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Voronoi diagrams of sites

Let M be a n−dimensional metric space, and δ denote the distance
between points of M. Let S = {s1, ..., sm} ⊂ M be a set of m ≥ 2 sites.
The distance between x ∈ M and a site si is d (x , si ) = infy∈si {δ (x , y)}.

Definition

(Influence zone) For si , sj ∈ S, si �= sj , the influence zone D (si , sj) of si
with respect to sj is: D (si , sj) = {x ∈ M|d (x , si ) < d (x , sj)}.

Definition

(Voronoi region) The Voronoi region V (si ,S) of si ∈ S with respect to
the set S is: V (si ,S) =

�
sj∈S,sj �=si

D (si , sj).

Definition

(Voronoi diagram) The Voronoi diagram of S is the union
V (S) =

�
si∈S ∂V (si ,S) of all region boundaries.
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Delaunay graph of sites

Definition

(Delaunay graph) The Delaunay graph DG (S) of S is the dual graph of
V (S) defined as follows:

the set of vertices of DG (S) is S,

for each n − 1−dimensional facet of V (S) that belongs to the
common boundary of V (si ,S) and of V (sj ,S) with si , sj ∈ S and
si �= sj , there is an edge of DG (S) between si and sj and reciprocally,
and

for each vertex of V (S) that belongs to the common boundary of
V (si1 ,S),. . . ,V

�
sin+2 ,S

�
, with ∀k ∈ {1, ..., n + 2} , sik ∈ S all

distinct, there exists a complete graph Kn+2 between the
sik , k ∈ {1, ..., n + 2}, and reciprocally.
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Generalised Voronoi tessellation / Generalised Delaunay
graph

Let S be the metric space in which we place ourselves (typically R2).

Definition

A mapping δ : S ×O → {0, 1} defined by (p,Oi ) �→ δ (p,Oi ) such that:

δ (p,Oi ) =

�
1,
0,

if p is assigned to Oi

otherwise

is called an assignment rule.
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Generalised Voronoi tessellation / Generalised Delaunay
graph

Under an assignment rule δ, we consider the set v(Oi ) of points assigned
to Oi , and the set e(Oi ,Oj) of points assigned to both Oi and Oj with
i �= j .

Definition

A Voronoi tessellation is a set V (O, δ,S) such that the assignment rule δ
satisfies the following two conditions:

every point in S is assigned to at least one element of O i.e.,
∀p ∈ S ,

�n
i=1 δ (p,Oi ) ≥ 1;

the set e (Oi ,Oj) pertains to the boundaries of v (Oi ) and of v (Oi ),
i.e., ∀ε > 0,∀p ∈ e (Oi ,Oj):

Nε (p) ∩ [v (Oi ) \ e (Oi ,Oj)] �= ∅ and
Nε (p) ∩ [S \ v (Oi )] �= ∅ and
Nε (p) ∩ [v (Oj) \ e (Oi ,Oj)] �= 9∅ and
Nε (p) ∩ [S \ v (Oj)] �= ∅.
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Overview

Outline

• Motivation
• Problem statement
• Contributions
• Segmentation of large volumetric images
• Object reconstruction from ordered set of intersections
• Object reconstruction from arbitrary cross sections
• Discussion
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Motivation

Reconstruction from Acoustic Signals
Acoustic waves probe inside the subject non-destructively. Echoes from

the medium give an estimate of the relative position of the object below.

O

transmitted pulse, t = t0 at O

reflected pulse, t = t1 at O

reflected pulse, t = t2 at O

sea floor

sea surface

Echo-sounder

�t1

�t2

�t1 =
(t1 − t0)

2

�t2 =
(t2 − t0)

2
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Motivation

Acoustic Beam Geometry in R2

RESON 7128 [8], 396 kHz, 256 beams/fan, 127.5◦ operating sector
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Motivation

Acoustic Beam Geometry in R2

Intensity image, 686× 1234
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Motivation

Acoustic Beam Geometry in R3

RESON 7128 [8], 396 kHz, 256 beams/fan, 127.5◦ operating sector
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Motivation

Acoustic Beam Geometry in R3

Simrad MS70 [14], 75-112 kHz, 500 beams (25× 20), 60◦ × 45◦ operating sector
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Motivation

Acoustic Beam Geometry in R3

Intensity volume
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The Reconstruction Problem

Problem Statement
The problem can be formally defined as

To reconstruct a surface representation of objects from sections of

water volume scanned using an acoustic instrument (an echo-sounder).

Acoustic signals are one dimensional cross sections with higher di-

mensional objects (or lower dimensional objects embedded in higher

dimensional space).

• Noise

-Suppression, removal

• Information extraction -Topologically motivated algorithms
• Huge amount of data -Parallel processing
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Contributions

Roadmap
Reconstruction from ordered intersections
Homotopy based reconstruction from a set of ordered linear cross

sections embedded in a higher dimensional space (R2
and R3

).

• Continuous deformation of signals,

• Smooth,

• Monotonicity preserving, and

• Computationally less-expensive.
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Segmentation of large volumetric images

Volumetric Images
Large volumetric images are commonly acquired in many fields

Acoustic image CT image cryoEM image

Sonar Thoracic cage PSV

686× 1234× 417 512× 512× 512 381× 381× 381
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Segmentation of large volumetric images

Results
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Segmentation of large volumetric images

Results
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Contributions

Roadmap
Volume segmentation
Level set method based streaming, smooth, and multi-phase segmen-

tation.

Reconstruction from ordered intersections
Homotopy based reconstruction from a set of ordered linear cross

sections embedded in a higher dimensional space (R2
and R3

).

Reconstruction from arbitrary intersections
Homotopy based reconstruction from a set of arbitrarily placed linear

cross sections embedded in a higher dimensional space.

20 / 50
Homotopy Reconstruction

�



Contributions

Roadmap
Reconstruction from arbitrary intersections
Homotopy based reconstruction from a set of arbitrarily placed linear

cross sections embedded in a higher dimensional space.

• A more general problem, and

• Edge based generic Barycentric coordinates.
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Object reconstruction from ordered set of intersections

Homotopy Continuation

Acoustic signals change continuously within and across frames. A
homotopy or continuous deformation can effectively capture this change
in morphology.

x

Hλ(x)

f0(x) =
√

π2 − x2 + sin(x)

f1(x) = 0.5
√

π2 − x2 cos(x)

21 / 50
Homotopy Reconstruction

�



Object reconstruction from ordered set of intersections

Homotopy Continuation

A homotopy is a family of continuous mappings H : X × [0, 1] �→ Y .

