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The “Classical” Clustering Problem 

= an edge-weighted graph 

Applications 

Clustering problems abound in many areas of computer science and engineering. 

A short list of applications domains: 

 Image processing and computer vision 
 Computational biology and bioinformatics 
 Information retrieval 
 Document analysis 
 Medical image analysis 
 Data mining 
 Signal processing 
 … 

For a review see, e.g., A. K. Jain, "Data clustering: 50 years beyond K-means,” 
Pattern Recognition Letters 31(8):651-666, 2010.  
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The Need for Non-exhaustive Clusterings 

Separating Structure from Clutter 



4 

Separating Structure from Clutter 

NCut 

K-means Our approach 

One-class Clustering 

“[…] in certain real-world problems, natural groupings are found 
among only on a small subset of the data, while the rest of the data 
shows little or no clustering tendencies.  
In such situations it is often more important to cluster a small 
subset of the data very well, rather than optimizing a clustering 
criterion over all the data points, particularly in application 
scenarios where a large amount of noisy data is encountered.” 

G. Gupta and J. Ghosh. Bregman bubble clustering: A robust framework 
for mining dense cluster. ACM Trans. Knowl. Discov. Data  (2008). 
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When Groups Overlap 

Does O belong to AD or to BC (or to none)? 

O 

The Need for Overlapping Clusters 

Partitional approaches impose that each element cannot belong to more than one 
cluster. There are a variety of important applications, however, where this 
requirement is too restrictive.  

Examples: 
  clustering micro-array gene expression data 
  clustering documents into topic categories 
  perceptual grouping  
  segmentation of images with transparent surfaces 

References: 
  N. Jardine and R. Sibson. The construction of hierarchic and non-hierarchic 

classifications. Computer Journal, 11:177–184, 1968 
  A. Banerjee, C. Krumpelman, S. Basu, R. J. Mooney, and J. Ghosh. Model-

based overlapping clustering. KDD 2005. 
  K. A. Heller and Z. Ghahramani. A nonparametric Bayesian approach to 

modeling overlapping clusters. AISTATS 2007. 
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«Similarity has been viewed by both philosophers and psychologists 
as a prime example of a symmetric relation. Indeed, the assumption 

of symmetry underlies essentially all theoretical treatments of 
similarity.  

Contrary to this tradition, the present paper provides empirical 
evidence for asymmetric similarities and argues that similarity should 

not be treated as a symmetric relation.» 

Amos Tversky  
“Features of similarities,” Psychol. Rev. (1977) 

Examples of asymmetric (dis)similarities 
  Kullback-Leibler divergence 

  Directed Hausdorff distance 

  Tversky’s contrast model 
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«In most visual fields the contents of particular areas “belong together” as 
circumscribed units from which their surrounding are excluded.» 

W. Köhler, Gestalt Psychology  (1947) 

«In gestalt theory the word “Gestalt” means any segregated whole.» 

W. Köhler (1929) 

Clustering_old(V,A,k) 
   V1,V2,...,Vk <- My_favorite_partitioning_algorithm(V,A,k) 
   return V1,V2,...,Vk   

−−−−−− 

Clustering_new(V,A) 
   V1,V2,...,Vk <- Enumerate_all_clusters(V,A) 
   return V1,V2,...,Vk 

Enumerate_all_clusters(V,A) 
   repeat 
      Extract_a_cluster(V,A) 
   until all clusters have been found 
   return the clusters found  

By answering the question “what is a cluster?” we get a novel way of 
looking at the clustering problem. 
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Suppose the similarity matrix is a binary (0/1) matrix. 

Given an unweighted undirected graph G=(V,E): 

A clique is a subset of mutually adjacent vertices 
A maximal clique is a clique that is not contained in a larger one 

In the 0/1 case, a meaningful notion of a cluster is that of a maximal clique. 

NCut 

New approach 

  No need to know the number of clusters in advance (since we extract 
them sequentially) 

  Leaves clutter elements unassigned (useful, e.g., in figure/ground 
separation or one-class clustering problems) 

  Allows extracting overlapping clusters 

Need a partition? 

Partition_into_clusters(V,A) 
  repeat 
     Extract_a_cluster 
     remove it from V 
  until all vertices have been clustered 
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ESS’s as Clusters 

We claim that ESS’s abstract well the main characteristics of a cluster: 

  Internal coherency: High mutual support of all elements within the 
group. 

  External incoherency: Low support from elements of the group to 
elements outside the group. 

Basic Definitions 

Let S ⊆ V be a non-empty subset of vertices, and i∈S. 

The (average) weighted degree of i w.r.t. S is defined as: 

€ 

awdegS (i) =
1
| S |

aij
j∈S
∑

j i 

S 

Moreover, if j ∉ S, we define: 

€ 

φS (i, j) = aij −  awdegS (i)

Intuitively, φS(i,j) measures the similarity between vertices j and i, with 
respect to the (average) similarity between vertex i and its neighbors in S. 
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Assigning Weights to Vertices 

Let S ⊆ V be a non-empty subset of vertices, and i∈S. 

