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The “Classical” Clustering Problem

Given:
- a set of n “objects” .
) L = an edge-weighted graph
- an n x n matrix A of pairwise similarities
Goal: Partition the input objects (the vertices of the graph) into maximally
homogeneous groups (i.e., clusters).

Applications

Clustering problems abound in many areas of computer science and engineering.
A short list of applications domains:

Image processing and computer vision
Computational biology and bioinformatics
Information retrieval

Document analysis

Medical image analysis

Data mining

Signal processing

For a review see, e.g., A. K. Jain, "Data clustering: 50 years beyond K-means,”
Pattern Recognition Letters 31(8):651-666, 2010.




Figure 1u. Three prominent blobs are perceived immedistely and with little effort. Locally, the
blobs are similar to the background contours. {adopted from Mahoney (1986)

Figure fb. Intersections were added to illustrate that the blobs are not distingnished by virtue
of their intersections with the background curves.

Figure 2. A circle in a background of 200 randomly placed and oriented segments The circle is
still perceived immediately although its contour is fragmented.

Figure 3. An edge image of a car in a cluttered background. Our attention is drawn immediately
to the region of interest. It seems that the car need not be recognized to attract our
attention. The car also remains salient when parallel lines and small blobs are removed,
and when the less textured region surrounding parts of the car is filled in with more
texture.




Separating Structure from Clutter
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One-class Clustering

“[...]in certain real-world problems, natural groupings are found
among only on a small subset of the data, while the rest of the data
shows little or no clustering tendencies.

In such situations it is often more important to cluster a small
subset of the data very well, rather than optimizing a clustering
criterion over all the data points, particularly in application
scenarios where a large amount of noisy data is encountered.”

for mining dense cluster. ACM Trans. Knowl. Discov. Data (




When Groups Overlap

C

B

Does O belong to AD or to BC (or to none)?
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The Need for Overlapping Clusters

Partitional approaches impose that each element cannot belong to more than one
cluster. There are a variety of important applications, however, where this
requirement is too restrictive.

Examples:
v clustering micro-array gene expression data
v clustering documents into topic categories
v perceptual grouping
v segmentation of images with transparent surfaces

References:

v" N. Jardine and R. Sibson. The construction of hierarchic and non-hierarchic
classifications. Computer Journal, 11:177-184, 1968

V" A. Banerjee, C. Krumpelman, S. Basu, R. J. Mooney, and J. Ghosh. Model-
based overlapping clustering. KDD 2005.

v K. A. Heller and Z. Ghahramani. A nonparametric Bayesian approach to
modeling overlapping clusters. AISTATS 2007.




The Symmetry Assumption

«Similarity has been viewed by both philosophers and psychologists
as a prime example of a symmetric relation. Indeed, the assumption
of symmetry underlies essentially all theoretical treatments of
similarity.

Contrary to this tradition, the present paper provides empirical
evidence for asymmetric similarities and argues that similarity should
not be treated as a symmetric relation.»

Amos Tversky
“Features of similarities,” Psychol. Rev. (1977)

Examples of asymmetric (dis)similarities
v" Kullback-Leibler divergence

v" Directed Hausdorff distance

v" Tversky’s contrast model

What is a Cluster?

No universally accepted (formal) definition of a “cluster” but, informally, a
cluster should satisfy two criteria:

Internal criterion
all “objects” inside a cluster should be highly similar to each other

External criterion
all “objects” outside a cluster should be highly dissimilar to the ones inside




The Notion of “Gestalt”

«In most visual fields the contents of particular areas “belong together” as
circumscribed units from which their surrounding are excluded.»

W. Kohler, Gestalt Psychology (1947)

«In gestalt theory the word “Gestalt” means any segregated whole.»

. Y W Kohler (1929)

Data Clustering:
Old vs. New

By answering the question “what is a cluster?” we get a novel way of
looking at the clustering problem.

Clustering_old(V,A, k)

v1,v2,...,Vk <- My favorite partitioning algorithm(V,A, k)
return V1,V2,...,Vk

Clustering new (V,A)

vV1,vV2,...,Vk <- Enumerate_all clusters(V,A)
return V1,V2,...,Vk

Enumerate_all_clusters(V,A)
repeat
Extract_a cluster(V,A)
until all clusters have been found
return the clusters found




A Special Case:
Binary Symmetric Affinities

Suppose the similarity matrix is a binary (0/1) matrix.

