
Graphs: Introduction

Ali Shokoufandeh,

Department of Computer Science, Drexel University

Overview of this talk

Introduction:

Notations and Definitions

Graphs and Modeling

Algorithmic Graph Theory and Combinatorial Optimization

Overview of this talk

Introduction:

Notations and Definitions

Graphs and Modeling

Algorithmic Graph Theory and Combinatorial Optimization

Notations:

A graph G is a triple consisting of a vertex set V(G), an edge set

E(G), and a relation (weight function) W(G) associates with

each edge. The two vertices of each edge will be called its

endpoints (not necessarily distinct).

v

2

vi

v

3

v

1

vj

v

n

Vertex

Notations:

v

2

vi

v

3

v

1

vj

v

n

Vertex

Edge between endpoints vi and vj

A graph G is a triple consisting of a vertex set V(G), an edge set

E(G), and a relation (weight function) W(G) associates with

each edge. The two vertices of each edge will be called its

endpoints (not necessarily distinct).

Notations:

v

2

vi

v

3

v

1

vj

v

n

Vertex

Edge between endpoints vi and vj

Relation between

endpoints vi and vj

A graph G is a triple consisting of a vertex set V(G), an edge set

E(G), and a relation (weight function) W(G) associates with

each edge. The two vertices of each edge will be called its

endpoints (not necessarily distinct).

Notations:

 We will only consider finite graphs, i.e. graphs for which V(G) and E(G)

are finite sets.

Notations:

 We will only consider finite graphs, i.e. graphs for which V(G) and E(G)

are finite sets.

 A simple graph is a graph having no loops or multiple edges, i.e., each

edge e=(u,v) in E(G) can be specified by its endpoints u and v in V(G).

Notations:

 We will only consider finite graphs, i.e. graphs for which V(G) and E(G)

are finite sets.

 A simple graph is a graph having no loops or multiple edges, i.e., each

edge e=(u,v) in E(G) can be specified by its endpoints u and v in V(G).

 Induced subgraphs: a subgraph formed by a subset of vertices and edges

of a graph.

Notations:

 We will only consider finite graphs, i.e. graphs for which V(G) and E(G)

are finite sets.

 A simple graph is a graph having no loops or multiple edges, i.e., each

edge e=(u,v) in E(G) can be specified by its endpoints u and v in V(G).

 Induced subgraphs: a subgraph formed by a subset of vertices and edges

of a graph.

Notations:

 We will only consider finite graphs, i.e. graphs for which V(G) and E(G)

are finite sets.

 A simple graph is a graph having no loops or multiple edges, i.e., each

edge e=(u,v) in E(G) can be specified by its endpoints u and v in V(G).

 Induced subgraphs:

 Example: an independent set in a graph is a set of vertices that are pairwise

nonadjacent

Notations:

 We will only consider finite graphs, i.e. graphs for which V(G) and E(G)

are finite sets.

 A simple graph is a graph having no loops or multiple edges, i.e., each

edge e=(u,v) in E(G) can be specified by its endpoints u and v in V(G).

 Induced subgraphs:

 Example: an independent set in a graph is a set of vertices that are pairwise

nonadjacent

Notations:

 We will only consider finite graphs, i.e. graphs for which V(G) and E(G)

are finite sets.

 A simple graph is a graph having no loops or multiple edges, i.e., each

edge e=(u,v) in E(G) can be specified by its endpoints u and v in V(G).

 Induced subgraphs:

 Example: an independent set in a graph is a set of vertices that are pairwise

nonadjacent

Notations:

 A <u,v>-path is a simple graph that begins at u and ends at v,

whose vertices can be ordered so that two vertices are adjacent if

and only if they are consecutive in the ordering.

 A cycle is a simple path whose vertices can be cyclically ordered

with overlapping endpoints (u=v).

Notations:

 Given a graph G=(V,E), where

 V is its vertex set, |V|=n,

 E is its edge set, with |E|=m=O(n2).

 In an undirected graph an edge (u,v)=(v,u).

Notations:

 Given a graph G=(V,E), where

 V is its vertex set, |V|=n,

 E is its edge set, with |E|=m=O(n2).

