Faculty of Science

Optimal Net Surface Segmentation Application to Airway Walls in CT Images

Jens Petersen

August 16, 2011 Slide 1/22

Introduction

Wu and Chen's optimal net surface problems¹:

- Globally optimal solution (given the graph discretization).
- Multiple surfaces in multiple dimensions.
- Surface cost functions and geometric constraints.
- Polynomial time solution using maximum flow algorithms.

 $^1 X.$ Wu, D. Z. Chen, LNCS, 2002, vol. 2380, pp. 1029-1042 Jens Petersen — Optimal Net Surface Segmentation Slide $^{2/22}$

Introduction - Comparison with Graph Cut²

Advantages:

- Can optimally deal with more than two labels.
- Initial knowledge of surface orientation and position can be used to develop shape priors.

Disadvantages:

• The sought surface(s) must be terrain-like within some initially known transformation.

 $^2 \rm Y.$ Boykov et al, 2001, PAMI, vol. 23, No. 11, pp. 1222-1239 Jens Petersen — Optimal Net Surface Segmentation Slide $_{\rm 3/22}$

Goal: Find some terrain-like surface.

Graph vertices belong to a disjoint set of columns V_B .

A net surface N in G is a subset of V, such that:

- Each vertex in N belongs to exactly one column in V_B
- There exists exactly one vertex in each column belonging to N.

The optimal net surface problem:

Slide 4/22

Vertex cost function (positive).

Cost of all vertices in the surface.

Edge cost function (convex, non-decreasing).

Cost of all vertex pairs in the surface.

Multiple dependent surfaces, how?

Multiple dependent surfaces, how?

• Add a sub-graph of columns for each surface.

Multiple dependent surfaces, how?

- Add a sub-graph of columns for each surface.
- Inter-surface constraints easily added.

Goal:

• Optimal surface(s) given by top-most vertices in minimum cut source set.

Goal:

• Optimal surface(s) given by top-most vertices in minimum cut source set.

How?

• Add source and sink nodes.

Goal:

• Optimal surface(s) given by top-most vertices in minimum cut source set.

- Add source and sink nodes.
- Force solution to be a net surface.

Goal:

• Optimal surface(s) given by top-most vertices in minimum cut source set.

- Add source and sink nodes.
- Force solution to be a net surface.
- Implement vertex cost function.

Goal:

• Optimal surface(s) given by top-most vertices in minimum cut source set.

- Add source and sink nodes.
- Force solution to be a net surface.
- Implement vertex cost function.
- Implement edge cost function.

Goal:

• Optimal surface(s) given by top-most vertices in minimum cut source set.

How?

- Add source and sink nodes.
- Force solution to be a net surface.
- Implement vertex cost function.
- Implement edge cost function.

$$g_{i,j}(x) = \begin{cases} 0 & \text{if } x < 0\\ f_{i,j}(1) & \text{if } x = 0\\ f_{i,j}(x+1) - 2f_{i,j}(x) + & \\ f_{i,j}(x-1) & \text{if } x > 0 \end{cases}$$

Assume WLOG: $f_{i,j}(0) = 0$ and note: $g_{i,j}(x) \ge 0$.

Goal:

• Optimal surface(s) given by top-most vertices in minimum cut source set.

How?

- Add source and sink nodes.
- Force solution to be a net surface.
- Implement vertex cost function.
- Implement edge cost function.

$$g_{i,j}(x) = \begin{cases} 0 & \text{if } x < 0 \\ f_{i,j}(1) & \text{if } x = 0 \\ f_{i,j}(x+1) - 2f_{i,j}(x) + & \\ f_{i,j}(x-1) & \text{if } x > 0 \end{cases}$$

Assume WLOG: $f_{i,j}(0) = 0$ and note: $g_{i,j}(x) \ge 0$.

Goal:

• Optimal surface(s) given by top-most vertices in minimum cut source set.

How?

