

Laplace-Beltrami Eigenstuff Part 3 - Applications

Martin Reuter – reuter@mit.edu

Mass. General Hospital, Harvard Medical, MIT

Outline

- Shape Analysis Background
- Database Retrieval
- Shape Segmentation
- Subcortical Structures

* What is Shape and what is similar?

- Shape should be invariant with respect to:
 - Location (rotation, translation)
 - Size
 - Isometries?

* Shape Matching

- Prior alignment, scaling of the objects:
 - normalization, registration
- Computation of a simplified representation
 - Signature, Shape-Descriptor
- Comparison of the signatures
 - distance computation to measure similarity
- Disadvantages of current methods:
 - Over-simplification, missing invariance, complex pre-processing, difficult to compare signatures, support only special representations

New Signature: ShapeDNA [spm05]

We use the (normed) n-dim vector of the **smallest** n **eigenvalues** $(\lambda_1, \ldots, \lambda_n)$ of the Laplace operator Δ as the signature:

- Isometry invariant ⇒ location invariant
- and (where required) scaling invariant
- No registration necessary
- Surfaces & solids (even with cavities)
- Independent of representation
- Simple distance computation of the signature vectors
- Efficient and highly accurate computation with cubic FEM

+

Can one hear Shape?

Answer

No! Isospectral drums exist (Gordon, Webb, Wolpert - 1992)

- rare
- concave in 2D
- only pairs

Geometry

Nevertheless, they share area, boundary length, genus...

* Weyl's Theorem

Theorem (Weyl - 1911,1912)

$$\lambda_n \sim \frac{4\pi}{\operatorname{area}(D)} n$$

$$\lambda_n \sim \frac{4\pi}{\operatorname{area}(D)} n$$
 for $d=2$ and $n\to\infty$

$$\lambda_n \sim \left(\frac{6\pi^2}{\operatorname{vol}(D)}\right)^{\frac{2}{3}} n^{\frac{2}{3}} \quad \textit{for } d=3 \textit{ and } n \to \infty.$$

*Heat Trace Expension

- More Geometric and Toplogical Information:
- Riemannian Volume
- Riemannian Volume of the Boundary
- Euler Characteristic for closed 2D Manifolds
- Number of holes for planar domains
- Possible to extract data numerically from beginning sequence [reuter:06] (500 Eigenvalues)

* Isometry Invariance

⁺ 2D near isometry, 3D not

For solid bodies in \mathbb{R}^3 isometry is equivalent to congruency.

* Continuous Shape Dependence

M.Reuter

Database Retrieval

- 1. Computation of the first n Eigenvalues (Shape-DNA)
- 2. Normalization
 - a) Surface area normalized
 - b) Volume normalized
- 3. Distance computation of the Shape-DNA (n-dim vector)
 - a) Euclidean distance (!)
 - b) Another p-norm
 - c) Hausdorff distance
 - d) Correlation . . .

Courtesy of Bronstein, Bronstein, Kimmel, 2006

+

Nonrigid Shape Database (148)

Courtesy of Bronstein, Bronstein, Kimmel, 2006

P(R) := Precision(Recall) averaged:

Integral: 0.983301 and min: 0.921847

Nonrigid DB – MDS Plot

* Nonrigid DB – Zoom 1

Nonrigid DB – Zoom 1

Nonrigid DB

P(R) := Precision(Recall) averaged:

Integral: 0.999947 and min: 0.99829

* Shape Retrieval Contest 11 Non Rigid Track

* Shape Segmentation

- Morse-Smale Complex of the 1st Eigenfunction
 - Left: full complex Right: simplified (3min,2max,3saddles)

* Shape Segmentation

- Segmentation on different 'persistence' levels
 - Left: using only the most significant critical points
 - Right: close-up of hand using all (except noise)

[†] Hierarchical Segmentation

* Consistent Segmentation and Registration

+

Future Directions

- Dense correspondence: Texture or Marker transfer, Surgical Planning
- Segmentation plus Skeleton: Pose Interpolation, Animation

* Caudate Nucleus

- Involved in memory function, emotion processing, and learning
 - Psychiatry Neuroimaging Lab (BWH Martha Shenton)
 - Population: 32 Schizotypal Personality Disorder, 29 NC

Shape Analysis Caudate

- Eigenfunction (EF): 2
- maxima at tips (red)
- minimum at outer rim (blue, middle)
- saddle at inner rim (green, left),
- integral lines (red and blue curve)
 run from the saddle to the extrema
- closed green curves denote the zero level sets
- (h) the head circumference (long green curve)
- (w) the waist circumference (blue curve)
- (t) the tail circumference (short green curve)
- (I) the length (red curve).

* Shape Analysis Caudate

* Shape Analysis Corpus Callosum

+ Thanks

Publications and Software: http://reuter.mit.edu

