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Laplace-Beltrami Eigenstuff
Part 1 - Background

Martin Reuter — reuter@mit.edu
Mass. General Hospital, Harvard Medical, MIT




Sound and Shape




_|_
Chladni’s strange patterns

m vibration of plates
m used a violin bow

m discovered sound patterns
by spreading sand on the
plates

m 1809 invited by Napoleon

m who held out price for
mathematical explanation

m “Entdeckungen uber die
Theorie des Klanges”
(Discoveries concerning
the theory of music),
Chladni, 1787
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Can one “hear” Shape?

m First asked by Bers, then paper by
Kac 1966, idea dates back to Weyl
1911 (at least).
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m The sound (eigen-frequencies) of a
drum depend on its shape.
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m This spectrum can be numerically
computed if the shape is known.
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m E.g., no other shape has the same
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the spectrum?
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Contributions

Shape Analysis: Reuter, Wolter, Peinecke [SPMO05],
[JCADOG6](most cited paper award 09) and Patent Appl.

- Introduced Laplace-Beltrami Op. for Non-Rigid Shape Analysis.

- Cubic FEM to obtain accurate solutions for surfaces and solids.

- Before a mesh Laplace (simplified linear FEM) has been used for
parametrization, smoothing, mesh compression

Image Recognition: Peinecke et al [JCADO7] (Mass Density LBO)

Neuroscience Applicantions:

. Statistical morphometric studies of brain structures (eigenvalues),
Niethammer, Reuter, Shenton, Bioux.. [MICCAIO7], Reuter..
[CWO08]

- Topological studies of eigenfunctions, Reuter.. [CADO09] (invited)
Segmentation: Reuter..(IMATI, Genova) [SMI09] [IJCV09]
Correspondence: Reuter [IJCV09]
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Why Is the Laplace Operator so
Interesting?

involved in many PDE’s:
@ Poisson equation: Af = h
o Laplace equation' Af =

@ Heat equatlon — kKAf=0
o Wave equatlon ar2 — KAf =
@ Helmholtz equation: Af = —\f

=> Many properties carry over to potential
applications from Physics ...
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Applications

Mesh Smoothing
s > ——t
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[Desbrun et al 1999, etc]
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Applications

Mesh Editing

[Zhou et al 2005, Lipman et al 2005, etc]




Applications

Heat Kernel Signature

[Sun, Ovsjanikov, and Guibas 2008, etc]
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Applications

Shape Analysis

[Ovsjanikov, Sun and Guibas 2008, etc]




Laplace Spectrum

Definition
Helmholtz Equation (Laplacian Eigenvalue Problem):
Af = =\, f-M—R
Solution: Eigenfunctions f; with corresponding
family of eigenvalues (Spectrum):
O0<AM <A< T+o0
Here Laplace-Beltrami Operator: Af := div(grad f)
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Boundary Conditions

Laplace-Beltrami Spectrum for Manifolds with Boundary:

Dirichlet Boundary Condition
Function is fixed f = 0 on the boundary of M

Neumann Boundary Condition

Derivative in normal direction is fixed g—f? = 0 on the
boundary of M
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1-Dimensional Helmholtz

AN =—Af Q={x:0<x<a}
S f"=-Af< f"+Af=0
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Dirichlet Boundary Condition : L T

f(0)=0 and f(a)=0

= f(x)=csin(nzx/a) n=12,3,..

= A=(nx/a)



2D Rectangle

m Side lengths a and b (Neumann Boundary Condition)

m Separation of variables leads to Eigenfunctions:

f(ﬂ:,y) = CCOS (ﬂa;) cos(%ﬁ) m,ﬂ:031,233,---
a

2 2
5 [ M n
A=T (a_2+b_2>

m Other cases where spectrum is known analytically:
m Circle (Bessel functions)
m Cylinder, flat torus (basically rectangle with special bndr. cond.)
m Sphere (Spherical Harmonics)

m Eigenvalues:
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Discrete Cosine Transform

m Similar to Fourier Transform, but only cosines at different
frequencies to combine a signal.

m Compression
m MP3
= JPEG
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DCT at Work

AA

[ 6.1917 03411 1.2418 0.1492 01583 0.2742 —0.0724 0.0561 ]
0.2205 0.0214 04503 03947 —0.7846 -04391 0.1001 —0.2554
1.0423 02214 -1.0017 -0.2720 0.0789 —-0.1952 0.2801 04713

—0.2340 —-0.0392 -0.2617 -0.2866 0.6351 03501 —0.1433 0.3550
0.2750  0.0226  0.1229  0.2183 —0.2583 —-0.0742 -0.2042 —0.5906
0.0653  0.0428 —0.4721 -0.2905 04745 0.2875 —0.0284 -0.1311
0.3169  0.0541 —0.1033 -0.0225 -0.0056 0.1017 -0.1650 —0.1500

| —0.2970 -0.0627 0.1960 00644 —0.1136 —-0.1031 0.1887  0.1444 |

LB 82832000

AR R R RIERRIIY
""ll.l““
s aluatiy
.l
IARii)

N

i

o
-
.