Example

A linear homotopy can be written as

H(x, λ) = (1− λ)f0(x) + λf1(x)

where f0(x) is the initial map and f1(x) is the terminal map of the
homotopy.

Use of continuous deformations in solving system of equations has
resulted in stable algorithms for solutions [1]

• Predictor-corrector method, and
• Piecewise-linear method.
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Object reconstruction from ordered set of intersections

Homotopic Reconstruction

A homotopy allows us to continuously deform one function into another.

• If a function is attached to every acoustic signal, information between two
consecutive signals can be reconstructed via a homotopy.

• An inherent ordering between acoustic beams allows for a parametrization
between pairs of homotopies thus arising. This enables possibility of
imposing smoothness at the boundary of the homotopies.

Homotopy field

Given a homotopy Hk(x, λ) for a pair of beam functions fk(r) and fk+1(r), a
set of homotopies give rise to a homotopy field

H(r , α) = {Hk(r , λ)}, k = 0 · · · n − 1,

where α = g(λ) is the available parametrization due to geometric ordering
of the signals.

23 / 50
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Object reconstruction from ordered set of intersections

Design of Homotopies

Based on this setup, a number of homotopies can be designed
• Linear homotopy

� C0 w.r.t. the homotopy parameter(s),
� Local, and
� Shape preserving.

• Non-linear homotopy
� Cη−1 w.r.t. the homotopy parameter(s),
� Local, and
� Staircase effect.

• Cubic spline homotopy
� C2 w.r.t. the homotopy parameter(s),
� Global, and
� Unnatural.

• Shape preserving homotopy.
� C2 in between the signals and C1 at the signals,
� Global, and
� Shape preserving.

24 / 50
Homotopy Reconstruction

�



Object reconstruction from ordered set of intersections

Design of Homotopies

Based on this setup, a number of homotopies can be designed
• Linear homotopy

� C0 w.r.t. the homotopy parameter(s),
� Local, and
� Shape preserving.

• Non-linear homotopy
� Cη−1 w.r.t. the homotopy parameter(s),
� Local, and
� Staircase effect.

• Cubic spline homotopy
� C2 w.r.t. the homotopy parameter(s),
� Global, and
� Unnatural.

• Shape preserving homotopy.
� C2 in between the signals and C1 at the signals,
� Global, and
� Shape preserving.

24 / 50
Homotopy Reconstruction

�



Object reconstruction from ordered set of intersections

Design of Homotopies

Based on this setup, a number of homotopies can be designed
• Linear homotopy

� C0 w.r.t. the homotopy parameter(s),
� Local, and
� Shape preserving.

• Non-linear homotopy
� Cη−1 w.r.t. the homotopy parameter(s),
� Local, and
� Staircase effect.

• Cubic spline homotopy
� C2 w.r.t. the homotopy parameter(s),
� Global, and
� Unnatural.

• Shape preserving homotopy.
� C2 in between the signals and C1 at the signals,
� Global, and
� Shape preserving.

24 / 50
Homotopy Reconstruction

�



Object reconstruction from ordered set of intersections

Design of Homotopies

Based on this setup, a number of homotopies can be designed
• Linear homotopy

� C0 w.r.t. the homotopy parameter(s),
� Local, and
� Shape preserving.

• Non-linear homotopy
� Cη−1 w.r.t. the homotopy parameter(s),
� Local, and
� Staircase effect.

• Cubic spline homotopy
� C2 w.r.t. the homotopy parameter(s),
� Global, and
� Unnatural.

• Shape preserving homotopy.
� C2 in between the signals and C1 at the signals,
� Global, and
� Shape preserving.

24 / 50
Homotopy Reconstruction

�



Object reconstruction from ordered set of intersections

Linear Homotopy

Hj(r , λ) = (1− λ)fj(r) + λfj+1(r), λ ∈ [0, 1].

The homotopy parameter λ is linked to the radial angle θ as

λ =
θ − θj

θj+1 − θj
.

r

θ
H j+

2

Hj+1

Hj

H
j−1

H
j−

2

f j+
3

fj+2

fj+1

fj

fj−1

fj−
2
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Object reconstruction from ordered set of intersections

Linear Homotopy

Hj(r , λ) = (1− λ)fj(r) + λfj+1(r), λ ∈ [0, 1].

The homotopy parameter λ is linked to the radial angle θ as

λ =
θ − θj

θj+1 − θj
.

Proposition
H = {Hj}, with Hj defined as above, results in a piecewise non-linear
curve c = ker(H) that is only C

0 in θ.
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Object reconstruction from ordered set of intersections

Non-linear Homotopy

Hj(r , λ, η) = (1− λ)ηfj(r) + ληfj+1(r), .

where λ ∈ [0, 1], and η ∈ R > 1.

Proposition
For η > 1, ker(H) generates at least a C 1 curve in θ for constant
angular spacing of beams.
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Object reconstruction from ordered set of intersections

Cubic Spline Homotopy

For N radial beam functions {fj(r)}, j ∈ [0,N − 1], additional
smoothness constraints added to the linear homotopy

lim
θ→θ−j+1

∂Hj(r , θ)

∂θ
= lim

θ→θ+
j+1

∂Hj+1(r , θ)

∂θ
, j ∈ [0,N − 3], and

lim
θ→θ−j+1

∂2Hj(r , θ)

∂θ2
= lim

θ→θ+
j+1

∂2Hj+1(r , θ)

∂θ2
, j ∈ [0,N − 3].

Hj(r , θ) =
3�

i=0

gj,i (r)(θ − θj)
i .

A linear system of equations has to be solved to deduce unknown
functions gj,i (r) in terms of known beam functions {fj}.
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Object reconstruction from ordered set of intersections
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Object reconstruction from ordered set of intersections

Cubic Spline Homotopy

Hj(r , θ) =
3�

i=0

gj,i (r)(θ − θj)
i .

