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Abstract. One of the challenging problems in computer vision is ob-
ject reconstruction from cross sections. In this paper, we address the
problem of 2D object reconstruction from arbitrary linear cross sections.
This problem has not been much discussed in the literature, but holds
great importance since it lifts the requirement of order within the cross
sections in a reconstruction problem, consequently making the recon-
struction problem harder. Our approach to the reconstruction is via
continuous deformations of line intersections in the plane. We define
Voronoi diagram based barycentric coordinates on the edges of n-sided
convex polygons as the area stolen by any point inside a polygon from the
Voronoi regions of each open oriented line segment bounding the polygon.
These allow us to formulate homotopies on edges of the polygons from
which the underlying object can be reconstructed. We provide results of
the reconstruction including the necessary derivation of the gradient at
polygon edges and the optimal placement of cutting lines. Accuracy of
the suggested reconstruction is evaluated by means of various metrics
and compared with one of the existing methods.

Keywords: Voronoi diagram, natural neighbor, Homotopy, continuous
deformations, reconstruction, linear cross sections

1 Introduction

Object reconstruction from cross sections is a well known problem. Generally a
spatial ordering within the cross sections aids reconstruction. We consider the
problem of reconstructing an object from arbitrary linear cross sections. Such
cross sectional data can be obtained from many physical devices. An example is
an acoustic probe that can obtain range information of an object by sending an
acoustic pulse.

The problem of reconstruction from arbitrary cross sections has been studied
by [15, 9, 10]. Sidlesky et al. [15] define sampling conditions on the reconstruc-
tion, while in our reconstruction algorithm, we allow the sampling to be sparse.
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Methods proposed by Liu et al. [9], and Memari and Boissonnat [10] are both
based on Voronoi diagrams. Memari and Boissonnat also provide rigorous proof
of their reconstruction. Our approach to reconstruction considers the “presence”
or “absence” of information along any intersecting line. This is in contrast to
[15], where the authors consider that a line not intersecting the object does not
contribute to the reconstruction. In our algorithm, such a line is considered to
contribute to the reconstruction by defining a linear section, no part of which
belongs to the reconstruction.

Memari and Boissonnat [10] provide a topological reconstruction method
utilizing the Delaunay triagulation of the set of segments of intersecting lines.
They claim an improvement over the method by Liu et al. [9] by producing re-
constructions that are not topologically effected by lines that do not intersect the
object under consideration. Their reconstruction boundary, however, is a piece-
wise linear approximation of the boundary of the original object. In this work,
we produce smooth reconstruction of the object via continuous deformations.
Therefore, we anticipate better reconstruction accuracy compared to the work
by Memari and Boissonnat [10].

This paper is organized as follows. Section 2 defines the reconstruction prob-
lem mathematically. We introduce the concept of homotopy continuation in sec-
tion 3 followed by the main reconstruction algorithm in section 4. We discuss
our Voronoi diagram based edge barycentric coordinates on convex polygons
here and provide details of our homotopy based reconstruction algorithm. We
provide results of the reconstruction in section 5 and analyze the accuracy of
our algorithm.

2 Problem definition

Given a set of lines {Li : i ∈ [0, n − 1]} in a plane, intersecting an object O
along segments {Si,j : j ∈ [0,mi − 1]}, the problem of object reconstruction
from arbitrary linear cross sections is to reconstruct an object O from Si,j such
that the reconstruction R satisfies

Li
⋂
O = Li

⋂
R, (1)

and that R is homeomorphic to O. Further, the reconstruction should also be
geometrically close to the object. We quantify the geometric closeness in our
reconstruction by means of several area based ratios such as the ratio of area of
reconstruction and the area of the object, and the ratio of the absolute difference
of the two areas and the area of the object. Length ratio is also a good indicator
of geometric closeness. Furthermore, Hausdorff distance between the two curves
gives a good measure of the distance between them.

