

Laplace-Beltrami Eigenstuff Part 1 - Background

Martin Reuter – reuter@mit.edu

Mass. General Hospital, Harvard Medical, MIT

* Sound and Shape

Chladni's strange patterns

- vibration of plates
- used a violin bow
- discovered sound patterns by spreading sand on the plates
- 1809 invited by Napoleon
- who held out price for mathematical explanation
- "Entdeckungen über die Theorie des Klanges" (Discoveries concerning the theory of music), Chladni, 1787

Can one "hear" Shape?

- First asked by Bers, then paper by Kac 1966, idea dates back to Weyl 1911 (at least).
- The sound (eigen-frequencies) of a drum depend on its shape.
- This spectrum can be numerically computed if the shape is known.
- E.g., no other shape has the same spectrum as a disk.
- Can the shape be computed from the spectrum?

Contributions

Shape Analysis: Reuter, Wolter, Peinecke [SPM05], [JCAD06](most cited paper award 09) and Patent Appl.

- Introduced Laplace-Beltrami Op. for Non-Rigid Shape Analysis.
- Cubic FEM to obtain accurate solutions for surfaces and solids.
- Before a mesh Laplace (simplified linear FEM) has been used for parametrization, smoothing, mesh compression

Image Recognition: Peinecke et al [JCAD07] (Mass Density LBO)

Neuroscience Applicantions:

- Statistical morphometric studies of brain structures (eigenvalues),
 Niethammer, Reuter, Shenton, Bioux.. [MICCAI07], Reuter..
 [CW08]
- Topological studies of eigenfunctions, Reuter.. [CAD09] (invited)

Segmentation: Reuter..(IMATI, Genova) [SMI09] [IJCV09]

Correspondence: Reuter [IJCV09]

Why is the Laplace Operator so interesting?

involved in many PDE's:

- Poisson equation: $\Delta f = h$
- Laplace equation: $\Delta f = 0$
- Heat equation: $\frac{\partial f}{\partial t} k\Delta f = 0$
- Wave equation: $\frac{\partial^2 f}{\partial t^2} k\Delta f = 0$
- Helmholtz equation: $\Delta f = -\lambda f$
- => Many properties carry over to potential applications from Physics ...

Laplace Spectrum

Definition

Helmholtz Equation (Laplacian Eigenvalue Problem):

$$\Delta f = -\lambda f, \qquad f: M \to \mathbb{R}$$

Solution: Eigenfunctions f_i with corresponding family of eigenvalues (**Spectrum**):

$$0 \le \lambda_1 \le \lambda_2 \le \cdots \uparrow +\infty$$

Here Laplace-Beltrami Operator: $\Delta f := div(grad \ f)$

Boundary Conditions

Laplace-Beltrami Spectrum for Manifolds with Boundary:

Dirichlet Boundary Condition

Function is fixed $f \equiv 0$ on the boundary of M

Neumann Boundary Condition

Derivative in normal direction is fixed $\frac{\partial f}{\partial n} \equiv 0$ on the boundary of M

⁺ 1-Dimensional Helmholtz

$$\Leftrightarrow f'' = -\lambda f \Leftrightarrow f'' + \lambda f = 0$$

Neumann Boundary Condition:

$$f'(0) = 0$$
 and $f'(a) = 0$

$$\Rightarrow f(x) = c \cdot \cos\left(\frac{n\pi}{a}x\right) \quad n = 0, 1, 2, \dots$$

$$\Rightarrow \lambda = \left(\frac{n\pi}{a}\right)^2$$

Dirichlet Boundary Condition:

$$f(0) = 0$$
 and $f(a) = 0$

$$\Rightarrow f(x) = c \sin(n\pi x/a)$$
 $n = 1, 2, 3, ...$

$$\Rightarrow \lambda = (n\pi/a)^2$$

* 2D Rectangle

Separation of variables leads to Eigenfunctions:

$$f(x,y) = c\cos\left(\frac{m\pi}{a}x\right)\cos\left(\frac{n\pi}{b}x\right)$$
 $m, n = 0, 1, 2, 3, \cdots$