 In an undirected graph an edge (u,v)=(v,u).

 In directed graph (u,v) is different from (v,u).

Notations:

 Given a graph G=(V,E), where

 V is its vertex set, |V|=n,

 E is its edge set, with |E|=m=O(n2).

 In an undirected graph an edge (u,v)=(v,u).

 In directed graph (u,v) is different from (v,u).

 In a weighted graph the labels are the weights associated with edges

and/or vertices.
w(u,v)

l(u) l(v)

Notations:

 Given a graph G=(V,E), where

 V is its vertex set, |V|=n,

 E is its edge set, with |E|=m=O(n2).

 In an undirected graph an edge (u,v)=(v,u).

 In directed graph (u,v) is different from (v,u).

 In a weighted graph the labels are the weights associated with edges

and/or vertices.

 Running time of graph algorithms are usually expressed in terms of

n or m.

Notations:

 A graph G is connected if for every u,v in V(G) there exists a

simple <u,v>-path in G (otherwise G is disconnected).

v

1

v

3v

4

v

2

v

5

Notations:

 A graph G is connected if for every u,v in V(G) there exists a

simple <u,v>-path in G (otherwise G is disconnected).

v

1

v

3v

4

v

2

v

5

v

6

v

8v

7

Notations:

 A graph G is connected if for every u,v in V(G) there exists a

simple <u,v>-path in G (otherwise G is disconnected).

 The maximal connected subgraphs of G are called its connected

components.

v

1

v

3v

4

v

2

v

5

v

6

v

8v

7

Notations:

 A graph G is connected if for every u,v in V(G) there exists a

simple <u,v>-path in G (otherwise G is disconnected).

 The maximal connected subgraphs of G are called its connected

components.

 The degree of a vertex v in a graph G, denoted deg(v), is the

number of edges in G which have v as an endpoint.

vi

v

2

vk

k is the degree of vi v

1

Notations:

 A graph G is connected if for every u,v in V(G) there exists a

<u,v>-path in G (otherwise G is disconnected).

 The maximal connected subgraphs of G are called its connected

components.

 The degree of a vertex v in a graph G, denoted deg(v), is the

number of edges in G which have v as an endpoint.

vi

v

2

vk

k is the degree of vi v

1
Neighborhood of vi

Important Graphs:

 A complete graph is a simple graph whose vertices are pairwise

adjacent. The complete graph with n vertices is denoted Kn.

 A graph G is bipartite if V(G) is the union of two disjoint (possibly

empty) independent sets, called partite sets of G.

K1 K2 K3 K4 K5

Important Graphs:

 A graph is k-partite if V(G) is the union of k

disjoint independent sets.

K1 K2 K3 K4 K5

 A complete graph is a simple graph whose vertices are pairwise

adjacent. The complete graph with n vertices is denoted Kn.

 A graph G is bipartite if V(G) is the union of two disjoint (possibly

empty) independent sets, called partite sets of G.

Important Graphs:

 A Tree is a connected acyclic graph.

Important Graphs:

 A Tree is a connected acyclic graph.

 A graph is planar if it can be drawn in the plane without crossings.

 A graph that is so drawn in the plane is also said to be embedded in

the plane.

Graph Representation:

 The adjacency matrix of a graph G, denoted by AG is an n×n

defined as follows:

 If G is directed then AG is asymmetric.

1

2 4

3

G

AG[i, j] =
1 if (i, j)Î E

0 if (i, j)Ï E

ì

í
ï

îï

AG =

0 1 1 0

0 0 1 0

0 0 0 0

0 0 1 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Notes:

Number of 1’s in AG is m if G is directed; if its

undirected, then number of 1’s is 2m.

Degree of a vertex is the sum of entries in

corresponding row of AG

If G is undirected then sum of all degree is 2m.

In a directed graph sum of the out degrees is equal to m.

Overview of this talk

Introduction:

Notations and Definitions

Graphs and Modeling

Algorithmic Graph Theory and Combinatorial Optimization

Graphs and Representation:

 Objective: To capture the essential structure an entity/object using a

graph-based representation.

Graphs and Representation:

 Objective: To capture the essential structure an entity/object using a

graph-based representation.