Given an unweighted undirected graph G=(V,E):

A clique is a subset of mutually adjacent vertices
A maximal clique is a clique that is not contained in a larger one

In the 0/1 case, a meaningful notion of a cluster is that of a maximal clique.

New approach

Advantages of the New Approach

v" No need to know the number of clusters in advance (since we extract
them sequentially)

V" Leaves clutter elements unassigned (useful, e.g., in figure/ground
separation or one-class clustering problems)

v Allows extracting overlapping clusters

Need a partition?

Partition_into_clusters(V,A)
repeat
Extract_a cluster
remove it from V
until all vertices have been clustered




ESS’s as Clusters

We claim that ESS’s abstract well the main characteristics of a cluster:

v Internal coherency: High mutual support of all elements within the
group.

v" External incoherency: Low support from elements of the group to
elements outside the group.

Basic Definitions

Let S € V be a non-empty subset of vertices, and i€S.

The (average) weighted degree of / w.r.t. S is defined as:

1
awdeg (i)=— ) a..
gs(@) ISI_gS v

Moreover, if j & S, we define:

o5, J) = a; — awdeg (i)

Intuitively, @ q(ij) measures the similarity between vertices j and i, with
respect to the (average) similarity between vertex i and its neighbors in S.




Assigning Weights to Vertices

Let S € V be a non-empty subset of vertices, and i€S.

The weight of i w.r.t. S is defined as:

1 if |§]=1
wi (i) = E(i’s_{i}( Jiws (3 (j) otherwise

jes-{i}

Further, the total weight of S is defined as:

W(S) = Y wy(i)

i€s

Interpretation

Intuitively, wy(i) gives us a measure of the overall (relative) similarity between
vertex i and the vertices of S-{i} with respect to the overall similarity among the
vertices in S-{i}.

Wii,2,3,4(1) <0 Wi,23,4(1) >0
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Dominant Sets

Definition (Pavan and Pelillo, 2003, 2007). A non-empty subset of vertices S S
V such that W(T) > 0 for any non-empty T € §, is said to be a dominant set if:

1. wyi)>0,forallies (internal homogeneity)
2. weypi) <0, foralli¢$S (external homogeneity)
( I )
5 = 70
15 2560
5 20— 2
25 25 Dominant sets = clusters
20 90
;1 5 3)

The set {1,2,3} is dominant.

The Clustering Game
Consider the following “clustering game.”

v Assume a preexisting set of objects O and a (possibly asymmetric) matrix
of affinities A between the elements of O.

v Two players with complete knowledge of the setup play by simultaneously
selecting an element of O.

v After both have shown their choice, each player receives a payoff,
monetary or otherwise, proportional to the affinity that the chosen element
has with respect to the element chosen by the opponent.

Clearly, it is in each player’s interest to pick an element that is strongly
supported by the elements that the adversary is likely to choose.

Hence, in the (pairwise) clustering game:
v" There are 2 players

v" The objects to be clustered are the pure strategies
v" The (null-diagonal) affinity matrix coincides with the similarity matrix




Dominant Sets are ESS’s

Theorem (Torsello, Rota Bulo and Pelillo, 2006). Evolutionary stable strategies
of the clustering game with affinity matrix A are in a one-to-one
correspondence with dominant sets.

Note. Generalization of well-known Motzkin-Straus theorem from graph
theory.

Dominant-set clustering

v To get a single dominant-set cluster use, e.g., replicator dynamics (but see
Rota Bulo, Pelillo and Bomze, CVIU in press, for faster dynamics)

v To get a partition use a simple peel-off strategy: iteratively find a dominant
set and remove it from the graph, until all vertices have been clustered

v To get overlapping clusters, enumerate dominant sets (see Bomze, 1992;
Torsello, Rota Bulo and Pelillo, 2008)

Special Case:
Symmetric Affinities

Given a symmetric real-valued matrix A (with null diagonal), consider the
following Standard Quadratic Programming problem (StQP):

maximize f(x) = x"Ax
subjectto x€A

Note. The function f(x) provides a measure of cohesiveness of a cluster (see
Pavan and Pelillo, 2003, 2007; Sarkar and Boyer, 1998; Perona and Freeman,
1998).

Note. In the 0/1 (symmetric) case, ESS’s are in one-to-one correspondence to
(strictly) maximal cliques (Motzkin-Straus theorem).