In this context we impose no restrictions on the ordering or arrangement
of the intersecting lines. However, the placement of intersecting lines plays an
important role in the correctness of the reconstruction. A placement that covers
salient object features results in a better reconstruction. In order to quantify
an optimal placement, consider a set of intersecting lines in a plane along with
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the object to be reconstructed. The intersecting lines partition the object into
smaller regions. Considering the simply connected boundary of the object that
belongs to a region (see the highlighted curve segment in Fig. 1(a)), tortuousity
[6], which gives a simple measure of how twisted a curve is, can be computed.
It is defined as the arc-chord ratio of a parametric curve C = (x(t), y(t)) on the
interval [t0, t1] [13]

τ = L

C
=

∫ t1

t0

√
x′(t)2 + y′(t)2√

(x(t1)− x(t0))2 + (y(t1)− y(t0))2
. (2)

τ can be considered as a measure of straightness of a curve. According to (2),
tortuosity of a circle is infinite [13] since the chord length is zero for t1 = t0.
This definition can be extended for parts of the object boundary that are not
intersected by any of the lines (for example, an isolated blob shown in Fig. 1(a)).
In such a case, the two end points do not exist and therefore these can be set to a
single point (i.e., t1 = t0) without loss of generality. Therefore, for isolated object
parts that have no intersection with the cutting lines, τ is taken as infinity.

It is not difficult to see that higher the value of τ for any region, more it
is susceptible to generate part of the reconstruction that is non-homeomorphic
to the object. However, if the sampling is such that the intersecting lines are
chosen along the medial axis of the object, then such regions can be avoided
(see Fig. 1(b)). In that case, τ remains close to one for different regions. Such a
sampling is illustrated in subsection 5.1 for deriving accuracy statistics for the
proposed reconstruction method.

(a) (b)

Fig. 1. Sampling condition on the intersecting lines. (a) Under-sampling. (b) Optimal
sampling along medial axis.

The skeleton (K) of the object and the skeleton (Kc) of the complement
of the object in its convex hull provide optimal placement of the cutting lines.
Indeed, except if the object is a disc, the intersection of the closure of the union
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of K and Kc with the boundaries of the object correspond to the local extrema
of curvature of the boundary object. In addition, the tangent to K or Kc at
these points of intersection with the boundaries of the object correspond to the
normal to the object boundary at these points in the case of regular points
and the axis of the normal cone in the case of singular points (see Fig. 2). In
the case of a disc, the curvature is constant, and the skeleton is reduced to a
point (its center), while the complement of the disc in its convex hull is the
empty space. The notion of using the skeleton of an object for optimal sampling
comes from the Geometric Sampling Theorem [14]. As with 1D signals, the
sampling must consider the highest frequency present in the signal, for manifolds,
sampling must ensure that the regions of high curvature are measured [14]. In
our case, we ensure this by sampling along the skeleton. Another desired trait

Kc

K

O

p

n

Fig. 2. Optimal placement of cutting lines. O is the object with K being its skeleton
and Kc being the skeleton of its complement. The closure of these skeletons touches
the boundary of O at the local extrema points.

of a reconstruction is smoothness, and we will show that the proposed method
of continuous deformations results in a reconstruction that is at least C1.

3 Homotopy Continuation

Homotopy is concerned with identification of paths between objects that can be
continuously deformed into each other. The history of study of homotopy dates
back in the late 1920’s when the the homotopy theory was formalized.
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Definition 1. Let f : X → Y and g : X → Y be two continuous maps between
topological spaces X and Y . These maps are called homotopic, f ' g, if there
is a homotopy or a continuous map H : X × [0, 1]→ Y between them, such that
H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X.

Therefore, we can write the homotopy Hλ : X → Y as

Hλ(x) = H(x, λ), (3)

and thus, H0 = f and H1 = g. One can visualize how the deformation h contin-
uously takes f to g (see Fig. 3) by varying the parameter λ.

Fig. 3. Continuous deformation.

One can impose additional constraints on the deformation path. For example,
a specific constraint on fixed endpoints leads to homotopy of paths. For two pairs
of homotopic maps X −−−→

f'g
Y −−−→

f̄'ḡ
Z, the compositions f̄ ◦ f and ḡ ◦ g are also

homotopic via the composition H̄λ ◦ Hλ. Further, for two pairs of homotopic
maps fi ' gi : Xi → Yi, i = 1, 2, the maps f1×f2 and g1× g2 from X1×X2 into
Y1 × Y2 are also homotopic via H(1)

λ ×H
(2)
λ , in which case it is called a product

homotopy [7].
Continuous deformations have been successfully used to solve non-linear sys-

tem of equations that are otherwise hard to solve. A homotopy tries to solve
a difficult problem with unknown solutions by starting with a simple prob-
lem with known solutions. Stable predictor-corrector and piecewise-linear meth-
ods for solving such problems exist (see Allgower and Georg [3]). The system
H(x, λ) = 0 implicitly defines a curve or 1-manifold of solution points as λ varies
in [0, 1] and x is fixed.