The weight of i w.r.t. S is defined as: 

€ 

wS (i) =
1 if S =1

φS− i{ }( j,i)wS− i{ }( j)
j∈S− i{ }
∑ otherwise

 
 
 

  

S 

j 

i 

S - { i } 

Further, the total weight of S is defined as: 

€ 

W (S) = wS (i)
i∈S
∑

Interpretation 

Intuitively, wS(i) gives us a measure of the overall (relative) similarity between 
vertex i and the vertices of S-{i} with respect to the overall similarity among the 
vertices in S-{i}.  

w{1,2,3,4}(1) < 0 w{1,2,3,4}(1) > 0 
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Dominant Sets 

Definition (Pavan and Pelillo, 2003, 2007). A non-empty subset of vertices S ⊆ 
V such that W(T) > 0 for any non-empty T ⊆ S, is said to be a dominant set if: 

1.  wS(i) > 0, for all i ∈ S  (internal homogeneity) 

2.  wS∪{i}(i) < 0, for all i ∉ S  (external homogeneity) 

The set {1,2,3} is dominant. 

Dominant sets ≡ clusters 

The Clustering Game 

Consider the following “clustering game.”  

  Assume a preexisting set of objects O and a (possibly asymmetric) matrix 
of affinities A between the elements of O.  

  Two players with complete knowledge of the setup play by simultaneously 
selecting an element of O.  

  After both have shown their choice, each player receives a payoff, 
monetary or otherwise, proportional to the affinity that the chosen element 
has with respect to the element chosen by the opponent. 

Clearly, it is in each player’s interest to pick an element that is strongly 
supported by the elements that the adversary is likely to choose. 

Hence, in the (pairwise) clustering game: 

  There are 2 players  
  The objects to be clustered are the pure strategies 
  The (null-diagonal) affinity matrix coincides with the similarity matrix 
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Dominant Sets are ESS’s 

Dominant-set clustering 

  To get a single dominant-set cluster use, e.g., replicator dynamics (but see 
Rota Bulò, Pelillo and Bomze, CVIU in press, for faster dynamics) 

  To get a partition use a simple peel-off strategy: iteratively find a dominant 
set and remove it from the graph, until all vertices have been clustered 

  To get overlapping clusters, enumerate dominant sets (see Bomze, 1992; 
Torsello, Rota Bulò and Pelillo, 2008) 

Special Case: 
Symmetric Affinities 

Given a symmetric real-valued matrix A (with null diagonal), consider the 
following Standard Quadratic Programming problem (StQP): 

                 maximize   ƒ(x) = xTAx 
             subject to   x∈∆ 

Note. The function ƒ(x) provides a measure of cohesiveness of a cluster (see 
Pavan and Pelillo, 2003, 2007; Sarkar and Boyer, 1998; Perona and Freeman, 
1998). 

ESS’s are in one-to-one correspondence  
to (strict) local solutions of StQP 

Note. In the 0/1 (symmetric) case, ESS’s are in one-to-one correspondence to 
(strictly) maximal cliques (Motzkin-Straus theorem). 
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Measuring the Degree of Cluster 
Membership 

The components of the converged vector give us a measure of the participation of 
the corresponding vertices in the cluster, while the value of the objective function 
provides of the cohesiveness of the cluster. 

Image segmentation problem:  

Decompose a given image into segments, 
i.e. regions containing “similar” pixels. 

Example: Segments might be regions of the image depicting the same object. 

Semantics Problem: How should we infer objects from segments? 

First step in many 
computer vision problems 
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An image is represented as an edge-weighted undirected graph, where 
vertices correspond to individual pixels and edge-weights reflect the 
“similarity” between pairs of vertices. 

For the sake of comparison, in the experiments we used the same similarities 
used in Shi and Malik’s normalized-cut paper (PAMI 2000). 

To find a hard partition, the following peel-off strategy was used: 

Partition_into_dominant_sets(G) 
Repeat 
   find a dominant set 
   remove it from graph 
until all vertices have been clustered 

To find a single dominant set we used replicator dynamics (but see Rota 
Bulò, Pelillo and Bomze, CVIU 2011, for faster game dynamics). 
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Dominant sets Ncut   
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Dominant sets                                                     Ncut   



17 

Dominant sets                     Ncut   

Original image             Dominant sets                    Ncut   
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Dominant sets                     Ncut   

Dominant sets 
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NCut 

Other Applications of Dominant-Set 
Clustering 
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In a nutshell… 

The dominant-set (ESS) approach: 

  makes no assumption on the underlying (individual) data representation 

  makes no assumption on the structure of the affinity matrix, being it able to 
work with asymmetric and even negative similarity functions 

  does not require a priori knowledge on the number of clusters (since it extracts 
them sequentially) 

  leaves clutter elements unassigned (useful, e.g., in figure/ground separation or 
one-class clustering problems) 

  allows principled ways of assigning out-of-sample items (NIPS’04) 

  allows extracting overlapping clusters (ICPR’08) 

  generalizes naturally to hypergraph clustering problems, i.e., in the presence 
of high-order affinities, in which case the clustering game is played by more 
than two players (NIPS’09) 

  extends to hierarchical clustering (ICCV’03: EMMCVPR’09) 
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