!" #"" #!" $"" $!" %"" %!" &"" &!" !"" !!"
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A linear system of equations has to be solved to deduce unknown
functions gj,i (r) in terms of known beam functions {fj}.
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Object reconstruction from ordered set of intersections

Shape Preserving Homotopy

Monotonicity is not preserved with cubic splines

A shape preserving spline in terms of Hermite basis functions is

Hj(r , λ) =(1− 3λ2 + 2λ3)fj(r) + (3λ2 − 2λ3)fj+1(r)

+ (λ− 2λ2 + λ3)

�
∂Hj(r , λ)

∂λ

�

λ=0

+ (λ3 − λ2)

�
∂Hj+1(r , λ)

∂λ

�

λ=0

.
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Object reconstruction from ordered set of intersections

Results

Volume

Linear Non-linear

Cubic splineShape preserving
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Object reconstruction from ordered set of intersections
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Contributions

Roadmap
Volume segmentation
Level set method based streaming, smooth, and multi-phase segmen-

tation.

Reconstruction from ordered intersections
Homotopy based reconstruction from a set of ordered linear cross

sections embedded in a higher dimensional space (R2
and R3

).

Reconstruction from arbitrary intersections
Homotopy based reconstruction from a set of arbitrarily placed linear

cross sections embedded in a higher dimensional space.
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Object reconstruction from arbitrary cross sections

Reconstruction Problem in R2

Reconstruct object O intersected by a set of arbitrarily placed lines
{Li}, i ∈ [0, n − 1] in a plane. The reconstruction R is such that

Li

�
O = Li

�
R,

and R is similar to O.
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Object reconstruction from arbitrary cross sections

Multiple Variable Homotopy

A homotopy can be seen as a smooth transition from one map to
another. We can extend this definition to multiple maps by defining a
(linear) homotopy in multiple variables
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Object reconstruction from arbitrary cross sections

Multiple Variable Homotopy

A homotopy can be seen as a smooth transition from one map to
another. We can extend this definition to multiple maps by defining a
(linear) homotopy in multiple variables

H(x, λ0, λ1, · · · , λn−1) =
n−1�

k=0

λk fk(x),

with
n−1�

t=0

λt = 1.

Here, {λk} are n homotopy parameters.
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Object reconstruction from arbitrary cross sections

Reconstruction Approach
Starting with a set of cross sections {Si,j} for lines {Li} in a plane, we
restrict reconstruction in the bounding box Bbox of the cross sections.
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Reconstruction Approach
Starting with a set of cross sections {Si,j} for lines {Li} in a plane, we
restrict reconstruction in the bounding box Bbox of the cross sections.

The set of lines {Li} partition Bbox into a set of convex polygons
{Gk}, k ∈ [0, p − 1].
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Object reconstruction from arbitrary cross sections

Reconstruction Approach
Starting with a set of cross sections {Si,j} for lines {Li} in a plane, we
restrict reconstruction in the bounding box Bbox of the cross sections.

The set of lines {Li} partition Bbox into a set of convex polygons
{Gk}, k ∈ [0, p − 1].

The reconstruction algorithm consists of assigning a homotopy Hk to
every Gk . As before, every line has an associated edge function with it.
The reconstruction is then obtained as

R =
�

k

{(x , y) : Hk = 0}.
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Object reconstruction from arbitrary cross sections

Homotopy Setup in a Polygon

The main challenge here is to setup the homotopy Hk over a polygon
Gk , given edge functions of the participating edges.
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Object reconstruction from arbitrary cross sections

Homotopy Setup in a Polygon

The main challenge here is to setup the homotopy Hk over a polygon
Gk , given edge functions of the participating edges.

The problem can be cast as

Given a convex polygon with associated smooth functions at its edges,
is a consistent and plausible homotopy construction possible?

Such a homotopy must also be at least C 1 at polygon boundaries,
given that there is no natural parametrization available among the
arbitrarily placed lines.
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Object reconstruction from arbitrary cross sections

Homotopy Setup in a Polygon

The main challenge here is to setup the homotopy Hk over a polygon
Gk , given edge functions of the participating edges.

The problem can be cast as

Given a convex polygon with associated smooth functions at its edges,
is a consistent and plausible homotopy construction possible?

Such a homotopy must also be at least C 1 at polygon boundaries,
given that there is no natural parametrization available among the
arbitrarily placed lines.

Edge based barycentric coordinates are defined in an attempt to
answer this question!
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Object reconstruction from arbitrary cross sections

Edge Based Barycentric Coordinates
Barycentric coordinates of a polygon can be considered as homotopy
variables because of the two useful properties that they offer

• barycentric coordinates span a complete polygon, and
• partition of unity.
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Object reconstruction from arbitrary cross sections

Edge Based Barycentric Coordinates
Barycentric coordinates of a polygon can be considered as homotopy
variables because of the two useful properties that they offer

• barycentric coordinates span a complete polygon, and
• partition of unity.

Barycentric coordinates based on orthogonal distance
For an n sided polygon G1, the barycentric coordinate for an inside
point p, corresponding to edge ei can be written as

λi =
1/ψ(hi )

n−1�

j=0

1/ψ(hj)

, i ∈ [0, n − 1],

where, hi is orthogonal distance from p to ei , and ψ : R �→ R is
monotonically increasing.
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Object reconstruction from arbitrary cross sections

Edge Based Barycentric Coordinates
Barycentric coordinates of a polygon can be considered as homotopy
variables because of the two useful properties that they offer

• barycentric coordinates span a complete polygon, and
• partition of unity.

Barycentric coordinates based on stolen areas in a Voronoi diagram
For an n sided polygon G1, the barycentric coordinate for an inside
point p, corresponding to edge ei can be written as

λi =
Ai

n−1�

j=0

Aj

, i ∈ [0, n − 1],

where Ai is the stolen area for edge ei and point p in the Voronoi
diagram of all edges of G1 and p.
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Object reconstruction from arbitrary cross sections

Homotopy Formulation

Homotopy Hk at p within Gk can be written as

Hk(p) =
nk−1�

i=0

fi (di (p)) λi (p),

where di (p) is distance along edge ei .

