E / T
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Hardness of Representation

What is the right level of abstraction?
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Hardness of Representation

What is the right level of abstraction?

Model construction requires complex
grouping algorithms.

Invariance (view point).

- @
ARy




Hardness of Representation

What is the right level of abstraction?

(a) (b)

Model construction requires complex
grouping algorithms.

Invariance (noise).
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Problems:

Decision (yes or no) problems:
O Does graph G contain an induced copy of graph H?
O Localization problem
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Optimization problems:
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maximum clique, maximum hitting set, etc.
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Graph Problems:

Optimization problems:
O Find the optimal induced substructure in a graph:
Maximum cardinality minimum weight matching, minimum spanning tree,

maximum clique, maximum hitting set, etc.
O Max-cut dominating sets (Canonical sets) !O
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Algorithmic Graph Theory:

Objective: Designing efficient combinatorial methods for solving
decision or optimization problems.

O Runs in polynomial number of steps in terms of size of the graph; n=|\V(G)|
and m=|E(G)|.

O Example: Minimum Spanning Tree (MST): T(m,n)=0(m+n log n).

GENERIC-MST (G, w)

A==8

while A does not form a spanming tree
find an edge (., v) that 1s safe for 4
A= AU {{u, v)}

relum A

W da e P e

Intro. to Algorithms. Corman et al.




Algorithmic Graph Theory:

Objective: Designing efficient combinatorial methods for solving
decision or optimization problems.

O Runs in polynomial number of steps in terms of size of the graph; n=|\V(G)|
and m=|E(G)|.

O Example: Minimum Spanning Tree (MST): T(m,n)=0(m+n log n).
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Algorithmic Graph Theory:

Objective: Designing efficient combinatorial methods for solving
decision or optimization problems.

O Runs in polynomial number of steps in terms of size of the graph; n=|\V(G)|
and m=|E(G)|.

O Optimality of solution:
Example: Maximum matching problem
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Algorithmic Graph Theory:

Objective: Designing efficient combinatorial methods for solving
decision or optimization problems.

O Runs in polynomial number of steps in terms of size of the graph; n=|\V(G)|
and m=|E(G)|.

O Optimality of solution.

Bad news: most of the combinatorial optimization problems involving
graphs are computationally intractable:

O traveling salesman problem, maximum cut problem, independent set problem,
maximum cligue problem, minimum vertex cover problem, maximum
independent set problem, multidimensional matching problem,...



Algorithmic Graph Theory:

Dealing with the intractability:
O Bounded approximation algorithms
O Suboptimal heuristics.
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Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

O A vertex cover of an undirected graph G=(V,E) is a subset V' of V
such that if (u,v) is an edge in E, then u or v (or both) belong to V.

IJ The size of a vertex cover is the number of vertices in it.

O The vertex cover problem is to find a vertex cover of minimum
size in a given undirected graph.

O We call such a vertex cover an optimal vertex cover.

O The vertex cover problem was shown to be NP-complete.



Algorithmic Graph Theory:

Vertex cover problem:

O The following approximation algorithm takes as input an undirected graph
G and returns a vertex cover whose size is guaranteed no more than twice
the size of optimal vertex cover:

1.C~ A

2. E'- E[G]

3. While £'t Ado

4.  Let (u,v) be an arbitrary edge in E’

5. C- CE{uv}

6. Remove from E' every edge incident on either

uorvy

/. Return C



Algorithmic Graph Theory:










Algorithmic Graph Theory:

Theorem: Approximate vertex cover has a ratio bound of 2.

Proof:

O It s easy to see that C Is a vertex cover.

0 Toshowt
O LetAbet

nat the size of C is twice the size of optimal vertex cover.
ne set of edges picked in line 4 of algorithm.

J No two ed

ges in A share an endpoint, therefore each new edge adds two

new vertices to C, so [C|=2|A|.
O Any vertex cover should cover the edges in A, which means at least one

of the end

points of each edge In A belongs to C*.

O So, |A|l<=|C*|, which will imply the desired bound.
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Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

O A vertex cover of an undirected graph G=(V;E) is a subset V' of V'such that if
(1,v) is an edge in E, then u or v (or both) belong to V.

O The vertex cover problem is to find a vertex cover of minimum size in a given

undirected graph. S
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