- Add source and sink nodes.
- Force solution to be a net surface.
- Implement vertex cost function.
- Implement edge cost function.

$$g_{i,j}(x) = \begin{cases} 0 & \text{if } x < 0\\ f_{i,j}(1) & \text{if } x = 0\\ f_{i,j}(x+1) - 2f_{i,j}(x) + & \\ f_{i,j}(x-1) & \text{if } x > 0 \end{cases}$$

Assume WLOG: $f_{i,j}(0) = 0$ and note: $g_{i,j}(x) \ge 0$.

$$g_{i,j}(x) = \begin{cases} 0 & \text{if } x < 0\\ f_{i,j}(1) & \text{if } x = 0\\ f_{i,j}(x+1) - 2f_{i,j}(x) + & \\ f_{i,j}(x-1) & \text{if } x > 0 \end{cases}$$

Example cut:

 $w(a_3) + w(b_0) + 3g_{a,b}(0) + 2g_{a,b}(1) + g_{a,b}(2)$

$$g_{i,j}(x) = \begin{cases} 0 & \text{if } x < 0\\ f_{i,j}(1) & \text{if } x = 0\\ f_{i,j}(x+1) - 2f_{i,j}(x) + & \\ f_{i,j}(x-1) & \text{if } x > 0 \end{cases}$$

Example cut:

 $w(a_3) + w(b_0) + 3g_{a,b}(0) + 2g_{a,b}(1) + g_{a,b}(2)$

$$w(a_3) + w(b_0) + 3f_{a,b}(1) + 2(f_{a,b}(2) - 2f_{a,b}(1)) + f_{a,b}(0)) + f_{a,b}(3) - 2f_{a,b}(2) + f_{a,b}(1) = 0$$

$$g_{i,j}(x) = \begin{cases} 0 & \text{if } x < 0\\ f_{i,j}(1) & \text{if } x = 0\\ f_{i,j}(x+1) - 2f_{i,j}(x) + & \\ f_{i,j}(x-1) & \text{if } x > 0 \end{cases}$$

Example cut:

 $w(a_3) + w(b_0) + 3g_{a,b}(0) + 2g_{a,b}(1) + g_{a,b}(2)$

$$w(a_3) + w(b_0) + 3f_{a,b}(1) + 2(f_{a,b}(2) - 2f_{a,b}(1) - f_{a,b}(0)) + f_{a,b}(3) - 2f_{a,b}(2) + f_{a,b}(1) = w(a_3) + w(b_0) + f_{a,b}(3)$$

Infinite cost edges \rightarrow hard constraints.

• Change at most one index.

Infinite cost edges \rightarrow hard constraints.

• Force solution in one column to be above or same level as other.

Graph Space - How?

Easy if the sought surface (or contour):

- Is terrain-like.
- Can be easily 'unfolded': tubular, star-shaped, etc.

However most surfaces are not like that.

Approach of Liu et al.³:

• Initial rough segmentation.

Approach of Liu et al.³:

- Initial rough segmentation.
- Columns at surface points in normal direction.

Approach of Liu et al.³:

- Initial rough segmentation.
- Columns at surface points in normal direction.
- Length: distance to the inner and outer medial axes.

Approach of Liu et al.³:

Columns can be too short.

Approach of Liu et al.³:

Poor results in regions with high curvature!

Our approach⁴:

- Combine regularization of the rough initial segmentation with computation of columns.
- Columns constructed as greatest ascent/descent flow lines from surface points in the smoothed initial segmentation.

⁴Petersen et al., LNCS, 2011, vol. 6801, pp. 49-60 Jens Petersen — Optimal Net Surface Segmentation Slide 11/22

Our approach⁴:

- Combine regularization of the rough initial segmentation with computation of columns.
- Columns constructed as greatest ascent/descent flow lines from surface points in the smoothed initial segmentation.

Advantages:

- Well suited for surfaces with high curvature.
- Noise and small errors can be removed by increasing regularization.
- Surfaces do not self-intersect.

⁴Petersen et al., LNCS, 2011, vol. 6801, pp. 49-60 Jens Petersen — Optimal Net Surface Segmentation Slide 11/22

• Compute rough initial segmentation obtaining a binary image.

