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Notations:

A graph G is a triple consisting of a vertex set V(G), an edge set

E(G), and a relation (weight function) W(G) associates with 

each edge. The two vertices of each edge will be called its 

endpoints (not necessarily distinct).
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Notations:

 A <u,v>-path is a simple graph that begins at u and ends at v, 

whose vertices can be ordered so that two vertices are adjacent if 

and only if they are consecutive in the ordering.

 A cycle is a simple path whose vertices can be cyclically ordered 

with overlapping endpoints (u=v).
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Notations:

 Given a graph G=(V,E), where 

 V is its vertex set, |V|=n,

 E is its edge set, with |E|=m=O(n2).

 In an undirected graph an edge (u,v)=(v,u).

 In directed graph (u,v) is different from (v,u).

 In a weighted graph the labels are the weights associated with edges 

and/or vertices.

 Running time of graph algorithms are usually expressed in terms of 

n or m.



Notations:

 A graph G is connected if for every u,v in V(G) there exists a 

simple <u,v>-path in G (otherwise G is disconnected).
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Notations:

 A graph G is connected if for every u,v in V(G) there exists a 

simple <u,v>-path in G (otherwise G is disconnected).

 The maximal connected subgraphs of G are called its connected 

components.
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Notations:

 A graph G is connected if for every u,v in V(G) there exists a 

simple <u,v>-path in G (otherwise G is disconnected).

 The maximal connected subgraphs of G are called its connected 

components.

 The degree of a vertex v in a graph G, denoted deg(v), is the 

number of edges in G which have v as an endpoint.
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Notations:

 A graph G is connected if for every u,v in V(G) there exists a 

<u,v>-path in G (otherwise G is disconnected).

 The maximal connected subgraphs of G are called its connected 

components.

 The degree of a vertex v in a graph G, denoted deg(v), is the 

number of edges in G which have v as an endpoint.
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Important Graphs:

 A complete graph is a simple graph whose vertices are pairwise 

adjacent. The complete graph with n vertices is denoted Kn.

 A graph G is bipartite if V(G) is the union of two disjoint (possibly 

empty) independent sets, called partite sets of G.
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Important Graphs:

 A graph is k-partite if V(G) is the union of k

disjoint independent sets.

K1 K2 K3 K4 K5

 A complete graph is a simple graph whose vertices are pairwise 

adjacent. The complete graph with n vertices is denoted Kn.

 A graph G is bipartite if V(G) is the union of two disjoint (possibly 

empty) independent sets, called partite sets of G.
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Important Graphs:

 A Tree is a connected acyclic graph.

 A graph is planar if it can be drawn in the plane without crossings.

 A graph that is so drawn in the plane is also said to be embedded in 

the plane.



Graph Representation:

 The adjacency matrix of a graph G, denoted by AG is an n×n 

defined as follows:

 If G is directed then AG is asymmetric.
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Notes:

Number of 1’s in AG is m if G is directed; if its 

undirected, then number of 1’s is 2m.

Degree of a vertex is the sum of entries in 

corresponding row of AG

If G is undirected then sum of all degree is 2m.

In a directed graph sum of the out degrees is equal to m.
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Shock:

Shock Graph (Siddiqi et. al.  1999)
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Shock Graphs

 Representing shape properties. 



Variations in Reresentation: 

 Representing shape properties. 

 Representing appearance features.

 ...
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Why Graphs?

Many reasons:

 Intuitive (representation)

 Compactness (representation)

 Generative (morphologically)

 Capturing distributions.

Makes computational tasks easier!
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Sample Computational Tasks:

 Shape matching reduced to graph 

matching.

 Object recognition 

 Localization.

 Shape abstraction

 Segmentation 

Felzenszwalb and Huttenlocher 2004



Why is representation hard?

 What is the right level of abstraction?



Hardness of Representation

 What is the right level of abstraction?

 Generic model construction requires 

complex grouping algorithms.  



