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Notations:

A graph G is a triple consisting of a vertex set V(G), an edge set

E(G), and a relation (weight function) W(G) associates with 

each edge. The two vertices of each edge will be called its 

endpoints (not necessarily distinct).
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Notations:

 A <u,v>-path is a simple graph that begins at u and ends at v, 

whose vertices can be ordered so that two vertices are adjacent if 

and only if they are consecutive in the ordering.

 A cycle is a simple path whose vertices can be cyclically ordered 

with overlapping endpoints (u=v).
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Notations:

 Given a graph G=(V,E), where 

 V is its vertex set, |V|=n,

 E is its edge set, with |E|=m=O(n2).

 In an undirected graph an edge (u,v)=(v,u).

 In directed graph (u,v) is different from (v,u).

 In a weighted graph the labels are the weights associated with edges 

and/or vertices.

 Running time of graph algorithms are usually expressed in terms of 

n or m.



Notations:

 A graph G is connected if for every u,v in V(G) there exists a 

simple <u,v>-path in G (otherwise G is disconnected).
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Notations:

 A graph G is connected if for every u,v in V(G) there exists a 

<u,v>-path in G (otherwise G is disconnected).

 The maximal connected subgraphs of G are called its connected 

components.

 The degree of a vertex v in a graph G, denoted deg(v), is the 
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Important Graphs:

 A complete graph is a simple graph whose vertices are pairwise 

adjacent. The complete graph with n vertices is denoted Kn.

 A graph G is bipartite if V(G) is the union of two disjoint (possibly 

empty) independent sets, called partite sets of G.
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Important Graphs:

 A graph is k-partite if V(G) is the union of k

disjoint independent sets.

K1 K2 K3 K4 K5

 A complete graph is a simple graph whose vertices are pairwise 

adjacent. The complete graph with n vertices is denoted Kn.

 A graph G is bipartite if V(G) is the union of two disjoint (possibly 

empty) independent sets, called partite sets of G.
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Important Graphs:

 A Tree is a connected acyclic graph.

 A graph is planar if it can be drawn in the plane without crossings.

 A graph that is so drawn in the plane is also said to be embedded in 

the plane.



Graph Representation:

 The adjacency matrix of a graph G, denoted by AG is an n×n 

defined as follows:

 If G is directed then AG is asymmetric.
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Notes:

Number of 1’s in AG is m if G is directed; if its 

undirected, then number of 1’s is 2m.

Degree of a vertex is the sum of entries in 

corresponding row of AG

If G is undirected then sum of all degree is 2m.

In a directed graph sum of the out degrees is equal to m.
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Shock:

Shock Graph (Siddiqi et. al.  1999)
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Variations in Reresentation: 

 Representing shape properties. 

 Representing appearance features.

 ...
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Why Graphs?

Many reasons:

 Intuitive (representation)

 Compactness (representation)

 Generative (morphologically)

 Capturing distributions.

Makes computational tasks easier!






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Sample Computational Tasks:

 Shape matching reduced to graph 

matching.

 Object recognition 

 Localization.

 Shape abstraction

 Segmentation 

Felzenszwalb and Huttenlocher 2004
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Hardness of Representation

 What is the right level of abstraction?

 Model construction requires complex 

grouping algorithms.

 Invariance (noise).  
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Algorithmic Graph Theory:

 Objective: Designing efficient combinatorial methods for solving 

decision or optimization problems.

 Runs in polynomial number of steps in terms of size of the graph; n=|V(G)| 

and m=|E(G)|. 

 Optimality of solution.

 Bad news: most of the combinatorial optimization problems involving 

graphs are  computationally intractable:

 traveling salesman problem, maximum cut problem, independent set problem, 

maximum clique problem, minimum vertex cover problem, maximum 

independent set problem, multidimensional matching problem,…



Algorithmic Graph Theory:

 Dealing with the intractability:

 Bounded approximation algorithms

 Suboptimal heuristics.
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Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of  an undirected graph G=(V,E) is a subset V’ of  V
such that if  (u,v) is an edge in E, then u or v (or both) belong to V’. 

 The size of  a vertex cover is the number of  vertices in it.

 The vertex cover problem is to find a vertex cover of  minimum
size in a given undirected graph. 

 We call such a vertex cover an optimal vertex cover.

 The vertex cover problem was shown to be NP-complete. 



Algorithmic Graph Theory:

Vertex cover problem:

 The following approximation algorithm takes as input an undirected graph 

G and returns a vertex cover whose size is guaranteed no more than twice  

the size of  optimal vertex cover:

1. C ¬ Æ

2. E ' ¬ E[G]

3. While E ' ¹ Æ do

4.      Let (u, v) be an arbitrary edge in E'

5.      C ¬ C È{u, v}

6.      Remove from E' every edge incident on either 

         u or v

7. Return C
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Algorithmic Graph Theory:

83

Theorem: Approximate vertex cover has a ratio bound of 2.

Proof: 

 It is easy to see that C is a vertex cover. 

 To show that the size of C is twice the size of optimal vertex cover. 

 Let A be the set of edges picked in line 4  of algorithm.

 No two edges in A share an endpoint, therefore each new edge adds two 
new vertices to C, so |C|=2|A|. 

 Any vertex cover should cover the edges in A, which means at least one 
of the end points of  each edge in A belongs to C*. 

 So, |A|<=|C*|, which will imply the desired bound.



Algorithmic Graph Theory:

Bounded approximation algorithms

Example: Vertex cover problem:

 A vertex cover of  an undirected graph G=(V,E) is a subset V’ of  V such that if  
(u,v) is an edge in E, then u or v (or both) belong to V’. 

 The vertex cover problem is to find a vertex cover of  minimum size in a given 
undirected graph. 



What Next?

Geometry of Graphs and Graphs Encoding the Geometry

Spectral Graph Theory