Given smooth H and existence of u0 ∈ R
N+1 such that H(u0) = 0 and

rank(H′(u0)) = N , there exists a smooth curve c : α ∈ J 7→ c(α) ∈ RN+1 for
some open interval J containing zero such that for all α ∈ J (Allgower and Georg
[3])
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1. c(0) = u0,
2. H(c(α)) = 0,
3. rank(H′(c(α))) = N ,
4. c′(α) 6= 0.

In this work, we use homotopy or continuous deformations for object recon-
struction. This is discussed in the next section.

4 Reconstruction Algorithm

Starting with a set of cross sections {Si,j} for lines {Li} in a plane, we restrict
reconstruction in the bounding box Bbox of the cross sections. The set of lines
{Li} partition Bbox into a set of convex polygons {Gk}, k ∈ [0, p − 1]. This is
shown in Fig. 4 where O is drawn dotted, the set of lines are shown dashed with
the cross sections as thick solid lines, and the boundary of the bounding box is
shown dashed. Our reconstruction algorithm consists of assigning a homotopy
Hk to every polygon Gk. The reconstruction is then obtained as a union of
reconstructions within each polygon:

R =
⋃
k

{(x, y) : Hk = 0}. (4)

Fig. 4. A set of lines intersecting an object (dotted).

A homotopy can be seen as a smooth transition from one map to another. We
can extend this definition to multiple maps by defining a homotopy in multiple
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variables

H(λ0, λ1, · · · , λs−1) =
s−1∑
t=0

ftλt, (5)

with
s−1∑
t=0

λt = 1. (6)

The homotopy parameters must sum up to unity in order to define the defor-
mation H inside the convex hull of the domain. In our case, the domain is a
polygon formed by straight line segments.

4.1 Edge Maps

Using (5), a smooth map can be defined over Gk for a choice of maps {ft}, t ∈
[0, sk − 1] defined on sk edges of Gk. Let these maps be called edge maps. For
continuity across all polygons, the definition of the edge maps must be consistent.
Since, polygon edges are a subset of the cross section lines, it suffices to define
edge maps over {Li}.

An edge map fi should completely describe the boundary, interior and exte-
rior of the intersection of Li with O. To define fi, we associate a local coordinate
system with each line Li whose axis measures distance r along it from a chosen
origin. Given abscissae rq, q ∈ [0, 2mi− 1] of the intersections Si,j , we define the
corresponding edge map as a piecewise quadratic polynomial

fi(r) =
2mi−2∑
q=0

αq(−r2 + r(rq + rq+1)− rqrq+1))
(rq+1 − rq)

, (7)

where αq is the positive gradient
∣∣d f

d r
∣∣
r=rq

defined as

αq = (−1)q+1α0, (8)

with α0 being a chosen positive slope at r0. Fig. 5 illustrates such an edge map.

α0

Fig. 5. Piecewise quadratic function as an edge map.
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4.2 Barycentric Coordinates

It is natural to consider barycentric coordinates of a polygon as homotopy vari-
ables because of the two useful properties that they offer. Barycentric coordinates
span a complete polygon and are a partition of unity. Traditional barycentric
coordinates for triangles (and simplices in general) are defined by its vertices.
Relevant generalizations of barycentric coordinates to n-sided polygons were pro-
vided by Wachspress [16] and later by Meyer et al. [11]. In the current context,
we define barycentric coordinates in terms of the edges of a polygon rather than
the vertices. Such a definition allows us to apply the concepts developed so far
to associate a suitable homotopy to a polygon. We define Voronoi diagram based
barycentric coordinates of edges for an n-sided polygon.

An interesting class of barycentric coordinates can be derived from Voronoi
diagram of line segments and a point. Consider again a polygon G and a point
p inside it. The Voronoi region of a point inside a polygon is a closed region of
piecewise parabolic arcs as shown in Fig. 6. From the Voronoi diagram of the
edges {ei} in a polygon, introduction of a point p steals an area from two or
more existing Voronoi regions. If the stolen area for any edge ei and p is denoted
by Ai, the barycentric coordinates for the edge can be written as

λi = Ai
s−1∑
j=0
Aj

, i ∈ [0, s− 1], (9)

p

G
M

ei

Fig. 6. Voronoi diagram of a polygon G and a point p inside.