-

-

AIEARIARER L
IMIAIRER RIS N 1

IR AR IR E D I

ARRDRRI BB A v

+
fla i
o
[

192 .« Source: Wikipedia



_|_
Heat Kernel

m Heat Equation:
= Temperature distribution after time t:

m Solution (with initial condition ~ fo:  f(Z,t) = /M K(Z,9,1) fo(y)dy

d
S HAf=0

m Initial condition unit heat source at point p: [(Z,t) = K(Z,p,t)
m Once we know Eigenfunctions and —values:

(8.9

K(Z,§.t) =Y exp " f,.(Z) fa (7))

n=0
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1D Heat Kernel

Measure of heat
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Discrete 1D Laplacian

The Laplace operator is simply the second derivative:

Af=f" in °
Ay, = (ym o/ —yi_lj 1
h ho)h
; =yi—1_2yi+yi+l _ Z Yi— Vi
i h? JeX() h*
[y, )

Yici
Vi

| R

(=21 0 o0 )

1 2 1 0

0 1 -2 1

0 0o 1 -=2.
W =adj(G) and V,=# Neighbors
L=W-V

P

J (1D filter)
yi+1

Full :




1D-Laplacian-Smoothing

Move vertex half way towards center of neighbors:

Laplacian
e —
smoothing

11 11 1 1 1
Vi =3 {5 (Vi1 + V:a):| + 5 |:§ (v + Vé+1}} = ZVi—1 —+ 5 Vi —+ 7 Vit1
: 1 [ Ax, )
V.=v,+—Av, where Av, = l
4 Ay,

...but don’t wash it too long, it will shrink!
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2D Grid Laplacian

In 2D Laplace is sum of second partial derivatives:

AN(x,y)=f+ ], in ° 2

Discrete 2D-Filter is a 5 Stencil:

®(.j+1)

O 1 O

& & 1 4 1
- —y

(i-1.]) (i.j) (i+1.)) 01 0

AR again L=W -V
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Graph Laplacian

Extension to a Graph is simply (guess):

L=W-V or Av,=) (-¥)

JeN()

With (symmetric) edge weights (guess again):

(ZWUJ

Ay, = Z w,(y,—y) or L=W-=V with W:=(w,) and V= diagk
J eN() JeN()

And finally with node weights:

Ay. = 1 Z w,(y,—y) or L= D™ (W— V) with D =diag(d,)

i
di J eN(i)




" Spectral Graph Theory

m Eigenvalues
m Closely related to variety of global graph invariants
= Global shape descriptors

m Eigenvectors

m Useful extremal properties, e.g., heuristic for NP-hard
problems, normalized cuts and sequencing

m Spectral embeddings capture global information, e.qg.,
clustering, manifold learning

m However, we’'ll not look at graphs here, but meshes ...
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Meshes

Meshes can be seen as graphs:

(x,y,2)
SvA

AN

... with a geometry (here triangle mesh embedded into R3).

Therefore one possibility is to use same Laplace discretizations
(with appropriate weights)

How to choose weights “correctly” ?
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Operator Discretizations

m Graph Laplace:
m Vertex weights =1 (masses) and edge weights = 1 (stiffness)
m Other options (vertex degree, other symmetric weights)
m Usually not geometry aware

m Mesh Laplace:
m Different weights (based on geometry)
m Possibly mesh dependent
= What if we go to quad-meshes
m Or tetrahedral meshes (3D)...

m FEM Laplace:
m Different approach based on
Surface or Volume elements :
m Generalizable and higher order approximations Figure courtesy of Bruno Levy




Mesh Laplacians (Examples)

t(c.. )+ cot( /..
= Pinkall and Polthier (93):  w, = — (%)2 coll) 4oy

where a and Bdenote the two angles opposite edge(i,j). Still
depends on mesh sampling (missing mass weights).

m Desbrun (99): d, = arga"
where the area is summed for all triangles at vertex i. Will
turn out to be a simplified linear finite element operator.

Voronoi,

m Meyer (02): d, = 3

use the the area obtained by joining the circumcenters of
the triangles around vertex i (i.e., the Voronoi region).




_|_
Finite Element Method

m Instead of graph/wireframe (vertices, edges), we look at
elements that assemble our geometry without gaps:

= triangles
m tetrahedra
m voxels....

m \We define basis functions over this discretized geometry
(linear, quadratic, cubic ...)

m \We get a powerful framework to solve differential equations
(not just Laplace).

m Details later...



Spectral Embedding

m Maps each vertex to the value of all (or a few) Eigenfunctions
at that location:

= (f1(2), f2(T), f3(2),...)
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" Spectral Embedding

m Dirichlet Energy measures smoothness

m For Eigenfunctions it is:
Elfi] = fM |?ﬁ'|2 do = JFM[?fi:‘E do
= — [y LiAfi do = A [y, fifi do =\

m Optimal Embedding:

m The first (non constant) Eigenfunction (also called Fiedler vector)
yields the optimal (smoothest) embedding of the shape onto a line
(orthogonal to constant function and complying with boundary
condition)

= Higher functions yield smoothest embedding orthogonal to previous
ones
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Difficulties

m Numerical inaccuracies

m Sign Flips
m Scalar multiples are contained in same space

m Higher dimensional Eigenspaces

m Arbitrary basis (luckily they are rare, but being close to one is already
problematic)

m Due to numerical errors Eigenvalues will be slightly different and we
cannot really detect these situations

m Switching of Eigenfunctions

m Occurs, because of numerical instabilities (two close Eigenvalues
switch)

m Or due to geometric (non-isometric) deformations
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Switching of Eigenfunctions
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Switching of Eigenfunctions

m/=2.74




Applications: smoothing revisited

m Represent any function as linear combination of Eigenfunctions
(similar to DCT):

N

F(z) = Zciﬁz

1=1
m Smooth iteratively (modify coefficients):

1 1
SmF— (I+ 4L mF Z(I_I_ 4L) szz —Z(l_ _A) C‘sz

1=1 2=1 N\

ﬁlter



Geometry Filtering

Take f =(X,y,2)

Courtesy of Bruno Levy




Color Filtering on Mesh

Take f =(r,g,b)
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Courtesy of Bruno Levy



