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Sound and Shape
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Chladni’s strange patterns

 vibration of plates

 used a violin bow

 discovered sound patterns 
by spreading sand on the 
plates

 1809 invited by Napoleon

 who held out price for 
mathematical explanation 

 “Entdeckungen über die 
Theorie des Klanges” 
(Discoveries concerning 
the theory of music), 
Chladni, 1787
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Can one “hear” Shape?

 First asked by Bers, then paper by 
Kac 1966, idea dates back to Weyl
1911 (at least).

 The sound (eigen-frequencies) of a 
drum depend on its shape.

 This spectrum can be numerically 
computed if the shape is known.

 E.g., no other shape has the same 
spectrum as a disk.

 Can the shape be computed from 
the spectrum?
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Contributions

Shape Analysis: Reuter, Wolter, Peinecke [SPM05],

[JCAD06](most cited paper award 09) and Patent Appl.

• Introduced Laplace-Beltrami Op. for Non-Rigid Shape Analysis.

• Cubic FEM to obtain accurate solutions for surfaces and solids.

• Before a mesh Laplace (simplified linear FEM) has been used for 

parametrization, smoothing, mesh compression

Image Recognition: Peinecke et al [JCAD07] (Mass Density LBO)

Neuroscience Applicantions:

• Statistical morphometric studies of brain structures (eigenvalues), 

Niethammer, Reuter, Shenton, Bioux.. [MICCAI07], Reuter.. 

[CW08]

• Topological studies of eigenfunctions, Reuter.. [CAD09] (invited)

Segmentation: Reuter..(IMATI, Genova) [SMI09] [IJCV09]

Correspondence: Reuter [IJCV09]
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Why is the Laplace Operator so 

interesting?

=> Many properties carry over to potential 
applications from Physics …
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Laplace Spectrum
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Boundary Conditions
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1-Dimensional Helmholtz

f f {x : 0 x a}

f '' f f '' f 0

Neumann Boundary Condition :

f '(0) 0 and f '(a) 0

f (x) c cos
n

a
x n 0,1,2,...

n

a

2

Dirichlet Boundary Condition :

f (0) 0 and f (a) 0

f (x) csin(n x / a) n 1,2,3,...

(n / a)2
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2D Rectangle

 Side lengths a and b (Neumann Boundary Condition)

 Separation of variables leads to Eigenfunctions:

 Eigenvalues:

 Other cases where spectrum is known analytically:

 Circle (Bessel functions)

 Cylinder, flat torus (basically rectangle with special bndr. cond.)

 Sphere (Spherical Harmonics)
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Discrete Cosine Transform

 Similar to Fourier Transform, but only cosines at different 

frequencies to combine a signal.

 Compression

 MP3

 JPEG
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DCT at Work

Source: Wikipedia
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Heat Kernel

 Heat Equation: 

 Temperature distribution after time t:

 Solution (with initial condition        ):

 Initial condition unit heat source at point p:

 Once we know Eigenfunctions and –values:
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1D Heat Kernel

Spread of Heat in 1D
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Discrete 1D Laplacian

The Laplace operator is simply the second derivative:

f : f in °

yi
yi 1 yi

h

yi yi 1

h

1

h

yi 1 2yi yi 1

h2
yi y j

h2j (i )

h 1 1 2 1

yi 1

yi

yi 1

(1D filter)

Full :

... 2 1 0 0

1 2 1 0

0 1 2 1

0 0 1 2...

y Ly

W adj(G) and Vii #Neighbors

L W V
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1D-Laplacian-Smoothing

Move vertex half way towards center of neighbors:

v̂i vi
1

4
vi where vi

xi

yi

…but don’t wash it too long, it will shrink!
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2D Grid Laplacian

In 2D Laplace is sum of second partial derivatives:

Discrete 2D-Filter is a 5 Stencil:

0 1 0

1 4 1

0 1 0

again L W V

f (x,y) : fxx fyy in ° 2
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Graph Laplacian

Extension to a Graph is simply (guess):

L W V or yi (y j
j (i )

yi )

With (symmetric) edge weights (guess again):

yi wij (y j
j (i )

yi ) or L : W V with W : (wij ) and V : diag wij
j (i )

And finally with node weights:

yi
1

di
wij (y j

j (i )

yi ) or L : D 1 W V with D : diag(di )
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Spectral Graph Theory

 Eigenvalues

 Closely related to variety of global graph invariants

 Global shape descriptors

 Eigenvectors

 Useful extremal properties, e.g., heuristic for NP-hard 

problems, normalized cuts and sequencing

 Spectral embeddings capture global information, e.g., 

clustering, manifold learning

 However, we’ll not look at graphs here, but meshes …
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Meshes

Meshes can be seen as graphs:

… with a geometry (here triangle mesh embedded into R3).

Therefore one possibility is to use same Laplace discretizations

(with appropriate weights)

How to choose weights “correctly” ?

(x, y, z)
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Operator Discretizations

 Graph Laplace: 

 Vertex weights =1 (masses) and edge weights = 1 (stiffness)

 Other options (vertex degree, other symmetric weights)

 Usually not geometry aware

 Mesh Laplace:

 Different weights (based on geometry)

 Possibly mesh dependent

 What if we go to quad-meshes

 Or tetrahedral meshes (3D)…

 FEM Laplace:

 Different approach based on

Surface or Volume elements

 Generalizable and higher order approximations Figure courtesy of Bruno Levy
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Mesh Laplacians (Examples)

 Pinkall and Polthier (93):

where α and βdenote the two angles opposite edge(i,j). Still 

depends on mesh sampling (missing mass weights).

 Desbrun (99):

where the area is summed for all triangles at vertex i. Will 

turn out to be a simplified linear finite element operator.

 Meyer (02):

use the  the area obtained by joining the circumcenters of 

the triangles around vertex i (i.e., the Voronoi region).

wij
cot( ij ) cot( ij )

2
di 1

di
areai

3

di
voronoii

3
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Finite Element Method

 Instead of graph/wireframe (vertices, edges), we look at 

elements that assemble our geometry without gaps:

 triangles

 tetrahedra

 voxels….

 We define basis functions over this discretized geometry 

(linear, quadratic, cubic …)

 We get a powerful framework to solve differential equations 

(not just Laplace).

 Details later…
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Spectral Embedding

 Maps each vertex to the value of all (or a few) Eigenfunctions

at that location:
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Spectral Embedding

 Dirichlet Energy measures smoothness

 For Eigenfunctions it is:

 Optimal Embedding:

 The first (non constant) Eigenfunction (also called Fiedler vector) 
yields the optimal (smoothest) embedding of the shape onto a line 
(orthogonal to constant function and complying with boundary 
condition)

 Higher functions yield smoothest embedding orthogonal to previous 
ones
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Difficulties

 Numerical inaccuracies

 Sign Flips

 Scalar multiples are contained in same space

 Higher dimensional Eigenspaces

 Arbitrary basis (luckily they are rare, but being close to one is already 
problematic)

 Due to numerical errors Eigenvalues will be slightly different and we 
cannot really detect these situations

 Switching of Eigenfunctions

 Occurs, because of numerical instabilities (two close Eigenvalues
switch)

 Or due to geometric (non-isometric) deformations 
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Switching of Eigenfunctions
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Switching of Eigenfunctions

 Z=2.74

 Z=2.76
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Applications: smoothing revisited

 Represent any function as linear combination of Eigenfunctions

(similar to DCT):

 Smooth iteratively (modify coefficients):
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Geometry Filtering

Take f =(x,y,z)

Courtesy of Bruno Levy
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Color Filtering on Mesh

Courtesy of Bruno Levy

Take f =(r,g,b)