Area Ai can be computed as the area between the parabolic arc and the
involved angle bisectors. Again, the barycentric coordinates defined in this way
satisfy positivity, partition of unity and continuity. In the limiting case as p
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approaches one of the sides ek, the stolen area Ak becomes very small, but si-
multaneously areas Ai,i 6=k become smaller (and eventually zero) by a rate higher
than that of the former. Thus as p approaches ek, λk → 1, and λi,i 6=k → 0.

4.3 Homotopy

Equipped with the above defined edge maps and barycentric coordinates for any
polygon Gk, we define a homotopy Hk in sk variables as

Hk(p) =
sk−1∑
i=0

fi (di(p))λi(p), (10)

where di(p) is the distance along line Lk from a chosen origin Ok on it until the
foot of the perpendicular from point p . We can write

di(p) = ||Ok − pi||+ (p− pi)T
(pi+1 − pi)

li
, (11)

where pi+1 and pi are two end points of an edge ei of Gk lying on Lk, and
||x|| denotes the length of a vector x. Homotopy (10) continuously deforms edge
maps fi within the polygon and thus generates a smooth field. It can be seen as
a linear combination of edge maps fi with barycentric coordinates λi. We can
further extend this so called linear homotopy to a non-linear homotopy as

Hk(p, η) =
sk−1∑
i=0

fi (di(p))λi(p)η, (12)

with η as a parameter.
Across polygons, the homotopy (10) is continuous and is at least C1 smooth

(see Appendix A for the proof). However, at all the intersection points Q =
{Qi,j : Qi,j ∈ Li

⋂
∂O} of the lines {Li} and the boundary ∂O of the object O,

the generated curve H−1(0) is orthogonal to any line in {Li} (see Appendix A).
Therefore, the resulting reconstruction is somewhat unnatural. Given normals at
the intersection points Q (which is the case with many range scanning physical
devices), we propose a tangent alignment scheme for the resulting curve by
locally warping the domain of the homotopies.

4.4 Tangent Alignment using Local Space Rotations

Given unit normals N̂ at intersection points Q, the reconstruction can be con-
strained to be normally aligned to these normals at these points. We enforce
this constraint by local space rotations around points Q. The reconstruction
c = H−1(0) is orthogonal to the intersecting lines at Q. Starting with a point
p in the neighborhood of one of the points pc of Qk,j lying on Lk, we rotate p
about pc by an angle −θ to give point p̃ in the plane (see Fig. 7). The angle θ is
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Fig. 7. Rotation of a point for tangent alignment.

chosen to be the signed angle between N̂ and ∇Lk at the point pc. The resulting
homotopy H̃ for a polygon G can be written as

H̃ =
sk−1∑
i=0

fi

(
d̃i

)
λ̃i, (13)

where,

d̃i = di(p̃) = ||Ok − pi||+ (p̃− pi)T
(pi+1 − pi)

li
, and

λ̃i = λi(p̃) = Ãi
s−1∑
j=0
Ãj

, i ∈ [0, s− 1].

The rotated point p̃ can be written as

p̃ =pc + R(−θ)(p− pc), (14)

where R is the rotation matrix

R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
. (15)

The modified gradient of the homotopy field in the neighborhood of pc can be
now computed using the chain rule as:

∇H̃ =
s−1∑
i=0

(
f ′i(d̃i)∇d̃iλ̃i + fi(d̃i)∇λ̃i

)
. (16)

In the limit as point p → pc (or the orthogonal distance to Lk, µk → 0 ),
using a similar derivation as given in Appendix A, we can write

lim
µk→0

∇H̃ = f ′k(d̃i)∇d̃k (17)
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Computing the gradient of d̃k,

∇d̃k = ∇
(

(p̃− pk)T (pk+1 − pk)
lk

)
= ∇

(
(pc + R(−θ)(p− pc)− pk)T (pk+1 − pk)

lk

)
= R(−θ)T (pk+1 − pk)

lk
= R(θ)∇dk (18)

Therefore,

lim
µk→0

∇H̃ = f ′k(d̃i)R(θ)∇dk (19)

We know that the gradient

lim
µk→0

∇H = f ′k(di)∇dk. (20)

From (20) and (19) it can be seen that in the limit µk → 0

∇H̃
||∇H̃||

= R(θ)
(
∇H
||∇H||

)
. (21)

Therefore, we can achieve the desired rotation of the reconstruction curve by
rotating the local coordinates around the points Q in the opposite direction.

