Motion Synthesis By Example A Tutorial in 3 and 3/2 parts

Michael Gleicher Dept of Computer Sciences University of Wisconsin - Madison

Motion Synthesis By Example Lecture 3: Parametric Graphs

Michael Gleicher Dept of Computer Sciences University of Wisconsin - Madison

Synthesis By Example

Create what you need from what you have

Have: Lots of Clips

Want: Long Streams Want: Controllable Want: Precise/Continuous

A Quick Recap Motion Graphs

- Assemble long streams of motion from clips
- Use simple connection between clips

 But only connect when things work
- Search for walks on graphs to create motions
- Discrete choices (time and value)

Think about our goals

• Create long streams

- Controllable
- Precise >
- Continuous / Exact >
- Responsive

Beyond discrete choices: Parameterization

 How to get a range of movements

 Given only a discrete set of examples

 Result is a motion – this is not just IK

Parameterization by Blending

- Use many examples
- Blend examples to get in-between motions
- General
- Gets specific effects
- Gets subtle coordinated effects

Parameterization by blending

- In research since (at least) Rose et al '98
- In games for a longer time
- Manual Process
 - Carefully aligned motions
 - Custom crafted parameterizations

Basic Ideas of Synthesis-By-Example

Preparation: Extract / process example from source data such that assembly methods work

Assembly: At run time assemble examples using a few generic (simple) methods

Control:

Choose what is assembled to meet needs (e.g. driven by user, meet goals, ...)

SBE in Practice vs. Research (practice has been doing it longer)

Practice (real games)

Research

Planning Careful preparation Manual adjustment Automation Automation Automation

Assembly:

Preparation:

Basic methods Tweaks thrown in Basic methods Tweaks thrown in

Control:

Carefully crafted&tuned Parameterization Structured data makes problem easier

Automating Registration

- Apex of kick corresponds
- Even though motions of different lengths

Automating Blending Registration Curves

- Automatic Alignment
 - More detailed time warps
 - Other alignments
 (curvature, constraints)
- Allowed for more things to be blended (not just less effort)

Automatically Finding Examples Match Webs – Query by Example

- Search database for all motions that can be blended with an example (relatively efficiently)
- Finds the registration for each match
- Automatically construct parameterization

Kovar&Gleicher SIGGRAPH '04

Automatically find examples in data

What amounts to blend?

- Automatically map controls to blend weights
- Sampling + Scattered Data Interpolation

What amounts to blend?

- Continuous control by blend weights
- Not what we want to control
- Irregular or Large Sample Sets
- Non-linear functions

Automation helps blending!

Reduce amount of labor

- Makes larger example sets practical
- Allows for more complex blends
- More precise control
 - Better parameterizations
- Surprising what examples it can find

The advantages of blending

More choices! (potentially infinite) Not as many examples

> From Kovar&Gleicher SIGGRAPH '04

Automated Parameterization

- Build space from all blendable examples
- Blend many examples
- Hard to QA
- Irregular data access
- Unintended diversity

Unintended diversity

- Real data has variability
- Controlled capture reduces it
- An attraction of keyframing

Exploit this diversity?

- Using the diversity in end position already
 2D parameterization
- Why not parameterize other things too?
 - Speed

.

- Tiredness
- Focus (or gaze direction)
- Step height (march / shuffle)

The slippery slope of dimensionality...

• A combinatorial explosion!

High dimensional parameter spaces really hard (for blending based approaches)

- Are the dimensions even orthogonal?
- Metrics in the space (for interpolation weights)
- Need enough examples to cover space

How to get consistency?

The character should stay in character

Practice

- Carefully make sure examples are consistent
- Small number of motions for Quality Assurance
- Big attraction of hand animation: closer control

Research

- Unintended diversity in data
 - Different mood, time of day, ...
- Harder to find the right thing
- Potential tradeoffs
- Less control over quality

Parametric Motion Graphs Turning parametric clips into a character

Nodes: Represent 🕻 Parametric 🏋 **Motion Spaces** Edges: Describe How to Transition Between These Spaces * * * * * * * * * * dance duck

Like everything else, these have been used in games. Variants have existing for a long time.

Parametric Graphs

Each node is a range of motions

 Each node has a range of beginnings and endings

Parametric Transitions

How to make transitions between parametric spaces?

- In practice (?)
 - Build spaces that just work
 - Accept the occasional bad blend
- In research
 - Force common pose (Shin&Oh SCA '06)
 - Find allowable ranges (Heck&Gleicher I3D '07)

Fat Graphs (Shin & Oh 2006)

Parametric Transitions

(Heck & Gleicher 2007)

Method: Data Extraction

K-Nearest Neighbor Interpolation

Interactively Controlled Running

Parametric Graphs Address Scalability organize motion synthesis

- Independent parametric nodes
 - Automatically determined blends (our stuff)
 - Or anything else you want
- Need transitions between spaces
 - Not all motions connect to all others

What's beyond this The end of graphs?

The end of graphs?

Graphs in the limit?

- Consider ALL connections
- Not just good ones

Avoid bad transitions, but use if necessary

Consider poses "in-between" samples

Any combination of poses could be considered

Beyond Graphs

- Continuous space of poses
 - Entire blend space?
 - Entire pose space?
- Use discrete samples as priors
 What might be good poses?

• "state" is no longer discrete

No Graph?

Motion Fields for Interactive Character Animation

Yongjoon Lee Kevin Wampler Gilbert Bernstein

Jovan Popović Zoran Popović

SIGGRAPH Asia 2010

I did not do this, but I wish I had

Play video as external file because of codec issue

Why is Synthesis-By-Example so pervasive in games? Advantage of Synthesis-by-Example

- Actors* are directable (* or good keyframe animators)
 - Can do a range of things a range of ways
 - Consistency in performance
 - Relatively easy to get desired examples
- Get different motions, styles, subtleties
 Without having to model each one
- Easier to scale to diverse repertoire, with acting subtleties, get the directors intent, ...

Disadvantage of SBE: No Model!

- Rely on exa
 Which ma
- Limited ada — Simple me — Aren't res
- 2 ways to make things better:
- 1.Use more examples2.Use examples better
- #2 is more likely to scale up
 Lessons of #1 may tell us something
- Larger repe
- Scalability?

Where does motion come from? Two Approaches

Thanks

- The students&collaborators who did the work
 - Lucas Kovar (motion graphs, registration curves, families, ...)
 - Rachel (Heck) Rose (parametric graphs, ...)
 - Mankyu Sung (crowd simulation)
 - Hyun Joon Shin (snap-together math, physics touchup)
- The rest of our group
- The people who supported us financially

 Original research supported by NSF, UW Grad School
- The people who gave us data and challenges
 - House of Moves / Vicon (Taylor Wilson), EA, Demian Gordon, Rockstar Vienna, (and a whole lot of others)
- You for listening