 Mechanics:

 The vertex set V(G) represents feature

primitives extracted from object, encoded as a

label/attribute function l(v) for each v in

V(G).

 The edge set E(G) capture the affinity or

relative distribution of features within

object. The edge weight w(e) for each e in

E(G) captures the attributes of the edge.

Graphs and Representation:

 Objective: To capture the essential structure an entity/object using a

graph-based representation.

 Mechanics:

 The vertex set V(G) represents feature

primitives extracted from object, encoded as a

label/attribute function l(v) for each v in

V(G).

 The edge set E(G) capture the affinity or

relative distribution of features within

object. The edge weight w(e) for each e in

E(G) captures the attributes of the edge.

Graphs and Representation:

 Objective: To capture the essential structure an entity/object using a

graph-based representation.

 Mechanics:

 The vertex set V(G) represents feature

primitives extracted from object, encoded as a

label/attribute function l(v) for each v in

V(G).

 The edge set E(G) capture the affinity or

relative distribution of features within

object. The edge weight w(e) for each e in

E(G) captures the attributes of the edge.

Shock:

Shock Graph (Siddiqi et. al. 1999)

Shock Graphs

Shock Graphs

 Representing shape properties.

Variations in Reresentation:

 Representing shape properties.

 Representing appearance features.

 ...

Why Graphs?

Many reasons:

 Intuitive (representation)

Why Graphs?

Many reasons:

 Intuitive (representation)

 Compactness (representation)

Why Graphs?

Many reasons:

 Intuitive (representation)

 Compactness (representation)

 Generative (morphologically)

Sebastian et al., 2004

Why Graphs?

Many reasons:

 Intuitive (representation)

 Compactness (representation)

 Generative (morphologically)

 Capturing distributions.

Why Graphs?

Many reasons:

 Intuitive (representation)

 Compactness (representation)

 Generative (morphologically)

 Capturing distributions.

Makes computational tasks easier!

Sample Computational Tasks:

 Shape matching reduced to graph

matching

Sample Computational Tasks:

 Shape matching reduced to graph

matching.

 Object recognition (affinity

matrix).

Sample Computational Tasks:

 Shape matching reduced to graph

matching.

 Object recognition (cluttered scene).

Sample Computational Tasks:

 Shape matching reduced to graph

matching.

 Object recognition

 Localization.

Sample Computational Tasks:

 Shape matching reduced to graph

matching.

 Object recognition

 Localization.

 Shape abstraction

Sample Computational Tasks:

 Shape matching reduced to graph

matching.

 Object recognition

 Localization.

 Shape abstraction

Sample Computational Tasks:

 Shape matching reduced to graph

matching.

 Object recognition

 Localization.

 Shape abstraction

 Segmentation

Felzenszwalb and Huttenlocher 2004

Why is representation hard?

 What is the right level of abstraction?

Hardness of Representation

 What is the right level of abstraction?

 Generic model construction requires

complex grouping algorithms.

Hardness of Representation

 What is the right level of abstraction?

 Generic model construction requires

complex grouping algorithms.

Hardness of Representation

 What is the right level of abstraction?

 Model construction requires complex

grouping algorithms.

 Invariance (view point).

Hardness of Representation

 What is the right level of abstraction?

 Model construction requires complex

grouping algorithms.

 Invariance (noise).

Overview of this talk

Introduction:

Notations and Definitions

Graphs and Modeling

Algorithmic Graph Theory and Combinatorial Optimization

Problems:

Decision (yes or no) problems:

 Does graph G contain an induced copy of graph H?

Problems:

Decision (yes or no) problems:

 Does graph G contain an induced copy of graph H?

 Localization problem

Graph Problems:

Optimization problems:

 Find the optimal induced substructure in a graph:

 Maximum cardinality minimum weight matching, minimum spanning tree,

maximum clique, maximum hitting set, etc.

Graph Problems:

Optimization problems:

 Find the optimal induced substructure in a graph:

 Maximum cardinality minimum weight matching, minimum spanning tree,

maximum clique, maximum hitting set, etc.

