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Know your Eigenvalues
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Discrete LBO (Graph)
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Discrete LBO
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Discrete LBO (Matrix Form)
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Note about Symmetry

 In case of node weights (also called masses) L cannot be 

represented as a symmetric matrix. 

 Slower matrix vector multiplication

 Large NxN matrix difficult to handle / store

 Eigenvalues can be imaginary!

 Instead keep Eigenvalue system symmetric and sparse 

(generalized EVP):

 Or solve equivalently standard problem:
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Continuous Case
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LBO in local coordinates
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LBO in local coordinates
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How to solve this on some shape?

 1. Discretize geometry (elements)

 here triangle mesh

 2. Discretize function space (basis or form functions)

 select basis functions on mesh

 here linear hat functions

 3. Transform the Differential Equation (Variational Formulation)

 multiply equation by arbitrary test functions

 integrate over domain

 try to replace higher order derivatives with lower order
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Geometry Discretization
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Hat Functions

 Function values defined at vertices:

 Extend piecewise linear function by choosing basis of linear hat 

functions         (value 1 at vertex i and zero at others): 
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Inner Product

 Inner product of two functions U and H:

 Norm of U:

 Volume (Area in 2D):
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Integral of single function

 For piecewise linear functions 

 Interestingly: the elements of D are simply the area of all 

triangles at a vertex divided by 3 -> Desbrun mass!
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Inner Product

 Inner Product of functions U and H

 and B a positive definite symmetric sparse matrix:

 What happens when lumping (summing rows onto diagonal):
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Variational Formulation of

Laplace Eigenvalue Problem
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Form Functions
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Triangle Meshes (piecewise flat)
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Metric Values on Triangle Meshes
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Plugging it into the Variational Eq.
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Linear Form Functions
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All combinations:
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Linear FEM



+
Linear FEM and Mesh Laplace
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Higher Order
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Higher Order
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Uniform and Non-Uniform Mesh
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Comparison Eigenfunctions
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Comparison Eigenfunctions
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Comparison on the sphere



+
Sphere – same DOF