Proposition
The curve R = ker(H) generated by the homotopy field H =

�
Hk

is at least C 1 for the edge based barycentric coordinates.
Corollary
At all the intersection points of the lines with boundary of the object,
the reconstructed curve R is orthogonal to the intersecting lines.
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Object reconstruction from arbitrary cross sections

Tangent Alignment Results

Objects and cutting lines Reconstruction - Voronoi

Non-linear (η = 2)

Compare
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Object reconstruction from arbitrary cross sections

Sampling Condition
Reconstruction accuracy depends on the number of cutting lines and
their placement.

Tortuosity measure τ of a simply connected part of R in a region Gk

indicates the straightness of the segment.

A lower τ ensures that salient features of O are sampled. One such
sampling is done along the medial axis of O.
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Object reconstruction from arbitrary cross sections

Reconstruction Accuracy
L1 , 21 cutting lines
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Object reconstruction from arbitrary cross sections

Reconstruction Accuracy
L2 , 23 cutting lines
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Object reconstruction from arbitrary cross sections

Reconstruction Accuracy
L3 , 29 cutting lines
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Object reconstruction from arbitrary cross sections

Reconstruction Accuracy
L4 , 40 cutting lines
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Object reconstruction from arbitrary cross sections

Reconstruction Accuracy
L5 , 59 cutting lines
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Discussion

Significance
The discussed research work shows homotopy continuation as an

effective mathematical tool to solve a class of reconstruction problems.

Following are the salient points of this work

• Level set method used as an effective segmentation machinery. In that

context, a fast and multi-phase GPU based solution is developed.

• Continuous deformations are applied to the problem of reconstruction from

linear cross sections.

• A generalized and more difficult problem of reconstruction from arbitrarily

placed cross sections is solved by means of multi-variable homotopy

continuation. Generalized edge-based barycentric coordinates are

suggested.

• Applications areas like fisheries, medical science, and computer vision in

general are likely to benefit.
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1.0 Motivation

Motivation

Generalized Voronoi diagrams, and especially the Voronoi
diagram of spheres have not been explored sufficiently [8].

With recent scientific discoveries in biology and chemistry,
Voronoi diagrams of spheres have become more important for
representing and analysing the molecular 3D structure and
surface [11], the structure of the protein [7], etc.

A limitation of approximative algorithms for the computation
of the Voronoi diagram of spheres is that when approximate
computations are performed on objects defined approximately
(within some geometric tolerance), the propagation of the
errors can be critical, especially if the final computation
involves approximate intermediary computations.
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1.1 Previous work (eastern world)

Previous work (eastern world)

Nishida and Sugihara [9] and Nishida et al. [10] extended the
results in [2] by providing the topological structure of the
Voronoi diagram of hyperspheres in d−dimensional space
using low precision arithmetic (2d + 4 times longer bits for
exact computation [9]).

Kim et al. provide several important research contributions in
the domain of the Voronoi diagrams of spheres including:

the computation of three-dimensional (3D) Voronoi diagrams
[6];
Euclidean Voronoi diagram of 3D balls and its computation via
tracing edges [5];
and the Euclidean Voronoi diagrams of 3D spheres and
applications to protein structure analysis [7].
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1.2 Previous work (western world)

Previous work (western world)

Will [12] provides a method for the computation of additively
weighted Voronoi Cells for applications in molecullar Biology,
based on general methods for computing lower envelopes of
algebraic surfaces [12]. In his algorithm he has to maintain
three kinds of conflicts associated with the vertices, edge
fragments and face fragments.

Gavrilova early work on generalised Voronoi diagrams in her
doctoral thesis [3] and subsequent work by Gavrilova and
Rokne on topology updating of the kinematic Voronoi
diagram of hyperspheres [2].

Hanniel and Elber [4] provide an algorithm for computation of
the Voronoi diagrams for planes, spheres and cylinders in R3

(lower envelope of the bisector surfaces similar to the
algorithm of Will [12]).
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1.3 Problem statement

Problem addressed in this research

Current research efforts did not provide a symbolic
computation method for the Voronoi Diagram and Delaunay
graph (or quasi-triangulation) of spheres based on their
geometric invariants.

Anton and Mioc have provided an exact method for the
computation of the Voronoi diagram of circles [1] using
Gröbner basis and invariants.

This paper provides a generalisation to the three-dimensional
case using a much more powerful (working with differential
polynomials) and tractable method: Wu’s method [13].
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2.1 Voronoi diagram of spheres

Voronoi diagrams of spheres

Let M = R3, and δ denote the Euclidean distance between points.
Let S = {s1, ..., sm} ⊂ M be a set of m ≥ 2 spheres. The distance
between x ∈ M and a sphere si is d (x , si ) = infy∈si {δ (x , y)}.

Definition

(Influence zone) For si , sj ∈ S, si $= sj , the influence zone D (si , sj )
of si with respect to sj is: D (si , sj) = {x ∈ M|d (x , si ) < d (x , sj)}.

Definition

(Voronoi region) The Voronoi region V (si ,S) of si ∈ S with
respect to the set S is: V (si ,S) =

⋂

sj∈S,sj "=si
D (si , sj).

Definition

(Voronoi diagram) The Voronoi diagram of S is the union
V (S) =

⋃

si∈S
∂V (si ,S) of all region boundaries.
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2.2 Delaunay graph of spheres

Delaunay graph of spheres

Definition

(Delaunay graph) The Delaunay graph DG (S) of S is the dual
graph of V (S) defined as follows:

the set of vertices of DG (S) is S,

for each 2−dimensional facet of V (S) that belongs to the
common boundary of V (si ,S) and of V (sj ,S) with si , sj ∈ S
and si #= sj , there is an edge of DG (S) between si and sj and
reciprocally, and

for each vertex of V (S) that belongs to the common
boundary of V (si1,S),. . . ,V (si5 ,S), with
∀k ∈ {1, ..., 5} , sik ∈ S all distinct, there exists a complete
graph K5 between the sik , k ∈ {1, ..., 5}, and reciprocally.
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3.1 Basic definitions

Definitions with polynomials

Definition

(from [13]) For any set of polynomials P ⊂ K [X],
Zero (P) = {x ∈ En|P (x) = 0,∀P ∈ P} is called a variety. For a
set of polynomials P and a polynomial D, we define
Zero (P/D) = Zero (P) \ Zero ({D}), called a quasi-algebraic
variety.