4.5 Smooth Rotations of the Reconstruction Curve

In order to generate a smooth distortion H̃−1(0) of the curve H−1(0) the neigh-
borhoods of points Q must be carefully chosen. A natural neighborhood for
points in Q is their respective Voronoi polygons. However, a constant rotation
for all the points in a particular Voronoi region results in a discontinuous curve at
the boundary of these polygons. Therefore, we seek a continuous weight function
wpi inside a Voronoi region VQ(pi) of any generator pi ∈ Q such that

wpi
(pi) = 1, and

wpi
(∂VQ(pi)) = 0. (22)

These requirements on the weight function impose a smooth transition of ro-
tation angles from one influence zone to another and ensure monotonically de-
creasing rotation angles as points get farther away from rotation centers with no
rotation at the boundaries of the Voronoi regions. For any point p inside VQ(pi),
consider its nearest neighbor p(1)

i and the next nearest neighbor p(2)
i ∈ Q. Denote

by d1(p) the distance between p and p
(1)
i and by d2(p) the one between p and

p
(2)
i . We can formulate the required weight function as

wpi
(p) = d2(p)− d1(p)

d2(p) + d1(p) . (23)
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The first nearest neighbor p(1)
i is the generator point pi of VQ(pi). The second

nearest neighbor p(2)
i can be found by computing the second order voronoi di-

agram of Q. The weight function resulting from (23) is shown in Fig. 8. We
outline the complete algorithm in Algorithm 1.
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Fig. 8. Weights based on higher order Voronoi diagram.

5 Results

We test our reconstruction method on a hand drawn curve intersected by a set
of arbitrarily oriented lines. The lines yield a polygonal tessellation in the plane.
We reconstruct the original curve from the intersections over the polygons of
this tessellation.

This reconstructed curve is guaranteed to pass through the end-points of the
intersections. Figs. 9(a), and 10(a) show results of our reconstruction for the
linear and the non-linear homotopies respectively. The reconstructed curve is
always orthogonal to the intersecting lines. The orthogonality is not apparent in
Fig. 9(a) at a large scale, but is more visible for the non-linear homotopy with
η = 2 in Fig. 10(a).

We also show results of the reconstructed curve after applying local rotations
at points Q. The local rotations distort the original curve in the desired direction
as seen in Figs. 9(b), and 10(b).

The next subsection discusses accuracy statistics of our method based on
how much information is provided to the reconstruction algorithm in terms of
the number of intersections.
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(a) H−1(0) (b) H̃−1(0)

Fig. 9. Reconstruction with linear homotopy.

(a) H−1(0) (b) H̃−1(0)

Fig. 10. Reconstruction with non-linear homotopy.
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Input: {Si,j} on {Li}, N̂ at Q
Output: R
Define an edge map fi on each Li using {Si,j}
Partition Bbox into polygonal tiles {Gk} with {Li}
Compute first order Voronoi diagram V1

Q of Q
Compute second order Voronoi diagram V2

Q of Q
Compute w from V1

Q and V2
Q

for k ∈ [0, p− 1] do
Compute Voronoi diagram Vk of Gk

for x ∈ Gk do
Let xc ∈ Q be the generator of Voronoi polygon of x
x̃← xc + R(−θ)(x− xc)
Compute {λi(x̃)} for all edges of Gk using Vk

Compute di(x̃) for all edges of Gk

Compute H̃k

end
end
H̃ ←

⋃
H̃k

R← ker H̃
Algorithm 1: The reconstruction algorithm.

5.1 Reconstruction Accuracy

A good reconstruction depends on the choice of cutting lines placed carefully
to cover salient geometric features of the object to be reconstructed. In order
to test the reconstruction algorithm for accuracy, we sample intersecting lines
from the skeleton of the test object. We choose to sample the skeleton of the
object since it captures the salient details of the object. To show the dependence
of reconstruction accuracy on the number of intersecting lines, a hierarchy of
skeletons is used.

A skeleton hierarchy is computed from a straight line skeleton [2]. The hierar-
chy provides an incremental simplification of the skeleton based on discrete curve
evolution of the skeleton branches [8, 5]. Curve simplification by discrete curve
evolution uses local angles at every vertex of the curve to assign a relevance to
each vertex. Based on the computed relevance values, the curve is evolved (sim-
plified) by deletion of vertices. Fig. 11 shows such a skeleton hierarchy with five
levels. The base skeleton is computed using the straight line skeleton module of
the CGAL library [1] .