 Max-cut dominating sets (Canonical sets)

Graph Problems:

Optimization problems:

 Find the optimal induced substructure in a graph:

 Maximum cardinality minimum weight matching, minimum spanning tree,

maximum clique, maximum hitting set, etc.

 Max-cut dominating sets (Canonical sets)

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Example: Minimum Spanning Tree (MST): T(m,n)=O(m+n log n).

Intro. to Algorithms. Corman et al.

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Example: Minimum Spanning Tree (MST): T(m,n)=O(m+n log n).

Haxhimusa and Kropatsch, 2004

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution:

 Example: Maximum matching problem

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution:

 Example: Maximum matching problem

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution:

 Example: Maximum matching problem

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution:

 Example: Maximum matching problem

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution:

 Example: Maximum matching problem

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution:

 Maximum matching problem

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution:

 Example: Maximum matching problem

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution:

 Example: Maximum matching problem

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution.

 Bad news: most of the combinatorial optimization problems involving

graphs are computationally intractable:

 traveling salesman problem, maximum cut problem, independent set problem,

maximum clique problem, minimum vertex cover problem, maximum

independent set problem, multidimensional matching problem,…

Algorithmic Graph Theory:

 Dealing with the intractability:

 Bounded approximation algorithms

 Suboptimal heuristics.

Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of an undirected graph G=(V,E) is a subset V’ of V such
that if (u,v) is an edge in E, then u or v (or both) belong to V’.

Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of an undirected graph G=(V,E) is a subset V’ of V such that if
(u,v) is an edge in E, then u or v (or both) belong to V’.

 The vertex cover problem is to find a vertex cover of minimum size in a
given undirected graph.

Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of an undirected graph G=(V,E) is a subset V’ of V such that if
(u,v) is an edge in E, then u or v (or both) belong to V’.

 The vertex cover problem is to find a vertex cover of minimum size in a given
undirected graph.

Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of an undirected graph G=(V,E) is a subset V’ of V such that if
(u,v) is an edge in E, then u or v (or both) belong to V’.

 The vertex cover problem is to find a vertex cover of minimum size in a given
undirected graph.

Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of an undirected graph G=(V,E) is a subset V’ of V
such that if (u,v) is an edge in E, then u or v (or both) belong to V’.

 The size of a vertex cover is the number of vertices in it.

 The vertex cover problem is to find a vertex cover of minimum
size in a given undirected graph.

 We call such a vertex cover an optimal vertex cover.

 The vertex cover problem was shown to be NP-complete.

Algorithmic Graph Theory:

Vertex cover problem:

 The following approximation algorithm takes as input an undirected graph

G and returns a vertex cover whose size is guaranteed no more than twice

the size of optimal vertex cover:

1. C ¬ Æ

2. E ' ¬ E[G]

3. While E ' ¹ Æ do

4. Let (u, v) be an arbitrary edge in E'

5. C ¬ C È{u, v}

6. Remove from E' every edge incident on either

 u or v

7. Return C

Algorithmic Graph Theory:

a

b c

e f g a

b

e

d

f g

a

b

e

d

f g

c

cd

The Vertex Cover Problem

a

b

e

d

f g

a

b

e f g

c

c d

The Vertex Cover Problem

a

b

e

d

f g

a

b

e f g a

b

f g

c

cc d

e

d

Algorithmic Graph Theory:

83

Theorem: Approximate vertex cover has a ratio bound of 2.

Proof:

 It is easy to see that C is a vertex cover.

 To show that the size of C is twice the size of optimal vertex cover.

 Let A be the set of edges picked in line 4 of algorithm.

 No two edges in A share an endpoint, therefore each new edge adds two
new vertices to C, so |C|=2|A|.

 Any vertex cover should cover the edges in A, which means at least one
of the end points of each edge in A belongs to C*.

 So, |A|<=|C*|, which will imply the desired bound.

Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of an undirected graph G=(V,E) is a subset V’ of V such that if
(u,v) is an edge in E, then u or v (or both) belong to V’.

 The vertex cover problem is to find a vertex cover of minimum size in a given
undirected graph.

What Next?

Geometry of Graphs and Graphs Encoding the Geometry

Spectral Graph Theory