Definition

(from [13]) Let P ∈ k[x ] be a polynomial. The class of P , denoted
by cls (P) is the c such that xc is the largest variable that occurs
in P . If cls (P) = c , then xc is called the leading variable and
denoted by lvar (P), the highest degree monomial of P as a
univariate polynomial in lvar (P) is called the leading monomial,
and its coefficient is called the initial of P .
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3.1 Basic definitions
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3.2 Triangular sets

Triangular sets

Definition

(from [13]) A polynomial P1 has higher ordering than a polynomial
P2, denoted as P2 ≺ P1, if either cls (P1) > cls (P2), or
c = cls (P1) = cls (P2) and deg (P1, xc ) > deg (P2, xc). If none of
two polynomials has higher ordering than the other, they are said
to have the same rank, denoted as P1 ∼ P2.

Definition

(from [13]) A polynomial Q is reduced with respect to P , if
cls (P) = c > 0 and deg (Q, xc) < deg (P , xc). A sequence of
non-zero polynomials A : A1,A2, · · · ,Ar is a triangular set if either
r = 1 or cls (A1) < cls (A2) < · · · < cls (Ar ). A triangular set is
called an ascending chain, or simply a chain, if Aj is reduced with
respect to Ai for i < j . For a chain A, we denote IA as the
product of the initials of the polynomials in A.
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3.3 Basic sets

Basic sets

Lemma

(from [13]) A sequence of (ascending) chains steadily lower in
ordering is finite.

Definition

(from [13]) A basic set of a polynomial set P is any chain of lowest
ordering contained in P. A polynomial Q is called reduced with
respect to a chain A if Q is reduced with respect to all the
polynomials in A.

Lemma

(from [13]) Let A be a basic set of a polynomial set P. If P is
reduced with respect to A, then a basic set of P ∪ P is of lower
ordering than that of P.
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3.4 Division of one polynomial by a set of polynomials

Euclidean division of polynomials

Let F and G be non-zero polynomials with c = cls(F ) and
I = init (F ).

Either G is reduced with respect to F , or
deg (G , xc) ≥ deg (F , xc), and then it is possible to divide G
by F as univariate polynomials in xc .
Indeed, let k = deg (G , xc) − deg (F , xc), k ′ = deg (G , xc),
and I ′ be the coefficient of xk′

c in G , then
deg

(

IG − I ′xk
c F

)

< k ′.
Therefore in a finite number of steps s ≤ k + 1, we get that
I sG = QF + R where Q and R are polynomials in K [X] with
R reduced with respect to F . R is uniquely determined and
called the reminder of G with respect to F and denoted as
R = prem(G ,F ).
Division formula: JG =

∑

i QiAi + R , where R is reduced
with respect to A, and R is called the reminder of G with
respect to A, and denoted as R = prem(G ,A) [13].
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3.5 Wu’s algorithm

Wu’s algorithm

Starting with a polynomial set P0 = P, one should:

select a basis B0 of P0,

compute the set R0 of non-zero reminders of polynomials of
P0 \ B0 with respect to B0,

then, let P1 = P0 ∪ R0 and one should compute a basis set B1

in P1,

then, one should compute the set R1 of non-zero reminders of
polynomials of P1 \ B1 with respect to B1.

By Lemma 3.8, B1 is of lower ordering than B0. Therefore,
such a process has a finite number of steps, and the final
result is a basic set Bm = C, such that the corresponding set
of non-zero reminders Rm is the empty set and
prem (P, C) = {0}. Thus, for each chain that can be obtained
in such a way, Zero (P) ⊆ Zero (C).
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4.1 Mathematical set-up

The Voronoi vertex of four spheres

A Voronoi vertex is a solution of
one of the following system I of
polynomial equations:
I :
8

>

>

<

>

>

:

(x − a)2 + (y − b)2 + (z − c)2 − (r ± v)2 = 0
(x − d)2 + (y − e)2 + (z − f )2 − (s ± v)2 = 0
(x − g)2 + (y − h)2 + (z − i)2 − (t ± v)2 = 0
(x − j)2 + (y − k)2 + (z − l)2 − (u ± v)2 = 0
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4.2 Wu’s algorithm results

Rewritting the Voronoi vertex

A Voronoi vertex is a solution of
one of the following system II
of polynomial equations:
II :
8

>

>

>

<

>

>

>

:

x2 + y2 + z2
− (v)2

(x − a′)2 + (y − b′)2 + (z − c′)2 −
`

s′ ± v
´2

(x − d′)2 + (y − e′)2 + (z − f ′)2 −
`

t′ ± v
´2

(x − g′)2 + (y − h′)2 + (z − i′)2 −
`

u′ ± v
´2

where
`

a′, b′, c′
´

= (d, e, f ) − (a, b, c),
`

d′
, e′, f ′

´

= (g, h, i) − (a, b, c),
`

g′
, h′, i′

´

= (j, k, l) − (a, b, c), s′ = s − r ,

t′ = t − r and u′ = u − r .
8

>

>

<

>

>

:

x2 + y2 + z2
− (v)2

−2a′x − 2b′y − 2c′z − 2s′v + (a′2 + b′2 + c′2 − s′2)
−2d′x − 2e′y − 2f ′z − 2t′v + (d′2 + e′2 + f ′2 − t′2)
−2g′x − 2h′y − 2i′z − 2u′v + (g′2 + h′2 + i′2 − u′2)

P0 = {p1, p2, p3}
A0 = {p1}.
The reminders of the division by A0

are polynomials in v , x , and y . The
first reminder that has the lowest
ordering is r00 = prem (p2, p1).

