
Graphs: Introduction

Ali Shokoufandeh,

Department of Computer Science, Drexel University

Overview of this talk

Introduction:

Notations and Definitions

Graphs and Modeling

Algorithmic Graph Theory and Combinatorial Optimization

Overview of this talk

Introduction:

Notations and Definitions

Graphs and Modeling

Algorithmic Graph Theory and Combinatorial Optimization

Notations:

A graph G is a triple consisting of a vertex set V(G), an edge set

E(G), and a relation (weight function) W(G) associates with

each edge. The two vertices of each edge will be called its

endpoints (not necessarily distinct).

v

2

vi

v

3

v

1

vj

v

n

Vertex

Notations:

v

2

vi

v

3

v

1

vj

v

n

Vertex

Edge between endpoints vi and vj

A graph G is a triple consisting of a vertex set V(G), an edge set

E(G), and a relation (weight function) W(G) associates with

each edge. The two vertices of each edge will be called its

endpoints (not necessarily distinct).

Notations:

v

2

vi

v

3

v

1

vj

v

n

Vertex

Edge between endpoints vi and vj

Relation between

endpoints vi and vj

A graph G is a triple consisting of a vertex set V(G), an edge set

E(G), and a relation (weight function) W(G) associates with

each edge. The two vertices of each edge will be called its

endpoints (not necessarily distinct).

Notations:

 We will only consider finite graphs, i.e. graphs for which V(G) and E(G)

are finite sets.

Notations:

 We will only consider finite graphs, i.e. graphs for which V(G) and E(G)

are finite sets.

 A simple graph is a graph having no loops or multiple edges, i.e., each

edge e=(u,v) in E(G) can be specified by its endpoints u and v in V(G).

Notations:

 We will only consider finite graphs, i.e. graphs for which V(G) and E(G)

are finite sets.

 A simple graph is a graph having no loops or multiple edges, i.e., each

edge e=(u,v) in E(G) can be specified by its endpoints u and v in V(G).

 Induced subgraphs: a subgraph formed by a subset of vertices and edges

of a graph.

Notations:

 We will only consider finite graphs, i.e. graphs for which V(G) and E(G)

are finite sets.

 A simple graph is a graph having no loops or multiple edges, i.e., each

edge e=(u,v) in E(G) can be specified by its endpoints u and v in V(G).

 Induced subgraphs: a subgraph formed by a subset of vertices and edges

of a graph.

Notations:

 We will only consider finite graphs, i.e. graphs for which V(G) and E(G)

are finite sets.

 A simple graph is a graph having no loops or multiple edges, i.e., each

edge e=(u,v) in E(G) can be specified by its endpoints u and v in V(G).

 Induced subgraphs:

 Example: an independent set in a graph is a set of vertices that are pairwise

nonadjacent

Notations:

 We will only consider finite graphs, i.e. graphs for which V(G) and E(G)

are finite sets.

 A simple graph is a graph having no loops or multiple edges, i.e., each

edge e=(u,v) in E(G) can be specified by its endpoints u and v in V(G).

 Induced subgraphs:

 Example: an independent set in a graph is a set of vertices that are pairwise

nonadjacent

Notations:

 We will only consider finite graphs, i.e. graphs for which V(G) and E(G)

are finite sets.

 A simple graph is a graph having no loops or multiple edges, i.e., each

edge e=(u,v) in E(G) can be specified by its endpoints u and v in V(G).

 Induced subgraphs:

 Example: an independent set in a graph is a set of vertices that are pairwise

nonadjacent

Notations:

 A <u,v>-path is a simple graph that begins at u and ends at v,

whose vertices can be ordered so that two vertices are adjacent if

and only if they are consecutive in the ordering.

 A cycle is a simple path whose vertices can be cyclically ordered

with overlapping endpoints (u=v).

Notations:

 Given a graph G=(V,E), where

 V is its vertex set, |V|=n,

 E is its edge set, with |E|=m=O(n2).

 In an undirected graph an edge (u,v)=(v,u).

Notations:

 Given a graph G=(V,E), where

 V is its vertex set, |V|=n,

 E is its edge set, with |E|=m=O(n2).