■ Eigenvalues:

$$\lambda = \pi^2 \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)$$

- Other cases where spectrum is known analytically:
 - Circle (Bessel functions)
 - Cylinder, flat torus (basically rectangle with special bndr. cond.)
 - Sphere (Spherical Harmonics)

Discrete Cosine Transform

- Similar to Fourier Transform, but only cosines at different frequencies to combine a signal.
- Compression
 - MP3
 - JPEG

+ DCT at Work

6.1917	-0.3411	1.2418	0.1492	0.1583	0.2742	-0.0724	0.0561
0.2205	0.0214	0.4503	0.3947	-0.7846	-0.4391	0.1001	-0.2554
1.0423	0.2214	-1.0017	-0.2720	0.0789	-0.1952	0.2801	0.4713
-0.2340	-0.0392	-0.2617	-0.2866	0.6351	0.3501	-0.1433	0.3550
0.2750	0.0226	0.1229	0.2183	-0.2583	-0.0742	-0.2042	-0.5906
0.0653	0.0428	-0.4721	-0.2905	0.4745	0.2875	-0.0284	-0.1311
0.3169	0.0541	-0.1033	-0.0225	-0.0056	0.1017	-0.1650	-0.1500
-0.2970	-0.0627	0.1960	0.0644	-0.1136	-0.1031	0.1887	0.1444

Source: Wikipedia

Heat Kernel

Solution (with initial condition
$$f_0$$

$$K(\vec{x}, \vec{y}, t) = \sum_{n=0}^{\infty} \exp^{-\lambda_n t} f_n(\vec{x}) f_n(\vec{y})$$

 $f(\vec{x},t) = K(\vec{x},\vec{p},t)$

⁺ 1D Heat Kernel

Discrete 1D Laplacian

$$\Delta f := f''$$
 in °

$$\Delta y_{i} = \left(\frac{y_{i+1} - y_{i}}{h} - \frac{y_{i} - y_{i-1}}{h}\right) \frac{1}{h}$$

$$= \frac{y_{i-1} - 2y_{i} + y_{i+1}}{h^{2}} = \sum_{j \in \mathbb{N}(i)} \frac{y_{i} - y_{j}}{h^{2}}$$

$$h = 1 \Rightarrow \left(1 - 2 - 1\right) \begin{pmatrix} y_{i-1} \\ y_{i} \\ y_{i+1} \end{pmatrix} \quad (1D \text{ filter})$$

Full:
$$\begin{pmatrix} \dots -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \dots \end{pmatrix} y = Ly$$

$$W = adj(G)$$
 and $V_{ii} = \# Neighbors$
 $L = W - V$

1D-Laplacian-Smoothing

Move vertex half way towards center of neighbors:

$$\hat{\mathbf{v}}_{i} = \frac{1}{2} \left[\frac{1}{2} \left(\mathbf{v}_{i-1} + \mathbf{v}_{i} \right) \right] + \frac{1}{2} \left[\frac{1}{2} \left(\mathbf{v}_{i} + \mathbf{v}_{i+1} \right) \right] = \frac{1}{4} \mathbf{v}_{i-1} + \frac{1}{2} \mathbf{v}_{i} + \frac{1}{4} \mathbf{v}_{i+1}$$

$$\hat{v}_i = v_i + \frac{1}{4} \Delta v_i \quad where \quad \Delta v_i = \begin{pmatrix} \Delta x_i \\ \Delta y_i \end{pmatrix}$$

...but don't wash it too long, it will shrink!

⁺ 2D Grid Laplacian

$$\Delta f(x,y) := f_{xx} + f_{yy}$$
 in ° 2

Discrete 2D-Filter is a 5 Stencil:

Graph Laplacian

$$L = W - V$$
 or $\Delta y_i = \sum_{j \in \aleph(i)} (y_j - y_i)$

With (symmetric) edge weights (guess again):

$$\Delta y_i = \sum_{j \in \mathbb{N}(i)} w_{ij} (y_j - y_i) \quad or \quad L \coloneqq W - V \quad with \quad W \coloneqq (w_{ij}) \quad and \quad V \coloneqq diag \left(\sum_{j \in \mathbb{N}(i)} w_{ij} \right)$$