It can be added to A0. However,
r01 = prem (p3, p1) and
r02 = prem (s1, p1) cannot be added
to A0, since they have the same
ordering as r00 (same class and same
degree).
A1 = A0

⋃

{r10 = prem (r01, r00)}.
The other non-zero reminder at this
class level is another polynomial in v
and x : r11 = prem (r02, r00).
A2 = A1

⋃

{r20 = prem (r11, r10)},
which is a quadratic polynomial in
v . Thus, our basic set is
C : C1, C2, C3, C4, where














C1 = J · v2 + K · v + L
C2 = A · x + H · v + I

C3 = −A · y + E · v + F
C4 = A · z + B · v + C .
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4.3 Simplification using invariants

Simplification using invariants

Using geometric invariants represents a very important simplification: we
have rewritten in a quadratic univariate polynomial in v of the form
J · v2 + K · v + L:

the term in v2, that had 224 monomials in the parameters
a, b, c , d , e, f , g , h, i , s, t, u into a term J that has only 4 monomials
in the simple invariants,

the term in v , that had 1080 monomials in the parameters
a, b, c , d , e, f , g , h, i , s, t, u into a term K that has only 3 monomials
in the simple invariants,

the constant term, that had 2276 monomials in the parameters
a, b, c , d , e, f , g , h, i , s, t, u into a term L that has only 3 monomials
in the simple invariants

The univariate polynomial of the ascending chain has thus been

simplified from a polynomial containing 3580 terms into a polynomial

containing only 10 terms using invariants!
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4.4 Independent invariants and dependent invariants

Algebraically Independent invariants and dependent
invariants

The offset variable can be computed
by solving the quadratic equation
J · v2 + K · v + L = 0, which has no
solution if K 2 < 4JL, one solution
v = K

2J
if K 2 = 4JL, and two

solutions v = K±
√

K 2−4JL
2J if

K 2 > 4JL. With expansions only:

A = −

∣

∣

∣

∣

∣

∣

a′ b′ c ′

d ′ e ′ f ′

g ′ h′ i ′

∣

∣

∣

∣

∣

∣

B = 2

∣

∣

∣

∣

∣

∣

a′ b′ −s ′

d ′ e ′ −t ′

g ′ h′ −u′

∣

∣

∣

∣

∣

∣

C =
∣

∣

∣

∣

∣

∣

a′ b′ a′2 + b′2 + c ′2 − s ′2

d ′ e ′ d ′2 + e ′2 + f ′2 − t ′2

g ′ h′ g ′2 + h′2 + i ′2 − u′2

∣

∣

∣

∣

∣

∣

E = 2

∣

∣

∣

∣

∣

∣

a′ c ′ −s ′

d ′ f ′ −t ′

g ′ i ′ −u′

∣
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∣
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∣

∣

F =
∣

∣

∣

∣

∣

∣

a′ c ′ a′2 + b′2 + c ′2 − s ′2

d ′ f ′ d ′2 + e ′2 + f ′2 − t ′2

g ′ i ′ g ′2 + h′2 + i ′2 − u′2

∣

∣

∣

∣

∣

∣

H = 2

∣
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b′ c ′ −s ′
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I =
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∣

b′ c ′ a′2 + b′2 + c ′2 − s ′2
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∣
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5.1 Positive and negative offset loci

Delaunay empty circumsphere predicate for spheres
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5.2 Relative position of a sphere with respect to the empty sphere

Relative position of a sphere with respect to the empty
sphere

The polynomial stating the difference of squared distances between
the Voronoi vertex and S5 and between the Voronoi vertex and S1
is:

2
(

−m + jH−kE+lB
A

)

· v+
(

K
J + 2BC+EF+HI

A2 −
(B2+E 2+H2)K

A2J

)

· v+
(

j2 + k2 + l2 − m2
)

+2 jI−kF+lC
A

+ L
J
+

C2+F 2+I 2

A2 −
(B2+E 2+H2)L

A2J for the Voronoi vertex exterior to S5;

2
(

m + jH−kE+lB
A

)

· v+
(

K
J

+ 2BC+EF+HI
A2 −

(B2+E 2+H2)K
A2J

)

· v+
(

j2 + k2 + l2 − m2
)

+2 jI−kF+lC
A

+ L
J
+

C2+F 2+I 2

A2 −
(B2+E 2+H2)L

A2J
for the Voronoi vertex interior to S5.
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5.2 Relative position of a sphere with respect to the empty sphere

Relative position of a sphere with respect to the empty
sphere

Proposition

The algebraic degree of the incircle predicate for spheres in the
invariants and the variables defining the fifth sphere is 6. We need
6 times longer bits for the exact computation of the incircle
predicate than the bits used for the invariants and the variables
defining the fifth sphere.

Proof.

The incircle predicate is given by the sign of G . Since the denominator of
v is 2J, the greatest common divider of all the terms in the expansion of
G is A2J2 ≥ 0. In the generic case (A2J2 "= 0), we can rewrite G as a
rational function, whose numerator degree in the invariants and the
variables defining S5 is the degree of the monomials mKA2J2 or
(

j2 + k2 + l2 − m2
)

A2J2, which is 6. Bounding all the invariants and the
variables defining S5 as in [9], we need 6 times longer bits.
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Conclusions

This research work provides a significative simplification using
invariants for the exact computation of vertices of the Voronoi
diagram of spheres and the empty circumsphere criterion as well as
their geometric invariants. This work has a direct application in
Geodesy: the optimal placement of the system of GPS satellites
and the determination of the geometric uncertainty of the
determination of coordinates by GPS as a function of the
placement of the GPS satellites. Further work will address these
applications as well as the application of the automatic derivation
and simplification of invariants to the Delaunay graph and Voronoi
diagram of quadrics.
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Research Objectives

1 To show graph isomorphism between the medial axis of an object and
a dual of its Delaunay graph.

2 To design a methodology to automate delineation of boundary and
centreline of objects from digital images.
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What is a Skeleton?

A skeleton of an object can be described as its centreline.

More formally, a skeleton is the locus of the centre of maximal inscribed
discs.

Sharma, O., Anton, F., Mioc, D. (DTU) 23 June, 2009 4 / 19



Existing Methods

Raster based processing to extract centerline.

Mainly process binary images.

Do not preserve topology and mediality simultaneously.

Example

Morphological thinning

Distance transform
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Existing Methods

Raster based processing to extract centerline.

Mainly process binary images.

Do not preserve topology and mediality simultaneously.

Example

Grayscale and colour images are processed by
thresholding.
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Existing Methods

Raster based processing to extract centerline.

Mainly process binary images.

Do not preserve topology and mediality simultaneously.

Example

Thinning does not guarantee mediality while Distance
transform does not ensure connectivity.

Sharma, O., Anton, F., Mioc, D. (DTU) 23 June, 2009 5 / 19



Graph Isomorphism between Medial Axis and a Dual of
Delaunay Graph

Our approach to medial axis is based on the graph isomorphism between

the medial axis and a dual of the Delaunay graph. In order to show the

isomorphism, let’s define the following graphs

IDG : Interior Delaunay Graph (a subset of Delaunay graph) which

represents the object boundary.