 In an undirected graph an edge (u,v)=(v,u).

 In directed graph (u,v) is different from (v,u).

Notations:

 Given a graph G=(V,E), where

 V is its vertex set, |V|=n,

 E is its edge set, with |E|=m=O(n2).

 In an undirected graph an edge (u,v)=(v,u).

 In directed graph (u,v) is different from (v,u).

 In a weighted graph the labels are the weights associated with edges

and/or vertices.
w(u,v)

l(u) l(v)

Notations:

 Given a graph G=(V,E), where

 V is its vertex set, |V|=n,

 E is its edge set, with |E|=m=O(n2).

 In an undirected graph an edge (u,v)=(v,u).

 In directed graph (u,v) is different from (v,u).

 In a weighted graph the labels are the weights associated with edges

and/or vertices.

 Running time of graph algorithms are usually expressed in terms of

n or m.

Notations:

 A graph G is connected if for every u,v in V(G) there exists a

simple <u,v>-path in G (otherwise G is disconnected).

v

1

v

3v

4

v

2

v

5

Notations:

 A graph G is connected if for every u,v in V(G) there exists a

simple <u,v>-path in G (otherwise G is disconnected).

v

1

v

3v

4

v

2

v

5

v

6

v

8v

7

Notations:

 A graph G is connected if for every u,v in V(G) there exists a

simple <u,v>-path in G (otherwise G is disconnected).

 The maximal connected subgraphs of G are called its connected

components.

v

1

v

3v

4

v

2

v

5

v

6

v

8v

7

Notations:

 A graph G is connected if for every u,v in V(G) there exists a

simple <u,v>-path in G (otherwise G is disconnected).

 The maximal connected subgraphs of G are called its connected

components.

 The degree of a vertex v in a graph G, denoted deg(v), is the

number of edges in G which have v as an endpoint.

vi

v

2

vk

k is the degree of vi v

1

Notations:

 A graph G is connected if for every u,v in V(G) there exists a

<u,v>-path in G (otherwise G is disconnected).

 The maximal connected subgraphs of G are called its connected

components.

 The degree of a vertex v in a graph G, denoted deg(v), is the

number of edges in G which have v as an endpoint.

vi

v

2

vk

k is the degree of vi v

1
Neighborhood of vi

Important Graphs:

 A complete graph is a simple graph whose vertices are pairwise

adjacent. The complete graph with n vertices is denoted Kn.

 A graph G is bipartite if V(G) is the union of two disjoint (possibly

empty) independent sets, called partite sets of G.

K1 K2 K3 K4 K5

Important Graphs:

 A graph is k-partite if V(G) is the union of k

disjoint independent sets.

K1 K2 K3 K4 K5

 A complete graph is a simple graph whose vertices are pairwise

adjacent. The complete graph with n vertices is denoted Kn.

 A graph G is bipartite if V(G) is the union of two disjoint (possibly

empty) independent sets, called partite sets of G.

Important Graphs:

 A Tree is a connected acyclic graph.

Important Graphs:

 A Tree is a connected acyclic graph.

 A graph is planar if it can be drawn in the plane without crossings.

 A graph that is so drawn in the plane is also said to be embedded in

the plane.

Graph Representation:

 The adjacency matrix of a graph G, denoted by AG is an n×n

defined as follows:

 If G is directed then AG is asymmetric.

1

2 4

3

G

AG[i, j] =
1 if (i, j)Î E

0 if (i, j)Ï E

ì

í
ï

îï

AG =

0 1 1 0

0 0 1 0

0 0 0 0

0 0 1 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Notes:

Number of 1’s in AG is m if G is directed; if its

undirected, then number of 1’s is 2m.

Degree of a vertex is the sum of entries in

corresponding row of AG

If G is undirected then sum of all degree is 2m.

In a directed graph sum of the out degrees is equal to m.

Overview of this talk

Introduction:

Notations and Definitions

Graphs and Modeling

Algorithmic Graph Theory and Combinatorial Optimization

Graphs and Representation:

 Objective: To capture the essential structure an entity/object using a

graph-based representation.

Graphs and Representation:

 Objective: To capture the essential structure an entity/object using a

graph-based representation.