And finally with node weights:

$$\Delta y_i = \frac{1}{d_i} \sum_{j \in \mathbb{N}(i)} w_{ij} (y_j - y_i) \quad or \quad L := D^{-1} (W - V) \quad with \quad D := diag(d_i)$$

* Spectral Graph Theory

- Eigenvalues
 - Closely related to variety of global graph invariants
 - Global shape descriptors
- Eigenvectors
 - Useful extremal properties, e.g., heuristic for NP-hard problems, normalized cuts and sequencing
 - Spectral embeddings capture global information, e.g., clustering, manifold learning
- However, we'll not look at graphs here, but meshes ...

Meshes

Meshes can be seen as graphs:

... with a geometry (here triangle mesh embedded into R3).

Therefore one possibility is to use same Laplace discretizations (with appropriate weights)

How to choose weights "correctly"?

Operator Discretizations

Graph Laplace:

- Vertex weights =1 (masses) and edge weights = 1 (stiffness)
- Other options (vertex degree, other symmetric weights)
- Usually not geometry aware

■ Mesh Laplace:

- Different weights (based on geometry)
- Possibly mesh dependent
- What if we go to quad-meshes
- Or tetrahedral meshes (3D)...

■ FEM Laplace:

- Different approach based on Surface or Volume elements
- Generalizable and higher order approximations

Figure courtesy of Bruno Levy

Mesh Laplacians (Examples)

where α and β denote the two angles opposite edge(i,j). Still depends on mesh sampling (missing mass weights).

where the area is summed for all triangles at vertex i. Will turn out to be a simplified linear finite element operator.

use the the area obtained by joining the circumcenters of the triangles around vertex i (i.e., the Voronoi region).

* Finite Element Method

- Instead of graph/wireframe (vertices, edges), we look at elements that assemble our geometry without gaps:
 - triangles
 - tetrahedra
 - voxels....
- We define basis functions over this discretized geometry (linear, quadratic, cubic ...)
- We get a powerful framework to solve differential equations (not just Laplace).
- Details later...

* Spectral Embedding

$$\Phi(\vec{x}) = (f_1(\vec{x}), f_2(\vec{x}), f_3(\vec{x}), \dots)$$

* Spectral Embedding

- Dirichlet Energy measures smoothness
- For Eigenfunctions it is:

$$E[f_i] = \int_M |\nabla f_i|^2 d\sigma = \int_M (\nabla f_i)^2 d\sigma$$
$$= -\int_M f_i \Delta f_i d\sigma = \lambda_i \int_M f_i f_i d\sigma = \lambda_i$$

- Optimal Embedding:
 - The first (non constant) Eigenfunction (also called Fiedler vector) yields the optimal (smoothest) embedding of the shape onto a line (orthogonal to constant function and complying with boundary condition)
 - Higher functions yield smoothest embedding orthogonal to previous ones

Difficulties

- Numerical inaccuracies
- Sign Flips
 - Scalar multiples are contained in same space
- Higher dimensional Eigenspaces
 - Arbitrary basis (luckily they are rare, but being close to one is already problematic)
 - Due to numerical errors Eigenvalues will be slightly different and we cannot really detect these situations
- Switching of Eigenfunctions
 - Occurs, because of numerical instabilities (two close Eigenvalues switch)
 - Or due to geometric (non-isometric) deformations

* Switching of Eigenfunctions

* Switching of Eigenfunctions

Applications: smoothing revisited

$$F(\vec{x}) = \sum_{i=1}^{N} c_i f_i$$

Smooth iteratively (modify coefficients):

$$S^{m}F = (I + \frac{1}{4}L)^{m}F = \sum_{i=1}^{n} (I + \frac{1}{4}L)^{m}c_{i}f_{i} = \sum_{i=1}^{n} \underbrace{(1 - \frac{1}{4}\lambda_{i})^{m}}_{\text{filter}} c_{i}f_{i}$$

*Geometry Filtering

Take f = (x,y,z)

*Color Filtering on Mesh

Courtesy of Bruno Levy