Sampled segments from the skeleton at every level are used as cutting lines
for reconstruction. Thus, for every level of hierarchy of skeletons, we compute a
reconstruction of the object. We next compute various error metrics for different
reconstructions thus obtained. To get a comprehensive idea of the reconstruction
accuracy, metrics based on area, mean distance error, and curve lengths are
considered here.
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Denoting the area of the model object by Amod, the area of the reconstruction
at level i by Airec, the absolute difference of Amod and Airec is given by

Aidiff =
(
Amod

⋃
Airec

)
−
(
Amod

⋂
Airec

)
. (24)

Fig. 11 shows Aidiff for different levels of hierarchy. Another important indica-
tor of reconstruction accuracy is the ratio of areas Airec/Amod. Both of these
measures are shown in Table 1. The tests show that with better sampling, the
reconstruction accuracy increases. Also the ratio of areas indicate that the re-
constructed curve has a slightly larger area than the original curve.

Table 1. Reconstruction accuracy with respect to areas

Amod = 0.3228

Level Edges Ai
rec Ai

diff %
(
Ai

diff

Amod

)
Ai

rec

Amod

1 59 0.3266 0.0123 3.8 1.0119
2 40 0.3247 0.0168 5.2 1.0058
3 29 0.3279 0.0297 9.2 1.0160
4 23 0.3287 0.0333 10.3 1.0182
5 21 0.3283 0.0349 10.8 1.0171

The Hausdorff distance is a good measure of the distance between two man-
ifolds [12]. Hausdorff distance, dH , between two curves L and L′ is given by

dH(L,L′) = sup
x0∈L

inf
x1∈L′

d(x, x′), (25)

where d(·, ·) is an appropriate metric for measuring distance between two points
in a metric space. A mean value of the Hausdorff distance can be defined as [4]

dm(L,L′) = 1
|L|

∫
x∈L

inf
x′∈L′

d(x, x′)dL, (26)

where |L| is the length of the curve L. A relative value of this distance is com-
puted with respect to the bounding box of the object, as shown in Table 2. Also
shown in the table is the length ratio of the reconstructed curve with respect to
the original object contour. Here again, the tests show that a better sampling
increases the accuracy of the reconstruction. However, we must point out that
a topologically correct reconstruction is achievable with as few cutting lines as
there are salient features in the object.

5.2 Comparison

A comparison of our reconstruction with the results of Memari and Boissonnat
[10] shows some of the shortcomings of their method that can be overcome with a
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(a) Level 1 with 59 edges (b) Level 2 with 40 edges

(c) Level 3 with 29 edges (d) Level 4 with 23 edges

(e) Level 5 with 21 edges

Fig. 11. Skeleton hierarchy and reconstruction accuracy
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Table 2. Reconstruction accuracy with respect to lengths

Level Edges %
(

dH

Ldiag

)
Li

rec

Lmod

1 59 0.75 1.0842
2 40 0.82 1.0919
3 29 1.02 1.1227
4 23 1.08 1.1191
5 21 1.11 1.1186

reconstruction using continuous deformations. Reconstruction method proposed
by Memari and Boissonnat is derived from the Delaunay complex of the cross
sections. The reconstruction curve (see Fig. 12) is only C0 and misses some of
the high curvature regions of the original object boundary.

Fig. 12. Piecewise linear reconstruction using algorithm by Memari and Boissonnat
[10]

We produce comparative statistics for our reconstruction with the method
by Memari and Boissonnat [10]. The measures used for comparison are based on
area and length of the reconstructed curve as introduced in the previous sub-
section. Table 3 shows reconstruction accuracy of three methods for the set of
intersection lines shown in Fig. 4. Here, Homotopy1 refers to the reconstruction
using continuous deformations with no tangent alignment and Homotopy2 refers
to the reconstruction resulting from tangent alignment. Since [10] results in a
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piecewise linear reconstruction, the area (possibly) and length of the curve are
underestimated. The ratio of absolute difference of area with the area of the
model is low for Memari’s reconstruction that matches up with Homotopy2 re-
construction, but the relative Hausdorff measure goes bad and turns out to be
more than double of that obtained with either of the Homotopy based recon-
structions. Further, the relative ratio of the lengths of the reconstruction and
the original object shows that homotopy based reconstructions perform better
with estimating the length of the object.