- Compute rough initial segmentation obtaining a binary image.
 Convolve binary image with some regularization filter.
- Onvolve binary image with some regularization filter.

- ① Compute rough initial segmentation obtaining a binary image.
- **②** Convolve binary image with some regularization filter.
- Trace flow lines from surface points of the initial segmentation inward and outward.

- ① Compute rough initial segmentation obtaining a binary image.
- ② Convolve binary image with some regularization filter.
- Trace flow lines from surface points of the initial segmentation inward and outward.
- Find surfaces using an optimal net surface method with columns following the flow lines.

Application to Airway Walls in CT Images

Why do we want to segment airway walls in CT?

- Relevant in connection with Chronic Obstructive Pulmonary Disease (COPD).
 - Airway lumen narrowing.
 - Airway wall thickening.
- Two surface problem \rightarrow inner and outer wall surface.

Application to Airway Walls in CT Images

Application to Airway Walls in CT Images

Initial segmentation Lo et al.⁵:

• Segmentation of the lumen surface.

Cost functions:

- Vertex cost: weightings of the intensity derivatives.
- Edge cost:
 - Linear non-smoothness penalty for each surface.
 - Linear surface separation penalty.

 ^5Lo et al., LNCS, 2009, vol. 5762, pp. 51-58 Jens Petersen — Optimal Net Surface Segmentation Slide 15/22

Results - Visualizations

(a) Inner Surface

(b) Outer Surface

Results - Cross-sections near bifurcations

Flow line columns with Gaussian regularization

Medial axes + normal direction columns

Slide 18/22

Results - Manual Annotations

	Normal direction	Flow line
Dice coefficient	$\textbf{0.87} \pm \textbf{0.09}$	$0.89{\pm}0.06$
Contour distance (mm)	0.11 ± 0.13	$0.09{\pm}0.10$

Slide 18/22

Results - Manual Annotations

	Normal direction	Flow line
Dice coefficient	$\textbf{0.87} \pm \textbf{0.09}$	0.89±0.06
Contour distance (mm)	0.11 ± 0.13	$0.09{\pm}0.10$

Results - Manual Annotations

	Normal direction	Flow line
Dice coefficient	$\textbf{0.87} \pm \textbf{0.09}$	$0.89{\pm}0.06$
Contour distance (mm)	0.11 ± 0.13	$0.09{\pm}0.10$

Results - Manual Annotations

319 Manually annotated cross-sectional slices.

Jens Petersen - Optimal Net Surface Segmentation

Slide 18/22

	Normal direction	Flow line
Dice coefficient	$\textbf{0.87} \pm \textbf{0.09}$	0.09±0.06
Contour distance (mm)	0.11 ± 0.13	0.09±0.10

Results - Manual Annotations

	Normal direction	Flow line
Dice coefficient	$\textbf{0.87} \pm \textbf{0.09}$	0.89 <mark>±0.06</mark>
Contour distance (mm)	0.11 ± 0.13	0.09±0.10

Results - Correlation with Lung Function

- 480 low dose (120 kV and 40 mAs), 0.78mm \times 0.78mm \times 1mm
- Measures: lumen volume (blue) and wall area percentage (green).
- Spearman correlation with FEV1 (% predicted).

Questions?

Thank you!

 $\label{eq:lenser} \begin{array}{l} \mbox{Jens Petersen} & - \mbox{Optimal Net Surface Segmentation} \\ \mbox{Slide $20/22$} \end{array}$

Slide 21/22

Slide 21/22

Extra Slides: Training

Data:

- 329 Cross-sectional images from 8 subjects.
- Randomly extracted perpendicular to and centered on airway centerline.
- Manually annotated with lumen and complete airway area.

Training:

- Inner and outer surface smoothness constraints.
- Inner and outer cost function derivative weightings.
- Separation constraint.

Method:

- Similar to coordinate search.
- Criteria: Dice coefficient.