12



Measuring the Degree of Cluster
Membership
The components of the converged vector give us a measure of the participation of

the corresponding vertices in the cluster, while the value of the objective function
provides of the cohesiveness of the cluster.

Image Segmentation

Image segmentation problem:

Decompose a given image into segments,
i.e. regions containing “similar” pixels.

First step in many
computer vision problems

Example: Segments might be regions of the image depicting the same object.

Semantics Problem: How should we infer objects from segments?

13



Application to Image Segmentation

An image is represented as an edge-weighted undirected graph, where
vertices correspond to individual pixels and edge-weights reflect the
“similarity” between pairs of vertices.

For the sake of comparison, in the experiments we used the same similarities
used in Shi and Malik’s normalized-cut paper (PAMI 2000).

To find a hard partition, the following peel-off strategy was used:

Partition into dominant sets(G)
Repeat
find a dominant set
remove it from graph
until all vertices have been clustered

To find a single dominant set we used replicator dynamics (but see Rota
Bulo, Pelillo and Bomze, CVIU 2011, for faster game dynamics).

Experimental Setup

The similarity between pixels i and j was measured by:

w(i ) = exp (M)

where ¢ is a positive real number which affects the decreasing rate of w,
and:

e F (i) = (normalized) intensity of pixel 4, for intensity segmentation

e F(i) = [v,vssin(h),vscos(h)](i), where h, s, v are the HSV values
of pixel i, for color segmentation

o F(i) =[|I=f1],..., |1+ f;.]](2) is a vector based on texture information
at pixel 7, the f; being DOOG filters at various scales and orientations,
for texture segmentation

14
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Felzenszwalb and Huttenlocher (2003).




Intensity Segmentation Results

Gdalyahu, Weinshall, and Werman (2001).

Dominant sets Ncut
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Results on the Berkeley Dataset

Dominant sets

Ncut

Sty
GCE = 0.05. LCE = 0.04

GCE

0.08. LCE = 0.05

GCE = 0.11, LCE — 0.09

GCE

0.36, LCE = 0.27

GCE = 0.09, LCE = 0.03

GCLE

0.31, LCE = 0.22

Color Segmentation Results

Original image

Dominant sets
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Dominant sets

Results on the Berkeley Dataset

Ncut

GCE = 0,12, LCE = 0.12

GCE = 0.19. LCE = 0.13

GCE = 031, LCE — 0.26

GCE = 0.35, LCE = 0.29

GCLE

GCE = 0.16, LCE = 0.16

Dominant sets
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Texture Segmentation Results

(e) () (9) (h)
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Other Applications of Dominant-Set
Clustering

Bioinformatics
Identification of protein binding sites (Zauhar and Bruist, 2005)
Clustering gene expression profiles (Li et al, 2005)
Tag Single Nucleotide Polymorphism (SNPs) selection (Frommlet, 2010)

Security and video surveillance
Detection of anomalous activities in video streams (Hamid et al., CVPR’05; Al’09)
Detection of malicious activities in the internet (Pouget et al., J. Inf. Ass. Sec. 2006)

Content-based image retrieval
Wang et al. (Sig. Proc. 2008); Giacinto and Roli (2007)

Analysis of fMRI data
Neumann et al (Neurolmage 2006); Muller et al (J. Mag Res Imag. 2007)

Video analysis, object tracking, human action recognition
Torsello et al. (EMMCVPR’05); Gualdi et al. IWVS'08); Wei et al. (ICIP'07)

Multiple instance learning
Erdem and Erdem (SIMBAD'11)

Feature selection
Hancock et al. (GbR'11; ICIAP’11; SIMBAD’11)

Image matching and registration
Torsello et al. (1I)CV 2011, ICCV’09, CVPR'10, ECCV'10)
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In a nutshell...

The dominant-set (ESS) approach:
v makes no assumption on the underlying (individual) data representation

v makes no assumption on the structure of the affinity matrix, being it able to
work with asymmetric and even negative similarity functions

v"does not require a priori knowledge on the number of clusters (since it extracts
them sequentially)

v leaves clutter elements unassigned (useful, e.g., in figure/ground separation or
one-class clustering problems)

v allows principled ways of assigning out-of-sample items (N/IPS’04)

v allows extracting overlapping clusters (ICPR’08)

V" generalizes naturally to hypergraph clustering problems, i.e., in the presence
of high-order affinities, in which case the clustering game is played by more

than two players (NIPS’09)

v extends to hierarchical clustering (ICCV'03: EMMCVPR’09)
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