Table 3. Comparison of Reconstructions

Method %
(Adiff

Amod

) Arec

Amod
%
(

dH

Ldiag

)
Lrec

Lmod

Memari [10] 14.6025 0.9652 3.9323 0.9149
Homotopy1 17.5470 1.0407 1.4831 1.0256
Homotopy2 14.6690 1.0425 1.3243 1.0303

6 Conclusion

In this work, we have presented a novel method of curve reconstruction from
arbitrary cross sections in a planar setting. The presented algorithm uses con-
tinuous deformations to reconstruct the object smoothly. We also introduced
generalized barycentric coordinates for polygons defined on its edges using the
line and point Voronoi diagram. The presented method is general in nature and
can be applied to higher dimensions. We avaluate accuracy of our algorithm
based on sampling of the original object.

An interesting generalization of the problem of reconstruction from arbitrary
cross sections is 3D reconstruction from arbitrary cutting planes. These cutting
planes partition the domain of computation into polyhedra, and also embed the
intersection with the object. Similar to the approach suggested in this paper,
a function f : R2 7→ R can be embedded in a cutting plane such that ker(f)
represents the boundary of this intersection. An example of one such function
is the signed distance function. Higher degree polynomial functions can be de-
signed based on this distance function. A multi-variate homotopy can then be
constructed from the functions defined previously on the faces of a polyhedron. A
possible parameterization of such a homotopy is with respect to the orthogonal
distance of any point inside the polyhedron to the polyhedron faces (see Fig-
ure 13). Parameterization in terms of the Voronoi volume (a volume consisting
of a paraboloid face and planar faces) stolen by a point inside the polyhedron is
another choice. A union of the zero level set of the derived homotopies provides
a reconstruction surface.
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Fig. 13. Reconstruction from arbitrary cutting planes in R
3. The polyhedron shows

one of the partitions of the domain resulting from cutting planes (one such shown here).
The shaded region depicts the cross section of the 3D object with the cutting plane.
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Appendix A: Smoothness in Homotopies

Proposition 1 For a triangle T in a planar triangulation , we show that the
curve H−1(0) defined by the homotopy (10),

H(p) =
2∑
i=0

fi (di(p))λi(p) = 0,

is at least C1.

Proof. We can prove this by showing that H−1(0) is C0 and C1.

1. H−1(0) is C0.
From the properties of barycentric coordinates, we know that

2∑
i=0

λi = 1.

This implies that at any edge ek of T , λk = 1 and λi,i 6=k = 0. Therefore, for any
p lying on ek, H(p) = fk(dk(p)). The same holds for any other triangle in the
triangulation and since the functions fi are globally defined on lines Li, H = 0
is C0.

2. H−1(0) is C1.
In order to show that H−1(0) is C1, we calculate the gradient of H at any

ek. The derivative of H is

∇H =
2∑
i=0

(f ′i(di)∇diλi + fi(di)∇λi) (27)

where di is the distance along line Lj corresponding to edge ei of the triangle.
For a triangle, the proposed barycentric coordinates based on the stolen area Ai
for any edge ei and point p are given by (9) as

λi = Ai
2∑
j=0
Aj

, i ∈ [0, 2].
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The gradient of λi can be calculated using the chain rule as

∇λi = ∇Ai
2∑
j=0
Aj

− Ai 2∑
j=0
Aj

2

2∑
j=0
∇Aj

= ∇Ai
2∑
j=0
Aj

− λi
2∑
j=0

∇Aj
2∑
j=0
Aj

(28)

Using (27) and (28),

∇H =
2∑
i=0

f ′i(di)∇diλi + fi(di)


∇Ai
2∑
j=0
Aj

− λi
2∑
j=0

∇Aj
2∑
j=0
Aj



 (29)

To compute the gradient of H at the intersection of line Lj and the object,
we must take the derivative at a point p in the limit as p approaches line Lj . In
this limit,

λk → 1
λi,i6=k → 0 (30)

Before the gradient in the limit can be evaluated, the behavior of ∇Ai and Ai
should be analyzed. To do so, we define several quantities as following.

Consider the triangle T shown in Fig. 14. Let the vertices of T be denoted
by p0(x0, y0), p1(x1, y1), and p2(x2, y2), and the edges by e0 = (p1 − p0), e1 =
(p2−p1), and e2 = (p0−p2). Let an edge ei of T be parameterized by distance
α along it

ei : p = pi + α
(pi+1 − pi)

li
, (31)

where index i is to be taken in a circular sense in the triangle. The Voronoi
diagram of edges of T divide it internally in three regions. We consider a point
p lying in the Voronoi region of an edge ei of T (see Fig. 14).