DIDG : Dual of IDG constructed by application of our rules.

Sharma, O., Anton, F., Mioc, D. (DTU) 23 June, 2009 6 / 19



Rules for Construction of the Dual of Internal Delaunay
Graph

(a) The vertices of DIDG are the isobarycenters of the vertices of each
triangle of IDG that does not belong to a complete subgraph of at least
four vertices.
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Rules for Construction of the Dual of Internal Delaunay
Graph

(a) The vertices of DIDG are the isobarycenters of the vertices of each
triangle of IDG that does not belong to a complete subgraph of at least
four vertices.
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Rules for Construction of the Dual of Internal Delaunay
Graph

(b) For each complete subgraph of at least 4 vertices of IDG (that are
cocircular), the corresponding subgraph of DIDG is reduced to a point.
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Rules for Construction of the Dual of Internal Delaunay
Graph

(b) For each complete subgraph of at least 4 vertices of IDG (that are
cocircular), the corresponding subgraph of DIDG is reduced to a point.
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Rules for Construction of the Dual of Internal Delaunay
Graph

(c) For each set E of edges e1...ek , k > 2 of the boundary of IDG that
share one common vertex v that is a vertex of a complete subgraph K of at
least 4 vertices of IDG , there is a set of edges of DIDG that link v to each
one of the isobarycenters of the triangles t1...tj such that ti ∈ IDG and ti
has two of its edges in E that are not edges of K , and there is one edge of
DIDG that links v to the center of the circumcircle of the vertices of K .
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Rules for Construction of the Dual of Internal Delaunay
Graph

(c) For each set E of edges e1...ek , k > 2 of the boundary of IDG that
share one common vertex v that is a vertex of a complete subgraph K of
at least 4 vertices of IDG , there is a set of edges of DIDG that link v to
each one of the isobarycenters of the triangles t1...tj such that ti ∈ IDG
and ti has two of its edges in E that are not edges of K , and there is one
edge of DIDG that links v to the center of the circumcircle of the vertices
of K .
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Rules for Construction of the Dual of Internal Delaunay
Graph

(d) For each set E of edges e1...ek , k > 2 of the boundary of IDG that
share one common vertex v that is not a vertex of a complete subgraph of
at least 4 vertices of IDG , there is a set of edges of DIDG that link v to
each one of the isobarycenters of the triangles t1...tj such that ti ∈ IDG
and ti has two of its edges in E .
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Rules for Construction of the Dual of Internal Delaunay
Graph

(d) For each set E of edges e1...ek , k > 2 of the boundary of IDG that
share one common vertex v that is not a vertex of a complete subgraph of
at least 4 vertices of IDG , there is a set of edges of DIDG that link v to
each one of the isobarycenters of the triangles t1...tj such that ti ∈ IDG
and ti has two of its edges in E .
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Rules for Construction of the Dual of Internal Delaunay
Graph

(e) For each edge e that is not on the boundary of IDG and that does not
link two vertices of a complete subgraph of at least 4 vertices of IDG ,
there exists an edge of DIDG that links the isobarycenters of the vertices
of each one of the triangles that share e.
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Rules for Construction of the Dual of Internal Delaunay
Graph

(e) For each edge e that is not on the boundary of IDG and that does not
link two vertices of a complete subgraph of at least 4 vertices of IDG ,
there exists an edge of DIDG that links the isobarycenters of the vertices
of each one of the triangles that share e.
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Proof of Isomorphism

Let’s call

Ramification vertices: the vertices DIDG that have a degree greater
than two.

Dangling vertices: the vertices of DIDG that have degree one.
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Proof of Isomorphism

(a) The dangling vertices of DIDG correspond to triangles of IDG that
have two of their edges on the boundary of DIDG (which are therefore
adjacent). The corresponding vertices of the medial axis are the centers of
maximal circles that touch two adjacent edges of the boundary of IDG .
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Proof of Isomorphism

(a) The dangling vertices of DIDG correspond to triangles of IDG that
have two of their edges on the boundary of DIDG (which are therefore
adjacent). The corresponding vertices of the medial axis are the centers of
maximal circles that touch two adjacent edges of the boundary of IDG .
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Proof of Isomorphism

(b) The ramification vertices of DIDG correspond either to the common
vertex of a set E of edges e1...ek , k > 2 of the boundary of IDG , or to the
isobarycenters of the triangles of DIDG that have no edge in the boundary
of IDG .

The later kind of ramification vertices (that we will call type I ramification
vertices) correspond to Voronoi vertices that are at the same distance with
respect to 3 distinct vertices on 3 distinct portions of the boundary of IDG .

The earlier kind of ramification vertices (that we will call type II
ramification vertices) correspond to singular points of the boundary of
IDG .
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Proof of Isomorphism
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of IDG .

The later kind of ramification vertices (that we will call type I ramification
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Proof of Isomorphism

(c) The internal vertices on the paths between two type I ramification
vertices of DIDG correspond to triangles of IDG that have one edge in the
boundary of IDG . The edges in such paths link isobarycenters of triangles
of IDG that have their edge in the boundary of IDG on different portions
of the boundary of IDG .

These edges correspond to edges of the medial axis, whose points are the
centers of maximal circles that touch two different portions of the
boundary of IDG .
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Proof of Isomorphism

(c) The internal vertices on the paths between two type I ramification
vertices of DIDG correspond to triangles of IDG that have one edge in the
boundary of IDG . The edges in such paths link isobarycenters of triangles
of IDG that have their edge in the boundary of IDG on different portions
of the boundary of IDG .

These edges correspond to edges of the medial axis, whose points are the
centers of maximal circles that touch two different portions of the
boundary of IDG .
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Proof of Isomorphism

(d) The internal vertices on paths between one type I ramification vertices
of DIDG and a dangling vertex of DIDG correspond to triangles of IDG
that have one edge in the boundary of IDG . Again, the edges in such
paths link isobarycenters of triangles of IDG that have their edge in the
boundary of IDG on different portions of the boundary of IDG .