Hardness of Representation

 What is the right level of abstraction?

 Generic model construction requires 

complex grouping algorithms.  



Hardness of Representation

 What is the right level of abstraction?

 Model construction requires complex 

grouping algorithms.

 Invariance (view point).  



Hardness of Representation

 What is the right level of abstraction?

 Model construction requires complex 

grouping algorithms.

 Invariance (noise).  



Overview of this talk

Introduction:

Notations and Definitions

Graphs and Modeling

Algorithmic Graph Theory and Combinatorial Optimization



Problems:

Decision (yes or no) problems: 

 Does graph G contain an induced copy of graph H? 



Problems:

Decision (yes or no) problems: 

 Does graph G contain an induced copy of graph H? 

 Localization problem



Graph Problems:

Optimization problems: 

 Find the optimal induced substructure in a graph:

 Maximum cardinality minimum weight matching, minimum spanning tree, 

maximum clique, maximum hitting set, etc. 



Graph Problems:

Optimization problems: 

 Find the optimal induced substructure in a graph:

 Maximum cardinality minimum weight matching, minimum spanning tree, 

maximum clique, maximum hitting set, etc. 

 Max-cut dominating sets (Canonical sets)



Graph Problems:

Optimization problems: 

 Find the optimal induced substructure in a graph:

 Maximum cardinality minimum weight matching, minimum spanning tree, 

maximum clique, maximum hitting set, etc. 

 Max-cut dominating sets (Canonical sets)



Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving 

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)| 

and m=|E(G)|. 

 Example: Minimum Spanning Tree (MST): T(m,n)=O(m+n log n).
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Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving 

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)| 

and m=|E(G)|. 

 Optimality of solution.

 Bad news: most of the combinatorial optimization problems involving 

graphs are  computationally intractable:

 traveling salesman problem, maximum cut problem, independent set problem, 

maximum clique problem, minimum vertex cover problem, maximum 

independent set problem, multidimensional matching problem,…



Algorithmic Graph Theory:

 Dealing with the intractability:

 Bounded approximation algorithms

 Suboptimal heuristics.
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Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of  an undirected graph G=(V,E) is a subset V’ of  V
such that if  (u,v) is an edge in E, then u or v (or both) belong to V’. 

 The size of  a vertex cover is the number of  vertices in it.

 The vertex cover problem is to find a vertex cover of  minimum
size in a given undirected graph. 

 We call such a vertex cover an optimal vertex cover.

 The vertex cover problem was shown to be NP-complete. 



Algorithmic Graph Theory:

Vertex cover problem:

 The following approximation algorithm takes as input an undirected graph 

G and returns a vertex cover whose size is guaranteed no more than twice  

the size of  optimal vertex cover:

1. C ¬ Æ

2. E ' ¬ E[G]

3. While E ' ¹ Æ do

4.      Let (u, v) be an arbitrary edge in E'

5.      C ¬ C È{u, v}

6.      Remove from E' every edge incident on either 

         u or v

7. Return C
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Algorithmic Graph Theory:

83

Theorem: Approximate vertex cover has a ratio bound of 2.

Proof: 

 It is easy to see that C is a vertex cover. 

 To show that the size of C is twice the size of optimal vertex cover. 

 Let A be the set of edges picked in line 4  of algorithm.

 No two edges in A share an endpoint, therefore each new edge adds two 
new vertices to C, so |C|=2|A|. 

 Any vertex cover should cover the edges in A, which means at least one 
of the end points of  each edge in A belongs to C*. 

 So, |A|<=|C*|, which will imply the desired bound.



Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of  an undirected graph G=(V,E) is a subset V’ of  V such that if  
(u,v) is an edge in E, then u or v (or both) belong to V’. 

 The vertex cover problem is to find a vertex cover of  minimum size in a given 
undirected graph. 



What Next?

Geometry of Graphs and Graphs Encoding the Geometry

Spectral Graph Theory