A parabola with focus at point p and directrix ei is given by

Pi : µ(α) = (α− αp)2

2µp
+ µp

2 , (32)

where (α, µ) form an orthonormal basis, and

αp =(p− pi)T
(pi+1 − pi)

li
, (33)

µp =(p− pi)TM (pi+1 − pi)T

li
, (34)
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Fig. 14. Parameterization along triangle edge.

with

M =
[

0 1
−1 0

]
, (35)

and li is the length of ei.
Let the parabola Pi intersects the boundary of the Voronoi region at points

bi(α0, µ0) and bi+1(α1, µ1) respectively. Denote by q(αq, µq) the incenter of T .
The parabola can intersect the two angle bisectors of the triangle Bi : µ = k0α,
and Bi+1 : µ = k1(li − α), ki = tan(θi/2), in three possible ways

I. α1 ≤ αq: both branches of the parabola intersect Bi, and µm = k0αm,m =
{0, 1},

II. α0 ≥ αq: both branches of the parabola intersect Bi+1, and µm = k1(li −
αm),m = {0, 1}, and

III. α0 < αq and α1 > αq: the branches of the parabola intersect Bi and Bi+1
respectively, and µ0 = k0α0 and µ1 = k1(li − α1).

It is sufficient to treat one of these cases here. Considering case I, α0 and α1 are
the roots of

α2 − 2α(αp + k0µp) + (α2
p + µ2

p) = 0. (36)

The areas to compute the barycentric coordinates can be written as

Ai = Apari +Atrii (37)
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where, Apari is the area enclosed between the parabolic arc and line connecting
bi and bi+1, and Atrii is the area of the triangle connecting points bi, bi+1, and
q. Using (32)

Apari = µ0 + µ1

2 (α1 − α0)−
∫ α1

α0

(
(α− αp)2

2µp
+ µp

2

)
dα, (38)

and

Atrii = µ0 + µq
2 (αq − α0) + µ1 + µq

2 (α1 − αq)−
µ0 + µ1

2 (α1 − α0). (39)

Therefore,

Ai = µ0 + µq
2 (αq − α0) + µ1 + µq

2 (α1 − αq)−
∫ α1

α0

(
(α− αp)2

2µp
+ µp

2

)
dα

(40)

Note that (40) holds for all the three cases above. Simplifying (40), we get

2Ai = (µ0 + µq)(αq − α0) + (µ1 + µq)(α1 − αq)−
[

(α− αp)3

3µp
− µpα

]α1

α0

= (µ0 + µq)(αq − α0) + (µ1 + µq)(α1 − αq)

− (α1 − αp)3 − (α0 − αp)3

3µp
− µp(α1 − α0) (41)

Distance di in (10) can be written as

di(p) = ||Oj − pi||+ αp, (42)

where we know that pi lies on Lj and Oj is the chosen origin on Lj . We note
the following derivatives

2∇Ai = ∇α0(−µ0 − µp) +∇α1(µ1 + µp) +∇µ0(−α0 + αq) +∇µ1(α1 − αq)

+ (α1 − αp)3 − (α0 − αp)3

3µ2
p

∇µp −
(α1 − αp)2(∇α1 −∇αp)

µp

+ (α0 − αp)2(∇α0 −∇αp)
µp

− (α1 − α0)∇µp − µp(∇α1 −∇α0) (43)

∇di = ∇αp = (pi+1 − pi)
li

(44)

∇µp = M (pi+1 − pi)
li

(45)

∇αm = ∇αp(αm − αp) +∇µp(µm − µp)
(αm − αp − k0µp)

,m = {0, 1} (46)

∇µm = k0∇αm, m = {0, 1} (47)
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In the limit µp → 0 for some edge ek of T ,

αm → αp, m ∈ {0, 1}
µm → k0αp m ∈ {0, 1} (48)

Consequently, Ai → 0, but Ai,i6=k becomes 0 much faster than Ak. Therefore,
using (30) and (48), the gradient (29) in the limit is

lim
µp→0

∇H = f ′k(dk)∇dk + fk(dk)


∇Ak
2∑
j=0
Aj

− ∇Ak2∑
j=0
Aj


= f ′k(dk)∇dk. (49)

Gradient of line ek is

∇ek = M (pi+1 − pi)
li

. (50)

We note that〈
lim
µp→0

∇H,∇ek
〉

= f ′k(dk) (pi+1 − pi)T

li
M (pi+1 − pi)

li

= 0.

A similar result can be shown for the gradient of the homotopy on the other side
of Lj . This implies that the reconstructed curve is orthogonal to the intersecting
lines from either side.

Therefore, the curve reconstruction is at least C1. ut