Again, these edges correspond to edges of the medial axis, whose points
are the centers of maximal circles that touch two different portions of the
boundary of IDG .
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that have one edge in the boundary of IDG . Again, the edges in such
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boundary of IDG on different portions of the boundary of IDG .
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Proof of Isomorphism

(e)The internal vertices on paths between a type II ramification vertex and
a type I ramification vertex correspond to triangles of IDG that have one
edge in the boundary of IDG , except for the vertex that is connected to
the type II ramification vertex by a single edge, which corresponds to a
triangle of IDG that has two of its edges on the boundary of DIDG .

Again, these edges correspond to edges of the medial axis, whose points
are the centers of maximal circles that touch either two different portions
of the boundary of IDG , or two portions of the boundary of IDG that have
a common singular vertex.
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Proof of Isomorphism

(e)The internal vertices on paths between a type II ramification vertex and
a type I ramification vertex correspond to triangles of IDG that have one
edge in the boundary of IDG , except for the vertex that is connected to
the type II ramification vertex by a single edge, which corresponds to a
triangle of IDG that has two of its edges on the boundary of DIDG .

Again, these edges correspond to edges of the medial axis, whose points
are the centers of maximal circles that touch either two different portions
of the boundary of IDG , or two portions of the boundary of IDG that have
a common singular vertex.
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Proof of Isomorphism

(f) The internal vertices on paths between a type II ramification vertex of
DIDG and a dangling vertex of DIDG correspond to triangles of IDG that
have one edge in the boundary of IDG , except for the vertex that is
connected to the type II ramification vertex by a single edge, which
corresponds either to a triangle of IDG that has two of its edges on the
boundary of DIDG , or to the circumcircle of the vertices of a complete
subgraph K of 4 or more cocircular vertices of IDG .

Again, these edges correspond to edges of the medial axis, whose points
are the centers of maximal circles that touch either two different portions
of the boundary of IDG , or two portions of the boundary of IDG that have
a common singular vertex.
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Automated Approach to Skeletonization

Following is our general approach to skeletonization:

1 Segment a color image into prominent objects.

2 Ask the user if he or she wants to process all the objects independently
(automatic process) or select an object (semi-automatic process).

3 Collect sample points for each object to be processed.

4 Construct the Delaunay triangulation and its dual from the sample
points.

5 Extract the medial axis using rules described before.
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Image Segmentation using Mean Shift Algorithm

Mode seeking using mean shift algorithm

The final window location gives the local maxima of the distribution
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Image Segmentation using Mean Shift Algorithm

Image segmentation

Mean shift algorithm can be applied to segment images [4]. Following
general procedure is used:

1 Definition of segmentation parameters

2 Definition of search window

3 Mean shift algorithm

4 Removal of detected feature

5 Iterations

6 Determining initial feature palette

7 Determining final feature palette

8 Postprocessing
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Image Segmentation using Mean Shift Algorithm

Image segmentation results

Sharma, O., Anton, F., Mioc, D. (DTU) 23 June, 2009 12 / 19



Object Selection from Segmented Image
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Object Selection from Segmented Image
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Sampling the Object Boundary

A selected object must be sampled before it any processing.
The sampled points are then used to compute the Delaunay triangulation
and the Voronoi diagram.

This can be achieved by edge detection. Edge pixels are calculated using
morphological edge detection from the binary image of the selected object.
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Computation of the Delaunay Triangulation

The Delaunay triangulation of a set of points is a triangulation such that
no point in P is inside the circumcircle of any triangle of the triangulation.

Incircle criterion:

H(pa, pb, pc , pd) =
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Computation of the Delaunay Triangulation

The Delaunay triangulation of a set of points is a triangulation such that
no point in P is inside the circumcircle of any triangle of the triangulation.

Computed using the incremental algorithm.
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Computation of the Voronoi Diagram

Voronoi diagram is an irregular (polygonal) tessellation of space that
adapts to spatial objects. They are synthesis of raster and vector model.

The Voronoi region of point pi is given by:

V (pi ) = {x | �x − xi� ≤ �x − xj� for j �= i , j ∈ In}

Sharma, O., Anton, F., Mioc, D. (DTU) 23 June, 2009 16 / 19



Extraction of Crust (Boundary)

Any Delaunay edge that has a circle that does not contain the vertices of
its dual Voronoi edge belongs to the Crust[2, 3].

The crust forms the IDG . We obtain the DIDG by application of our set
of rules to IDG .
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Results

Denmark Road Network
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Results

Denmark Road Network
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Results

Lake Lyngby, Denmark
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Results

Lake Lyngby, Denmark
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Conclusions

We have shown medial axis computation by utilising the graph
isomorphism between the medial axis and a dual of the Delaunay
graph.

We outlined a methodology to automate various parts of digitization
from scanned maps has been suggested.

We developed an interactive software application to computed medial
axis of objects from digital images and digitize features.

We show Applicability of the designed method to two types of digital
images, scanned maps and satellite images.
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Thank You
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Quad-Edge Data Structure

A Quad-edge simultaneously represents a graph and its dual.

Dual of a mesh exchanges faces and vertices.

The edges of the graph are directed and there are four such edges
representing two symmetric edges from both the graph and its dual.
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Quad-Edge Data Structure

Two atomic operators for navigation:

Rot() points to a 90o counterclockwise rotated edge.

Onext() points to the next counterclockwise edge sharing the same
origin with the current edge.
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Image Space to Feature Space

Clustering is done in Feature Space using Mean Shift algorithm.
Conversion from Image Space to Feature Space is performed before
clustering.
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Crust Condition

[1]:

Let S be a finite set of points in a plane, and let V be the vertices of the
Voronoi diagram of S . Let S � be the union S ∪ V , and consider the
Delaunay triangulation of S �. An edge of the Delaunay triangulation of S �

belongs to the crust of S if both of its endpoints belong to S .
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Crust Condition

One step formulation by Christopher Gold:

(s − q) · (s − r) ∗ (p − q) · (p − r) ≥ − (s − r) · v ∗ (p − q) · v

Where, edge(q, r) is the Delaunay edge under the test and edge(p, s)

froms the dual Voronoi edge. v is a vector 90o clockwise from (r − q).
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Sampling Condition

Let F be a smooth curve and S ⊂ F be a finite set of sample points on F.
The sampling should be done such that the distance from any point p on
F to the nearest sample s ∈ S is at most a constant factor r times the
local feature size at p, which is defined as the distance from p to the
medial axis of F .

Distance d(p,m) defines the local feature size.
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