 Mechanics:

 The vertex set V(G) represents feature

primitives extracted from object, encoded as a

label/attribute function l(v) for each v in

V(G).

 The edge set E(G) capture the affinity or

relative distribution of features within

object. The edge weight w(e) for each e in

E(G) captures the attributes of the edge.

Graphs and Representation:

 Objective: To capture the essential structure an entity/object using a

graph-based representation.

 Mechanics:

 The vertex set V(G) represents feature

primitives extracted from object, encoded as a

label/attribute function l(v) for each v in

V(G).

 The edge set E(G) capture the affinity or

relative distribution of features within

object. The edge weight w(e) for each e in

E(G) captures the attributes of the edge.

Graphs and Representation:

 Objective: To capture the essential structure an entity/object using a

graph-based representation.

 Mechanics:

 The vertex set V(G) represents feature

primitives extracted from object, encoded as a

label/attribute function l(v) for each v in

V(G).

 The edge set E(G) capture the affinity or

relative distribution of features within

object. The edge weight w(e) for each e in

E(G) captures the attributes of the edge.

Shock:

Shock Graph (Siddiqi et. al. 1999)

Shock Graphs

Shock Graphs

 Representing shape properties.

Variations in Reresentation:

 Representing shape properties.

 Representing appearance features.

 ...

Why Graphs?

Many reasons:

 Intuitive (representation)

Why Graphs?

Many reasons:

 Intuitive (representation)

 Compactness (representation)

Why Graphs?

Many reasons:

 Intuitive (representation)

 Compactness (representation)

 Generative (morphologically)

Sebastian et al., 2004

Why Graphs?

Many reasons:

 Intuitive (representation)

 Compactness (representation)

 Generative (morphologically)

 Capturing distributions.

Why Graphs?

Many reasons:

 Intuitive (representation)

 Compactness (representation)

 Generative (morphologically)

 Capturing distributions.

Makes computational tasks easier!







Sample Computational Tasks:

 Shape matching reduced to graph

matching

Sample Computational Tasks:

 Shape matching reduced to graph

matching.

 Object recognition (affinity

matrix).

Sample Computational Tasks:

 Shape matching reduced to graph

matching.

 Object recognition (cluttered scene).

Sample Computational Tasks:

 Shape matching reduced to graph

matching.

 Object recognition

 Localization.

Sample Computational Tasks:

 Shape matching reduced to graph

matching.

 Object recognition

 Localization.

 Shape abstraction

Sample Computational Tasks:

 Shape matching reduced to graph

matching.

 Object recognition

 Localization.

 Shape abstraction

Sample Computational Tasks:

 Shape matching reduced to graph

matching.

 Object recognition

 Localization.

 Shape abstraction

 Segmentation

Felzenszwalb and Huttenlocher 2004

Why is representation hard?

 What is the right level of abstraction?

Hardness of Representation

 What is the right level of abstraction?

 Generic model construction requires

complex grouping algorithms.

Hardness of Representation

 What is the right level of abstraction?

 Generic model construction requires

complex grouping algorithms.

Hardness of Representation

 What is the right level of abstraction?

 Model construction requires complex

grouping algorithms.

 Invariance (view point).

Hardness of Representation

 What is the right level of abstraction?

 Model construction requires complex

grouping algorithms.

 Invariance (noise).

Overview of this talk

Introduction:

Notations and Definitions

Graphs and Modeling

Algorithmic Graph Theory and Combinatorial Optimization

Problems:

Decision (yes or no) problems:

 Does graph G contain an induced copy of graph H?

Problems:

Decision (yes or no) problems:

 Does graph G contain an induced copy of graph H?

 Localization problem

Graph Problems:

Optimization problems:

 Find the optimal induced substructure in a graph:

 Maximum cardinality minimum weight matching, minimum spanning tree,

maximum clique, maximum hitting set, etc.

Graph Problems:

Optimization problems:

 Find the optimal induced substructure in a graph:

 Maximum cardinality minimum weight matching, minimum spanning tree,

maximum clique, maximum hitting set, etc.

 Max-cut dominating sets (Canonical sets)

Graph Problems:

Optimization problems:

 Find the optimal induced substructure in a graph:

 Maximum cardinality minimum weight matching, minimum spanning tree,

maximum clique, maximum hitting set, etc.

 Max-cut dominating sets (Canonical sets)

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Example: Minimum Spanning Tree (MST): T(m,n)=O(m+n log n).

Intro. to Algorithms. Corman et al.

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Example: Minimum Spanning Tree (MST): T(m,n)=O(m+n log n).

Haxhimusa and Kropatsch, 2004

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution:

 Example: Maximum matching problem

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution:

 Example: Maximum matching problem

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution:

 Example: Maximum matching problem

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution:

 Example: Maximum matching problem

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution:

 Example: Maximum matching problem

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution:

 Maximum matching problem

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution:

 Example: Maximum matching problem

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution:

 Example: Maximum matching problem

Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)|

and m=|E(G)|.

 Optimality of solution.

 Bad news: most of the combinatorial optimization problems involving

graphs are computationally intractable:

 traveling salesman problem, maximum cut problem, independent set problem,

maximum clique problem, minimum vertex cover problem, maximum

independent set problem, multidimensional matching problem,…

Algorithmic Graph Theory:

 Dealing with the intractability:

 Bounded approximation algorithms

 Suboptimal heuristics.

Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of an undirected graph G=(V,E) is a subset V’ of V such
that if (u,v) is an edge in E, then u or v (or both) belong to V’.

Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of an undirected graph G=(V,E) is a subset V’ of V such that if
(u,v) is an edge in E, then u or v (or both) belong to V’.

 The vertex cover problem is to find a vertex cover of minimum size in a
given undirected graph.

Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of an undirected graph G=(V,E) is a subset V’ of V such that if
(u,v) is an edge in E, then u or v (or both) belong to V’.

 The vertex cover problem is to find a vertex cover of minimum size in a given
undirected graph.

Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of an undirected graph G=(V,E) is a subset V’ of V such that if
(u,v) is an edge in E, then u or v (or both) belong to V’.

 The vertex cover problem is to find a vertex cover of minimum size in a given
undirected graph.

Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of an undirected graph G=(V,E) is a subset V’ of V
such that if (u,v) is an edge in E, then u or v (or both) belong to V’.

 The size of a vertex cover is the number of vertices in it.

 The vertex cover problem is to find a vertex cover of minimum
size in a given undirected graph.

 We call such a vertex cover an optimal vertex cover.

 The vertex cover problem was shown to be NP-complete.

Algorithmic Graph Theory:

Vertex cover problem:

 The following approximation algorithm takes as input an undirected graph

G and returns a vertex cover whose size is guaranteed no more than twice

the size of optimal vertex cover:

1. C ¬ Æ

2. E ' ¬ E[G]

3. While E ' ¹ Æ do

4. Let (u, v) be an arbitrary edge in E'

5. C ¬ C È{u, v}

6. Remove from E' every edge incident on either

 u or v

7. Return C

Algorithmic Graph Theory:

a

b c

e f g a

b

e

d

f g

a

b

e

d

f g

c

cd

The Vertex Cover Problem

a

b

e

d

f g

a

b

e f g

c

c d

The Vertex Cover Problem

a

b

e

d

f g

a

b

e f g a

b

f g

c

cc d

e

d

Algorithmic Graph Theory:

83

Theorem: Approximate vertex cover has a ratio bound of 2.

Proof:

 It is easy to see that C is a vertex cover.

 To show that the size of C is twice the size of optimal vertex cover.

 Let A be the set of edges picked in line 4 of algorithm.

 No two edges in A share an endpoint, therefore each new edge adds two
new vertices to C, so |C|=2|A|.

 Any vertex cover should cover the edges in A, which means at least one
of the end points of each edge in A belongs to C*.

 So, |A|<=|C*|, which will imply the desired bound.

Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of an undirected graph G=(V,E) is a subset V’ of V such that if
(u,v) is an edge in E, then u or v (or both) belong to V’.

 The vertex cover problem is to find a vertex cover of minimum size in a given
undirected graph.

What Next?

Geometry of Graphs and Graphs Encoding the Geometry

Spectral Graph Theory

